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ABSTRACT
The iconic gastropod genus Cyphoma is commonly observed in the Caribbean, where
it lives in association with various octocorallian hosts. Each species in the genus
Cyphoma has a unique, characteristic mantle pattern and colouration, which separates
the valid taxa. Because of its abundance and recognisability Cyphoma gibbosum has
been used as a model organism in several studies concerning allelochemicals, reef
degradation, and physical defence mechanisms. Molecular analyses based on four
molecular markers (COI, 16S, H3 and 28S) for three Cyphoma species (C. gibbosum,
C. mcgintyi, C. signatum) and an unidentified black morph, collected from three
localities in the Caribbean, show that they represent morphological varieties of a
single, genetically homogeneous species. This outcome is in agreement with previous
anatomical studies. As a result C. mcgintyi and C. signatum are synonymised with
C. gibbosum, which is a key result for future work using C. gibbosum as a model
organism. The striking morphological differences in mantle pattern and colouration
are hypothesised to be the result of one of three possible scenarios: rapid divergence,
supergenes (including balanced polymorphism), or incipient speciation.

Subjects Biodiversity, Marine Biology, Molecular Biology, Taxonomy
Keywords Gastropoda, Marine invertebrates, Molecular phylogeny, Octocorallia, Taxonomy,
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INTRODUCTION
Biodiversity on reefs is dominated by highly diverse invertebrate taxa that are understudied
and incompletely described (Reaka-Kudla, 1997). Many of these taxa live in association
with corals on which they rely for food, habitat and settlement cues. Arthropods are the
most numerous associated taxa on stony corals, followed by molluscs (Stella et al., 2011).
For Octocorallia no such review on their associated fauna is available, but Goh, Ng &
Chou (1999) reported on 30 mollusc species among 17 families living in association with
gorgonians in Singapore. This gorgonian associated fauna included bivalves (e.g., Pteria),
nudibranchs (e.g., Phyllodesmium, Tritonia), and gastropods (Ovulidae). The widespread
family Ovulidae occurs in all temperate and tropical oceans and all but one species, Volva
volva (Linnaeus, 1758), live intrinsically associated with Octocorallia and Antipatharia
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(Cate, 1973; Lorenz & Fehse, 2009). Ovulids roam the branches of their host corals and
feed on the polyps and tissue (Gerhart, 1990). Ovulids have a mantle, which can cover
their entire shell; the different colours, patterns and appendices provide camouflage or
conversely advertise their toxicity with conspicuous, aposematic mantle patterns and
colourations (Rosenberg, 1992).

The well-known Atlantic ovulid species Cyphoma gibbosum (Linnaeus, 1758) is a
conspicuous and easily recognisable species living on various soft coral and gorgonian
species throughout the Caribbean (Simone, 2004; Lorenz & Fehse, 2009; Reijnen, Hoeksema
& Gittenberger, 2010; Humann, DeLoach & Wilk, 2013) and can locally occur in high
densities (Chiappone et al., 2003). It is therefore often used as a model organism and has
been used in studies dealing with allelochemicals and physical defence systems (Van Alstyne
& Paul, 1992; Vrolijk & Targett, 1992; Whalen et al., 2010), studies on their association
with fungal diseases in Caribbean gorgonians (Rypien & Baker, 2009) and research on
reef degradation and predation (Gerhart, 1990; Burkepile & Hay, 2007; Evans, Coffroth &
Lasker, 2013). The genus Cyphoma has 14 extant species recognised by Lorenz & Fehse
(2009) and 13–15 extant species according to Rosenberg (2015). Two Cyphoma species are
not found in the Atlantic Ocean but instead have an East Pacific distribution, namely C.
emarginata (Sowerby I, 1830) and C. arturi Fehse, 2006. All other Cyphoma occur in the
Atlantic on shallow reefs (intertidal) and in deep water (1,200 m), from Florida to southern
Brazil, and from the Caribbean to the Canary Islands and St. Helena (Lorenz & Fehse, 2009;
Humann, DeLoach & Wilk, 2013). The genus is assumed to be monophyletic, and is part
of the subfamily Simniinae (Schiaparelli et al., 2005; Fehse, 2007). Apart from C. gibbosum,
most Cyphoma species are relatively rare (Lorenz & Fehse, 2009) and as a result there are
fewer studies on other Cyphoma species. Botero (1990), Ruesink & Harvell (1990), and
Reijnen, Hoeksema & Gittenberger (2010) studied the host species of C. signatum, whereas
Ghiselin & Wislon (1966) studied the anatomy, natural history and reproduction of this
species. Recently two new host records (Plexaurella grandifloraVerrill, 1912 andMuriceopsis
sulphurea (Donovan, 1825)) were published for C. macumba Petuch, 1979 observed in
northeastern Brazil (Pinto, Benevides & Sampaio, 2016). Apart from the aforementioned
studies there are no records of Cyphoma species, other than C. gibbosum, in the scientific
literature.

The majority of Cyphoma species can be identified with the help of characteristic
patterns and colouration of their mantle, which are considered species specific in Ovulidae
(Cate, 1973; Mase, 1989; Fig. 1). There are, however, observations of mantles showing
intermediate patterns (e.g., Lorenz & Fehse, 2009: A197). In the 18th and 19th century
soft tissue, including the mantle, was often not available or recorded and therefore minor
shell morphological features (e.g., more pronounced keel, slightly more dentate labrum
etc.) were used to separate species (Röding, 1798; Dall, 1897). The species described during
this period were later synonymised with Cyphoma gibbosum, C. signatum and C. mcgintyi
(see Lorenz & Fehse, 2009). Based on shell morphology alone these three species are also
difficult to identify. For example, C. signatum and C. mcgintyi are differentiated from C.
gibbosum based on their respective colour patterns (fingerprint pattern vs. brown dots),
but based on just shell morphological features C. signatum and C. mcgintyi can hardly be
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Figure 1 In situ photographs of Cyphoma species. Cyphoma species showing different mantle patterns
and colouration. (A) Cyphoma gibbosum on Pseudoplexaura sp. (B) C. gibbosum on Pseudoplexaura sp. (C)
C. gibbosum with atypical mantle pattern (only dots around mantle edges) on Briareum asbestinum (D) C.
cf. allenae on Antillogorgia americana (E) C. signatum on Plexaurella dichotoma (see Reijnen, Hoeksema &
Gittenberger, 2010: Fig. 1B) (F) Juvenile C. signatum on Gorgonia ventalina (G) Cyphoma ‘‘black morph’’
on Eunicea tourneforti (H) C. mcgintyi from Florida, USA. Photos: (A–G) B.T. Reijnen, all from Curaçao;
(H) Florida Museum of Natural History.
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Figure 2 Dorsal and ventral views of Cyphoma shells. Dorsal and ventral views of the shells of Cyphoma
species in this study. (A) Cyphoma signatum (RMNH.Mol.100828) (B) C. mcgintyi (UF.446893a)
(C) C. gibbosum (UF.446879) (D) C. mcgintyi (UF.446893b; juvenile) (E) Cyphoma ‘‘black morph’’
(RMNH.Mol.337800).

distinguished (Cate, 1973). Shellmorphological features can be used to separateC. gibbosum
and C. signatum by using the differences in shell outline (oval vs. rhomboid) and shell
colour (often orange in C. gibbosum; Fig. 2). Interpretation of the anatomical features in
Cyphoma, such as penis form and the size of the osphradium leaflets, are troublesome and
no clear differences between species are observed (Ghiselin & Wislon, 1966; Simone, 2004).

Besides the typical species-specific mantle patterns some uncommon Cyphoma
morphotypes have been recorded (e.g., Lorenz & Fehse, 2009: A202–204;Humann, DeLoach
& Wilk, 2013: p. 175). Because of their unusual appearance and apparent rarity, these
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morphotypes have not yet been identified to species level, or formally described as separate
species, and their status remains uncertain.

To investigate the genetics behind the morphological differences in shell shape, mantle
patterns and colouration in Cyphoma spp. more closely, we used data obtained for a
previous study on Cyphoma (Reijnen, Hoeksema & Gittenberger, 2010) and supplemented
that dataset with an additional 26 specimens belonging to three ovulid species and one
unidentified morphotype, and with two additional markers. Here we show the results of
phylogenetic analyses based on four molecular markers (COI mtDNA, 16S mtDNA, 28S
tDNA and H3 nDNA) for three valid Cyphoma species and one unidentified black morph
(Fig. 1G), as well as three temperate Atlantic representatives of the subfamily Simniinae
(Cymbovula acicularis (Lamarck, 1810), Neosimnia spelta (Linnaeus, 1758) and Simnia
patula (Pennant, 1777)).

MATERIAL AND METHODS
Collecting
Cyphoma specimens and their host corals were collected during fieldwork on the leeward
side of Curaçao in 2005 and 2013, and from St. Eustatius in 2015 (Fig. 3). Research on
Curaçao was performed under the annual research permit (48584) issued by the Curaçaoan
Ministry of Health, Environment and Nature (GMN) to the CARMABI foundation.
The valid Cyphoma species co-occurred at the sample localities. When possible in situ
photographs were made to document the mantle patterns and colouration. Subsamples
were taken from the host corals for their identification based on sclerite morphology. All
specimens were preserved in 80% ethanol and deposited in the mollusc and coelenterate
collection of Naturalis Biodiversity Center, Leiden, The Netherlands (collection coded as
RMNH.Mol and RMNH.Coel). Three samples of Cyphoma mcgintyi and one additional
sample of C. gibbosum, collected in Florida, were obtained from the Florida Museum of
Natural History (FLMH; Table S1). Identification of the snails was based onKaicher (1991),
Fehse (2003), Lorenz & Fehse (2009) and Humann, DeLoach & Wilk (2013), the octocoral
hosts were identified with the help of Bayer (1961).

The earlier identification of Simnialena uniplicata (Sowerby II, 1849) in Reijnen,
Hoeksema & Gittenberger (2010) most likely constitutes a misidentification. Clear
diagnostic characters are missing in this juvenile specimen. Based on the photographs
in Reijnen, Hoeksema & Gittenberger (2010: Fig. 1E, 2F–2G) and reidentification of the
specimen a similar phenotype as Cyphoma ‘‘black morph’’ (Figs. 1G and 2E) is apparent
and the specimen is therefore hereafter identified as such.

Molecular analyses
Soft tissue from the foot or mantle was used for DNA extractions. Samples were either
extracted individually with the DNeasy Blood & Tissue kit, or as a part of the ‘barcoding
initiative’ at Naturalis Biodiversity Center with the Machery-Nagel DNA extraction kit on
a KingFisher Flex extraction robot. Extraction was performed according to the respective
protocols, except for the lysis times, which were performed overnight (approx. 17 h) and
the final elution volume that was decreased to 100 µL and 150 µL respectively. Before PCR
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Figure 3 Map with localities. Localities from which the Cyphoma spp. and other ovulids were collected
in the Caribbean. The species composition per locality is provided (orange, C. gibbosum; yellow, C. sig-
natum; brown, C. mcgintyi; black, Cyphoma ‘‘black morph’’) as well as haplotype frequencies for 16S and
COI.

amplification, extracts were diluted 100 to 300 times to lower the ratio of inhibitors vs.
DNA. Each PCR reaction contained 2.5 µl CoralLoad PCR buffer, 0.5 µl dNTP’s, 1.0 µl for
each primer (Table 1), 0.3 µl Taq polymerase, 18.7 µl PCR water and 1.0 µl template. For
the 28S marker, 5 µl of PCR water was replaced with 5.0 µl Q-solution. Each PCR program
consisted of initial denaturation for 3 min at 95 ◦C, followed by 39 cycles of 10 s 95 ◦C,
specific annealing temperature (Table 1) for 1 min, with an extension of 1 min. A final
extension of 10 min was used as a final step in the PCR programme. PCR amplification
was performed on a C1000 Touch Thermal Cycler (Bio-RAD). Sequencing of the PCR
products was performed at either Macrogen Europe (Amsterdam, The Netherlands) or at
BaseClear (Leiden, The Netherlands) on an ABI Automated Sequencer 3730xl capillary
sequencer. Sequences were edited in Sequencher 4.10.1. All novel sequences were uploaded
to GenBank (accession numbers: KT372440–KT372515 and KX360169–KX360219).
Additional sequences of Caribbean ovulids (Reijnen, Hoeksema & Gittenberger, 2010) were
downloaded from GenBank (Table S1) and aligned on the GUIDANCE server (Penn et al.,
2010) using the MAFFT algorithm (alignment score: 0.792612). Gene regions that could
not be amplified for certain specimens were replaced by ‘‘N’’ in the final alignment. DNA
amplification of a specimen of Cyphoma cf. alleneae (Fig. 1D), collected from Curaçao in
2005, was unsuccessful.
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Table 1 Primer information of the markers used in this study, including annealing temperatures, sequenced regions and fragment sizes.

Primer names Primer sequence Region Annealing T Fragment size (bp) Reference

H3F ATGGCTCGTACCAAGCAGACVGC Histone H3 (nuclear) 50 ∼380 Colgan, Ponder & Eggler (2000)
H3R ATATCCTTRGGCATRATRGTGAC Histone H3 (nuclear) 50 ∼380 Colgan, Ponder & Eggler (2000)
LSU5 TAGGTCGACCCGCTGAAYTTAAGCA 28S (nuclear) 50 ∼800 Littlewood, Curini-Galletti & Herniou

(2000)
LSU800rc GACTCCTTGGTCCGTGTTTC 28S (nuclear) 50 ∼800 This publication
16Sar CGCCTGTTTATCAAAAACAT 16S (mitochondrial) 52 ∼540 Palumbi (1996)
16Sbr CCGGTCTGAACTCAGATCACGT 16S (mitochondrial) 52 ∼540 Palumbi (1996)
LCO-1490 GGTCAACAAATCATAAAGATATTGG COI (mitochondrial) 50 ∼660 Folmer et al. (1994)
HCO-2198 TAAACTTCAGGGTGACCAAAAATCA COI (mitochondrial) 50 ∼660 Folmer et al. (1994)
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Table 2 Genetic variation (%) in COI of Atlantic Ovulidae between and within Cyphoma species groups.

Between groups (no. of specimens) 1 2 3 4 6 7 8 9 Within groups

1. Cyphoma gibbosum (n= 18) Cyphoma gibbosum 0.1
2. Cyphoma sp. (n= 3) 0.1 Cyphoma sp. 0.1
3. Cyphoma signatum (n= 6) 0.2 0.2 Cyphoma signatum 0.2
4. Cyphoma.mcgintyi (n= 3) 0.3 0.4 0.3 Cyphoma mcgintyi 0.2
5. Simnialena uniplicata (n= 1) 0.3 0.4 0.2 0.6 Simnialena uniplicata –
6. Cymbovula acicularis (n= 12) 6.2 6.6 6.7 7.1 7.8 Cymbovula acicularis 0.2
7. Neosimnia spelta (n= 1) 6.5 7.1 6.7 7.7 7.3 7.4 Neosimnia spelta –
8. Simnia patula (n= 1) 7.7 8.7 8.1 9.5 8.9 9.2 7.6 Simnia patula –
9. Outgroup (n= 1) 9.3 9.6 10.3 10.1 11.6 10.2 12.0 12.7 Outgroup –

The final alignment contained 46 specimens (Table 2; Table S1) and the concatenated
dataset was 2,355 base pairs in length including insertions and/or deletions. The Indo-
Pacific species Ovula ovum (Linnaeus, 1758) was selected as outgroup. The datasets of the
individual markers were subjected to the model-testing algorithm in jModeltest (Darriba et
al., 2012) and MEGA6 (Tamura et al., 2013) based on the uncorrected Akaike Information
Criterion (16S: GTR + G; 28S: GTR + G; COI: GTR + I; H3: GTR + I). Bayesian
analyses were performed in MrBayes 3.2.0 (Ronquist & Huelsenbeck, 2003) and were run
for 4,000,000 generations with six chains. Trees were sampled every 100 generations. The
final split frequency between the two independent runs was <0.01. Garli2.0 (Zwickl, 2006)
was used to determine the phylogenetic relationships based on the maximum likelihood
approach. Nodal support was assessed using 1,000 bootstrap iterations.

Additionally, gene trees were made for the four individual marker datasets. For each
marker the model of evolution determined for the concatenated dataset was used.
Bayesian inference analyses were performed in MrBayes, with the same settings as for
the concatenated dataset. The final split frequency between the two independent runs was
<0.01 for all four makers.

The genetic distance between the Cyphoma species was assessed with the Automatic
Barcode Gap Discovery tool (ABGD; Puillandre et al., 2012). Default settings were used
and analysis was performed with the Jukes-Cantor (JC69) algorithm. A species delimitation
assessment was performed with the species delimitation tool implemented in Geneious
R8 (http://www.geneious.com, Kearse et al., 2012). A Bayesian phylogeny based on four
million iterations was used for the species delimitation analysis. Genetic distances were
calculated in MEGA6 and minimum spanning haplotype networks for COI and 16S were
constructed in PopART (http://popart.otago.ac.nz). Figure 3 shows the different haplotypes
per locality for 16S and COI.

RESULTS
The phylogram (Fig. 4) based on the concatenated four gene dataset shows three groups
containing: (A) Cyphoma spp. including Cyphoma ‘‘black morph’’ (RMNH.Mol.100770),
which was formerly identified as Simnialena uniplicata (Reijnen, Hoeksema & Gittenberger,
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Figure 4 Phylogram based on the concatenated dataset of four markers. The support values in this
Bayesian consensus tree are noted as Bayesian inference/Maximum likelihood. Clades A, B, and C are dis-
cussed in the results. For the Cyphoma species their respective characteristic mantle patterns are depicted
per specimen including photographs of the live animals (not to scale). Bar colours: orange, C. gibbosum;
yellow, C. signatum; brown, C. mcgintyi; black, Cyphoma ‘‘black morph’’. Numbers preceding species
names refer to the specimen codes in Table S1.

2010), (B)Cymbovula acicularis, (C)Neosimnia spelta and Simnia patula. All groups are well
supported by the Bayesian and maximum-likelihood analyses. Phylogenetic relationships
betweenCymbovula acicularis and the group containingNeosimnia spelta and Simnia patula
have low support values (57/87). Within the clade containing the valid Cyphoma species
there is no clustering observed concordant with the respective species identifications (C.
gibbosum, C. signatum, C. mcgintyi, Cyphoma ‘‘black morph’’). There is however a small
cluster of specimens that is highly supported (95/85), which contains the three C. mcgintyi
specimens and one representative of C. signatum, but the branch lengths are short. In the
alignment only five nucleotide sites out of 2,355 positions support the grouping of these
four specimens. One of these sites is within the non-coding 16S region, while the other four
are situated in the coding COI region. Each of these sites are third codon positions, and do
not change the translation of the protein coding alignment when compared with the other
Cyphoma spp. All other Cyphoma species are distributed randomly throughout the clade
and do not show phylogenetic affinities based on mantle patterns and colouration.
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Figure 5 Separate gene trees. Single gene trees for the 16S, 28S, COI and H3 markers. The grey boxes highlight the clades containing the Cyphoma
species.

The gene trees for the four independent markers (Fig. 5) show identical results to the
phylogram in Fig. 4. No clustering is observed among the valid Cyphoma species in 16S,
COI, 28S, and marginal clustering is observed in Histone H3. In the latter the clustering is
based on a single base pair and/or polymorphic site and not correlatedwith the valid species.
To investigate the observed random positioning of the Cyphoma species in more detail,
the genetic distances between and within the species were calculated (Table 2). Genetic
distance values within species (0.1–0.2%)were almost as low as between species (0.1–0.4%).
When distance values were calculated between Cyphoma spp. and Cymbovula acicularis,
Simnia patula or Neosimnia spelta genetic distance values were notably higher (0.1–0.4%
between Cyphoma spp. vs. 6.5–8.1% between Cyphoma spp. and Cymbovula acicularis,
S. patula or N. spelta).
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Figure 6 Haplotype networks for the Cyphoma spp. Haplotype networks for 16S and COI based on the
Cyphoma sequence data. Orange, C. gibbosum; yellow, C. signatum; brown, C. mcgintyi; black, Cyphoma
‘‘black morph’’. Numbers indicate the differences in number of base pairs.

The ABGD analysis resulted in five groupings: (1) Cyphoma gibbosum, C. mcgintyi, C.
signatum, Cyphoma ‘‘black morph’’, (2) Cymbovula acicularis, (3) Neosimnia spelta, (4)
Simnia patula, and (5) Ovula ovum. The ABGD results are congruent with the results
from the phylogenetic analyses and do not separate the valid Cyphoma species (with their
unique mantle patterns and colouration) in separate groups. To test the validity of the
three Cyphoma species and the ‘‘black morph’’, a species delimitation test was performed
which showed that the three species and the ‘‘black morph’’ should be considered a single
species (P IDstrict < 0.95; P IDliberal < 0.95). All other non-Cyphoma spp. were considered
valid by the species delimitation test (P IDliberal > 0.95).

To infer the genealogical relationships amongCyphoma populations, haplotype networks
were created for the 16S and COI markers (Fig. 6) (there was not enough variation in the
28S and H3 nDNA sequences to create a haplotype network). The COI dataset has 17
segregating sites vs. nine in the 16S dataset. Tajima’s D statistics for both gene partitions
approach zero (7.81 × 10−8 and 1.71×10−9 respectively). In the COI haplotype network
the three C. mcgintyi specimens from Florida cluster together with a C. signatum specimen
from Curaçao, with a difference of four base pairs. In the 16S haplotype network this
grouping is retrieved with a single base pair difference.
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DISCUSSION
Mantle patterns and colouration in Ovulidae were long thought to be diagnostic species
characters and were used as such by several authors (Cate, 1973; Reijnen, Hoeksema &
Gittenberger, 2010; Lorenz & Fehse, 2012; Lorenz & Brown, 2015).Mase (1989) did not only
look at the shell and mantle, but also patterns and colours on the foot, antenna and siphon
of Japanese ovulids. In this study we show that morphological characters (mantle patterns
and colouration, shell morphological features) of selected species in the genus Cyphoma do
not correspond with the genetic data, which is in accordance with studies on anatomical
features in Cyphoma (Ghiselin & Wislon, 1966; Simone, 2004). The phylogram (Fig. 4)
shows that the three Cyphoma species used in this study (and an unidentified morph) are
indistinguishable based on two of the four molecular markers, which is also reflected in the
gene trees of the independent markers (Fig. 5). Histone H3 is most informative for genus
level identifications (Dinapoli et al., 2007), which could explain the clustering observed in
this gene tree. The 28S gene tree clearly separates the genera Cyphoma and Cymbovula.

The COI genetic distance values between the Cyphoma species (Table 2) are comparable
to those found in Indo-Pacific Crenavolva species (Reijnen, 2015). In that specific case
Crenavolva chiapponii was synonymised with C. aureola based on genetic data and
morphological similarity.

The haplotype networks show that the valid taxa contain only minor differences in the
sequences (Fig. 6) and that the haplotypes are not linked to specific localities (Fig. 3).
The observed groupings all contain multiple species and hence support the hypothesis
of a single Cyphoma species with different morphotypes. These different morphotypes
co-occur on reefs and feed on the same host species (Table S1), which refutes the idea of
reproductive isolation.

The discrepancy between the different mantle colours/patterns, shell morphological
characters and the molecular results in this study are difficult to reconcile. Various
scenarios can, however, explain the findings presented here. Possible hypotheses include
rapid diversification, supergenes/balanced polymorphism and discontinuous variation.

In a scenario of rapid divergence, trophic specialisation is frequently a key feature that
characterises sister species (Vaillant, Haffner & Cristescu, 2011). Such trophic specialisation
is not known inC. gibbosum.Cyphoma gibbosum is a generalist predator that has been found
associated with at least 21 different host species belonging to at least nine different genera
(Reijnen, Hoeksema & Gittenberger, 2010). Morphotypes resembling Cyphoma signatum
are uncommon on most reefs and as a result ecological data are rare for this species. Most
specimens have been found on the genus Plexaurella, yet a juvenile resembling C. signatum
was observed on Gorgonia ventalina (Fig. 1F). The lack of trophic specialisation in C.
gibbosum suggests that this is an unlikely scenario to explain the discrepancy between the
genetic data and the morphological differences in mantle pattern and colouration.

A second scenario is that phenotypic diversity in Cyphoma gibbosum is regulated by a
supergene. A supergene consists of multiple strongly linked loci that determine phenotype,
without differences in the studied molecular markers (Joron et al., 2006; Joron et al., 2011).
The typical orange-spotted Cyphoma gibbosum would be the general phenotype and rare
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phenotypes, in this case the yellow fingerprint pattern in C. signatum and the brown-
spotted pattern in C. mcgintyi, the less common morphs (Cook, 2005). In case of the shell
morphological features it is more difficult to reconcile the data. Reijnen (2015) showed that
in Ovulidae minor shell morphological characters, previously used for separating nominal
species, should be consideredmorphological variety within a single species. The presence of
different morphotypes within a species is not unique within the Ovulidae. Schiaparelli et al.
(2005) recognised up to three different morphotypes in one Atlantic/Mediterranean and
four Indo-Pacific species (Neosimnia spelta (Linnaeus, 1758), Pellasimnia brunneiterma
(Cate, 1969), Dentiovula dorsuosa (Hinds, 1844), Diminovula punctata (Duclos, 1828) and
Habuprionovolva aenigma (Azuma & Cate, 1971)), but could not discriminate between
these morphs based on 16S molecular data. Similar to the supergene hypothesis is the
balanced polymorphism scenario. In both cases multiple genes regulate the mechanism,
but in balanced polymorphism two alleles are maintained in a population because having
heterozygote alleles is more beneficial than homozygote alleles. The balancing selection
hypothesis is an unlikely scenario for our data, because the TajimaD statistic is approaching
zero. This indicates that there is no selection or above normal mutation rate in the studied
genes, which is expected in case of balancing polymorphism. It has to be noted that the four
studied markers have to be involved in determining the phenotype, which is not known to
be the case in molluscs (Schwander, Libbrecht & Keller, 2014).

A third hypothesis is thatCyphoma gibbosum-morphs are incipient species in the process
of diverging, which is reflected by the discontinuous variation in morphology but (not
yet) in the studied genes. This hypothesis is supported by the idea that phenotype precedes
genotype is a common mode of speciation (Palmer, 2004). A similar case was observed in
the shrimp Conchodytes meleagrinae (Fransen & Reijnen, 2013). Shrimp specimens from
different bivalve hosts showed very dissimilar colour patterns and were thought to be
distinct species. Molecular analyses showed that based on their genetic barcodes these
species could not be distinguished from each other and it was therefore hypothesised that
this species is in the process of speciation. Laboratory experiments, including breeding and
crossing of taxa, and additional molecular approaches such as AFLPs, SNPs, microsatellites
and RAD tag sequencing could be used to test the proposed hypotheses.

It is likely that shell morphological features in Ovulidae are probably more plastic
than previously thought (Fig. 2; Schiaparelli et al., 2005; Reijnen, 2015) as well as in
other molluscs groups (e.g., Pediculariidae (Sasaki, 2008; Braga-Henriques et al., 2011)).
Strikingly, the cowrie family Cypraeidae shows contrasting outcomes from genetic analyses
and multiple cryptic lineages have been discovered (Meyer, 2003; Moretzsohn, 2014). The
discovery of cryptic lineages revealed using molecular data has become commonplace, but
reports of distinct morphospecies attributed to a single, genetically homogeneous species
are far less common (e.g., polychaetes (Willette et al., 2015, and references therein), sea stars
(Harley et al., 2006), land snails (Stankowski, 2011) and caridean shrimps (Bauer, 2004)).
In some of these studies no cryptic species were uncovered, but in contrast, species had to
be synonymised. It is very likely that more ovulid species should be placed in synonymy,
rather than described as new species.
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TAXONOMIC ACCOUNT
Resulting from the molecular outcomes and species delimitation test, which are in line with
anatomical studies byGhiselin & Wislon (1966) and Simone (2004),Cyphoma signatum and
C. mcgintyi should be synonymised with Cyphoma gibbosum. The synonymy of this species
is therefore as follows:

Family Ovulidae Fleming, 1822
Genus Cyphoma Röding, 1798
Cyphoma gibbosum (Linnaeus, 1758)

Bulla gibbosa Linnaeus, 1758: 726
Cyphoma dorsatum Röding, 1798: 21
Ovula pharetra G. Perry, 1811: pl. 53, Fig. 2
Ovula rostrataMörch, 1877: 53
Cyphoma precursor Dall, 1897
Cyphoma signata Pilsbry & McGintyi, 1939: 3, pl. 1, Figs. 1, 1A, 2, 2A, 9, 10
Cyphoma mcgintyi Pilsbry, 1939: 108
Cyphoma robustior Bayer, 1941
Cyphoma alleneae Cate, 1973: 67–68, Figs. 151, 151C
?Cyphoma macumba Petuch, 1979: 515–517, Figs. 1C–1D, 2B–2C
Cyphoma finkli Petuch, 1979
Cyphoma lindae Petuch, 1987
Simnialena uniplicata—Reijnen, Hoeksema & Gittenberger, 2010: Figs. 1E, 2F–2G

Remarks: Ghiselin & Wislon (1966) previously mentioned that there are no striking
morphological differences between C. gibbosum and C. signatum when it comes to their
functional anatomy and mantle cavity. The radular morphology of C. gibbosum and other
Atlantic ovulids was studied by Bandel (1984) and Simone (2004) and both concluded that
radular morphology does not differ significantly between ovulid species. Reid (2000) warns
about using radular morphology as a morphological character, because of ecophenotypic
plasticity, convergence and intraspecific variation. This study shows that in the genus
Cyphoma, mantle patterns and colouration should also be used with care to discriminate
between species, especially when the mantle is the sole differentiating character.

In contrast to Simone (2004: p.88), Lorenz & Fehse (2009) did not include C. alleneae
in the synonymy of C. gibbosum, albeit without further discussion to substantiate their
decision. Since there is no morphological or genetic evidence, to our knowledge, we do not
consider C. alleneae a valid species and include this taxon in the synonymy of C. gibbosum.

Additionally, Simone (2004) discussed the taxonomy and systematics of other Cyphoma
species such as C. intermedium, C. macumba and C. signatum. According to Simone (2004),
C. macumba is a possible synonym of C. signatum. Simone (2004) investigated the type
species of C. macumba and did not observe clear morphological differences based on the
shells alone. Nevertheless, Lorenz & Fehse (2009) consider C. macumba and C. signatum
separate species based on their mantle features and a minor shell morphological feature
(callus-denticles on the outer labrum). Here we provisionally follow Simone’s (2004)
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suggestion that C. macumba is a synonym of C. signatum, and hence of C. gibbosum. Cate
(1973) includes the following synonymies ofC. gibbosum:Cyphoma dorsatum Röding, 1798,
Ovula pharetra G. Perry, 1811, Ovula rostrata Mörch, 1877, and Cyphoma precursor Dall,
1897. Lorenz & Fehse (2009) included C. finkli Petuch, 1986 as a synonym of C. signatum,
and C. robustior Bayer, 1941 and C. lindae Petuch, 1987 as synonyms of C. mcgintyi. We
include these synonyms here as well.

Variability of morphological characters, in combination with molecular data, should
be taken into account in future research on Ovulidae. Unnecessary profusion of species
names and other taxonomical problems can be avoided by assessing both morphological
and molecular data.
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Research on Curaçao was performed under the annual research permit (48584) issued
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