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Abstract
Background: Cancer is a complex disease which can engages the immune system of the patient. In 
this regard, determination of distinct immunosignatures for various cancers has received increasing 
interest recently. However, prediction accuracy and reproducibility of the computational methods 
are limited. In this article, we introduce a robust method for predicting eight types of cancers 
including astrocytoma, breast cancer, multiple myeloma, lung cancer, oligodendroglia, ovarian 
cancer, advanced pancreatic cancer, and Ewing sarcoma. Methods: In the proposed scheme, at 
first, the database is normalized with a dictionary of normalization methods that are combined with 
particle swarm optimization (PSO) for selecting the best normalization method for each feature. 
Then, statistical feature selection methods are used to separate discriminative features and they 
were further improved by PSO with appropriate weights as the inputs of the classification system. 
Finally, the support vector machines, decision tree, and multilayer perceptron neural network were 
used as classifiers. Results: The performance of the hybrid predictor was assessed using the holdout 
method. According to this method, the minimum sensitivity, specificity, precision, and accuracy of 
the proposed algorithm were 92.4 ± 1.1, 99.1 ± 1.1, 90.6 ± 2.1, and 98.3 ± 1.0, respectively, among 
the three types of classification that are used in our algorithm. Conclusion: The proposed algorithm 
considers all the circumstances and works with each feature in its special way. Thus, the proposed 
algorithm can be used as a promising framework for cancer prediction with immunosignature.

Keywords: Cancer, feature selection, immunosignature, normalization

An Optimized Framework for Cancer Prediction Using Immunosignature

Original Article

Fatemeh Safaei 
Firouzabadi1, 
Alireza Vard2, 
Mohammadreza 
Sehhati2, 
Mohammadreza 
Mohebian3

1Student Research Committee, 
School of Advanced 
Technologies in Medicine, 
Isfahan University of Medical 
Sciences, 2Department of 
Bioelectrics and Biomedical 
Engineering, School of 
Advanced Technologies in 
Medicine and Medical Image 
and Signal Processing Research 
Center, Isfahan University of 
Medical Sciences, 3Department 
of Biomedical Engineering, 
Faculty of Engineering, 
University of Isfahan, Isfahan, 
Iran

How to cite this article: Firouzabadi FS, Vard A, 
Sehhati M, Mohebian M. An optimized framework for 
cancer prediction using immunosignature. J Med Sign 
Sens 2018;8:161-9.

This is an open access journal, and articles are 
distributed under the terms of the Creative Commons 
Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows 
others to remix, tweak, and build upon the work non‑commercially, 
as long as appropriate credit is given and the new creations are 
licensed under the identical terms.

For reprints contact: reprints@medknow.com

Introduction
When antibodies circulate in the blood, 
they can connect to a large microarray 
of randomized sequence peptides.[1] An 
“immunosignature” is a pattern of random 
sequence peptides, which is obtained 
with a blood sample test.[2] Neoantigens 
are produced by cancer release native 
proteins and biomolecules that are not 
encountered by the immune system. 
Therefore, the change in the regulation of 
the gene expression and proteins in cells 
can be considered as a sign of cancer.[3] 
However, there is a slight overlap of the 
signatures among the cancers that resulted 
in a loss of specificity in distinguishing 
between cancers using immunosignatures. 
To resolve this, peptides were determined 
to be statistically significant in the cancer 
signatures using more stringent selection 
processes.

In the recent years, various methods 
have been introduced in the literature 
for predicting cancer with peptides and 

proteomic datasets. Zhang et al.[4] for 
classifying ten types of cancers used the 
protein expression profiles. They used the 
minimum redundancy maximum relevance 
and the incremental feature selection 
methods in order to select 23 out of 187 
proteins as the inputs of the sequential 
minimal optimization classifier. Using 
23 proteins, they classified with Matthews 
Correlation Coefficient (MCC) of 0.936 on 
an independent test set. Kaddi and Wang[5] 
used the proteomic and transcriptomic 
data to predict the early stage of cancer in 
head‑and‑neck squamous cell carcinoma. 
They proposed a filter and wrapper 
method for feature selection and employed 
the individual binary classification 
accompaniment with the ensemble 
classification methods. Stafford et al.[2] 
used ANOVA and t‑test for approximately 
10,000 peptide sequences. They proposed 
a novel feature selection method and the 
naive Bayes, linear discriminant analysis, 
and support vector machine (SVM) for 
classification in two libraries. An average 
accuracy of 98% and an average sensitivity 
of 89% were reported.[6]
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Nguyen et al.[7] used five filter‑based feature selection 
methods including t‑test, Wilcoxon, entropy, signal‑to‑noise 
ratio, and receiver operating characteristic curve. Moreover, 
they employed an analytic hierarchy process which is a 
multi‑criteria decision analysis based on the type‑2 fuzzy 
method for the classification of cancer microarray gene 
expression profiles. Based on the proposed classification 
method, the achieved accuracy was 95.24%, considering 
t‑test as the feature selection method.

In the proposed framework, we combined the meta‑heuristic 
population‑based optimization with feature selection 
and normalization methods to improve the accuracy and 
efficiency of the classification algorithms for classifying 
12 different cancer types. Briefly, the particle swarm 
optimization (PSO) method at first filters the significant 
peptides. Next, it selects the best method of normalization 
from the dictionary for one feature and chooses weights 
for features that are selected with the statistical feature 
selection process. Then, the selected features apply to 
classification. In our study, three types of classification, 
including SVM, multilayer perceptron (MLP), and decision 
tree (DT), are used and compared with each other.

The rest of the article is organized as follows: in the 
next section, information about the datasets and proposed 
methods which are used in this study are presented. The 
results of the proposed method and the discussion about 
them are provided in the Results and Discussion Sections 
and finally, the article is concluded in the Conclusion 
Section.

Materials and Methods
The dataset

In this study, we used a public immunosignature peptide 
microarray dataset (arrays of 10,371 peptides) which 
consists of 1516 patients for 12 different cancer types, 
2 infectious diseases, and healthy controls.[7] The Gene 
Expression Omnibus series code of this dataset is 
GSE52581, which is publicly available, and other types 
of this kind of dataset are used in recent studies carried 
out on cancer.[2,8,9] The features of this dataset are not 
normalized and the dataset includes cancers such as 
astrocytoma, breast cancer, multiple myeloma, lung cancer, 
oligodendroglia, ovarian cancer, advanced pancreatic 
cancer, and Ewing sarcoma. We removed the data related 
to the infectious diseases and used 1292 subjects. Thus, 
the dataset consists of 1292 columns and 10,371 rows and, 
in this article, rows refer to mean peptides and columns 
refer to samples. More details about the used dataset are 
described in Table 1.

The proposed algorithm

The structure of the proposed algorithm is depicted in 
Figure 1. As shown in this figure, at first, features are 
normalized with different methods that are selected by 

PSO from a dictionary of methods. Then, a statistical 
feature selection method is used to identify significant 
discriminative features. The selected features are 
assigned weights by PSO. The goodness of fit of PSO 
can be measured by F1‑score of classifier on the training 
set (Eq. 1).

Goodness of fit = FScoretrain  (1)

After selecting suitable features, classification methods 
are used to classify the types of cancers. In this study, we 
utilized three multi‑class classification methods including 
multi‑class SVM, DT, and multilayer perceptron. The 
weights of features are estimated using PSO during 
learning of classifiers. The algorithm stops if no remarkable 
improvement is seen in the objective function or the 
maximum number of iterations (set to 50 in our study) is 
reached.

In the following section, the methods and algorithms, 
employed in different parts of the proposed scheme, are 
described in detail.

Normalization

According to Liu et al.,[10] a major bioinformatics challenge 
is the normalization of the data. Normalization is a method 
that puts data in a similar domain when they are not in 
one domain. In other words, a data miner may encounter 
situations in which features in data include quantities in 
different domains. These features with large quantities 
may have higher impacts on cost function compared 
to features with low quantities. This issue is resolved 
by normalization of features such that their values are 
put into one domain.[11] Thus, if each feature normalizes 
properly, classification would be applied more effectively 
in feature space compared to using classifying without 
normalization.[12] In addition, it changes the characteristics 
of the underlying probability distributions.[13] A careful 
analysis of the geometry of feature space suggests a 
modification on normalization procedure that works on 

Table 1: Basic information of patients per cancer in the 
utilized dataset

Cancer type Number of patients (%)
Recurrence breast cancer 61 (4.7)
Breast cancer stages II, III 141 (10.9)
Breast cancer stage IV 42 (3.2)
Aggressive‑type astrocytoma 27 (2.0)
Astrocytoma 166 (12.8)
Lung cancer 107 (8.2)
Multiple myeloma 112 (8.6)
Oligodendroglia 48 (3.7)
Oligoastrocytoma 97 (7.5)
Ovarian cancer 86 (6.6)
Pancreatic cancer 136 (10.5)
Ewing sarcoma 20 (1.5)
Healthy control 249 (19.2)
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each feature separately.[14] Therefore, in this study, a 
dictionary of normalization methods is used which gives 
the algorithm the ability to select the best normalization 
method for each feature irrelevant from other features. 
These normalization methods are selected from the 
previous studies used on peptides, proteomics, and other 
microarray datasets.[12,15‑17] These methods are described in 
the following subsection.

Global median centering

In this method, the median value of peptides is simply 
subtracted from each peptide. While this method needs 
only one sample and does not require other data column, 
it has bias when the number of peptides is low (<100).[12]

Tukey (median polish)

This method is a nonparametric analysis of variance.[12] 
The column medians and row medians are subtracted until 
a defined criterion is satisfied. This criterion could be the 
number of iteration or a specific value of the proportional 
reduction in the sum of absolute residual.[18] If the number 
of samples and peptides is reasonably large, the approach 
will be robust.[11] In this study, the termination criterion of 
the algorithm is empirically defined as 400 iterations.

Loading control method

This method uses the global median‑centering 
approach at the first step for each peptide. Then, global 
median‑centering approach is used for each sample rather 
than each peptide.[12]

Robust Z‑score

This method is robust like standard score and is formulated 
with Eq. 2.[19]

X
X Median
MADij

' ij i

i

=
-

 (2)

Where X ij
'  represents the ith peptide and the jth sample. 

In addition, MADi  and Mediani  denote median and 
median absolute deviation, respectively. According to the 
formulation, this method is not sensitive to outliers and 
therefore is appropriate for microarray data.[20]

Invariable method

This method is well known for microarray data analysis 
in the literature[12,21,22] since it can eliminate systematic 
variation in microarray data. In this method, peptides 
are ranked, and then a peptide with the highest rank is 
discarded. This process is repeated until the remaining 
number of peptides reach a predetermined value (1000 in 
this article). Then, 25% of the highest and the lowest ranked 
data are removed and the average of each peptide creates 
a virtual reference. At the end, each sample is normalized 
to the virtual reference by the MA‑plot approach.[12] In the 
MA‑plot approach, the difference between each sample and 
the reference sample in the logarithm of base 2 is plotted 
against the mean of each sample and the reference sample. 
Then, the normalized values are generated using residuals 
of fit consequently.

Modified Z‑score method

In this method, log2 is performed on the whole data, firstly. 
Then, the standard score normalization is applied to each 
sample and each peptide subsequently. In the final step, the 
arctangent function is applied to the data.[23,24] This method 
has had a great performance on gene expression data 
comparatively.[23‑26]

Figure 1: The structure of the proposed algorithm



Firouzabadi, et al.: Immunosignature-based cancer prediction

164 Journal of Medical Signals & Sensors | Volume 8 | Issue 3 | July - September 2018

Statistical feature selection

Feature selection approaches can be classified into 
three categories including wrapper, filter, and embedded 
methods.[27] The filter method is used in the preprocessing 
section and works independently from classifier.[28] On the 
other hand, other two methods are used during classification. 
The wrapper method evaluates the combination of features 
by formulating a problem and searches the problem space 
for the best features.[29] This method tests the entire feature 
subsets.[30] Finally, the embedded method evaluates the 
accuracy of the classifier for predicting the best features 
with searching that is guided by a learning classification 
process. This characteristic of the embedded feature 
selection method makes it robust against overfitting.[27]

According to the characteristics of the peptides’ datasets that 
have only interval data types, the Kolmogorov–Smirnov (KS) 
test was appropriate.[31] The KS evaluates the maximum 
absolute difference in the overall distribution of the two 
groups (cancer or noncancer). Then, if a feature was 
significant, the independent‑sample t‑test was used to identify 
statistically discriminative normally distributed features.[32] 
Otherwise, the Mann–Whitney test is performed to check 
whether two independent samples are significantly different 
or not.[33] Finally, if numbers of selected features are >50, 
the algorithm selects the 50 highest ranks in t‑test and then 
in Mann–Whitney test. Thus, the 50 discriminative features 
are selected consequently and prepared as the inputs of 
the classification system which is combined with PSO for 
weighing them as discussed in the following subsection.

Particle swarm optimization

PSO is a meta‑heuristic stochastic evolutionary 
population‑based optimization algorithm that is inspired 
by birds.[34] PSO can solve a range of difficult optimization 
problems, but it has shown a faster convergence rate 
compared to other evolutionary algorithms.[35,36]

This algorithm is used in many different computational 
biology fields such as modeling in biology,[37] feature 
selection in gene expression data,[38,39] DNA sequence 
encoding,[40] and breast cancer recurrence prediction.[6] 
The PSO algorithm starts with random solutions that are 
called particle positions. Each particle has a velocity and 
a position that help it to search the whole problem space. 
The position of a particle is updated according to three 
parameters: its previous speed, the best position visited by 
particle, and the best position of the neighborhood (Eq. 4).

v wv c r p x c r p xi
n

i
n n

i
n

i
n n

g
n

i
n+ = + −( ) + −( )1

1 1 2 2  (3)

x x vi
k

i
k

i
n+ += +1 1  (4)

where n is the iteration number; C1 and C2 are the learning 
factor coefficients that usually set to 2; i is the particle 
number, r1, and r2 are random numbers that are uniformly 
distributed in (0, 1); w is the inertia weight, where a large 
number of it shows exploration while a small number of 

it denotes exploitation[41] Thus, the inertia coefficient was 
set to 1.00 at the first iteration and was linearly decreased 
with the damping coefficient of 0.99 at each iteration. 
Furthermore, the objective function is maximizing the 
goodness of fit that is mentioned in Eq. 1.

In our study, PSO algorithm has three main tasks. First, it 
selects probable peptides. For this purpose, 400 particles 
are considered in which each particle represents the index 
of one peptide and it can be an integer number between 
1 and 10,371. Second, the PSO algorithm chooses the 
normalization method for each feature that was selected in 
the previous step. In these steps, the rounded value of the 
particle position is selected as an index of the normalization 
method. It is necessary to say, only one peptide which is 
normalized individually or with accompaniment of other 
peptides goes to the next step; for example, if the loading 
control method is selected for one peptide, the peptide will 
be normalized by this method with accompaniment of other 
peptides (because other peptides are used in normalization 
formulation). However, other peptides will be normalized 
with their own selected method and then move to the next 
step. Third, the selected features of the statistical feature 
selection method are weighed by the PSO algorithm that 
weighs a real number between 0 and 1.

In a nutshell, 400 particles for initial filtering of features, 
400 particles in selecting normalization method, and 
50 particles for weighing features were used. In total, 
850 variables should be considered by PSO, which is 
an appropriate algorithm for solving high‑dimensional 
problems.[42,43] After features are selected by statistical 
feature selection and weighed by PSO, they are used as 
inputs of the classifiers.

Classification

In the proposed method, three classification methods such 
as MLP, DT, and SVM are used. These methods were used 
in previous similar studies.[6,44‑46]

The SVM considers a set of the hyperplane in a 
high‑dimensional space.[47] This algorithm has been widely 
utilized in peptides’ datasets and other relevant fields.[6,48,49] The 
radial basis function (RBF) kernels were used in this study 
and it is paramount importance that the soft‑margin parameter 
and the radius of the RBF kernel should be set appropriately 
since they do not cause poor classification results. We used the 
method proposed by Wu and Wang[50] for this purpose.

MLP is an improved version of the standard linear 
perceptron method and can be used for classification 
of nonlinearly separable data.[51] It is a famous machine 
learning approach in a variety of the computational biology 
field such as prediction of protein stability, prognosis DNA 
methylation biomarkers in ovarian cancer, and encoding 
aminoacids.[52‑54] In this study, the MLP with one hidden 
layer, 20 neurons, and the sigmoid activation function are 
used because they seem suitable for prediction of cancer, 
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according to the literature.[55‑57] The number of neurons 
is calculated empirically until increasing the number of 
neurons up has no effect on performance.

The DT classifier creates a structure of tree for modeling. 
We used C4.5 DT classifier in the proposed model, which 
is an entropy‑based algorithm that can handles continuous 
attributes.[58,59] Furthermore, this method is widely proposed 
in predicting cancer, predicting specific target of peptides, 
and analyzing microarray dataset.[60‑63]

Validation procedure

The performance of the proposed algorithm was evaluated 
by the hold‑out method in terms of sensitivity, specificity, 
precision, accuracy, F1‑score, and MCC, which are defined 
in Table 2.

The sensitivity and specificity are highly dependent on the 
prevalence of the diseases. On the other hand, a reliable 
diagnostic system has sensitivity and specificity more than 
80% (the minimum statistical power of 80%) and 95% (the 
maximum Type I error of 0.05), respectively.[64,65] Thus, a 
conservative method should satisfy both parameters.

Results and Discussion
Leave‑one‑out cross‑validation often underestimates error 
and leads to overfitting.[2] Therefore, in this study, we used 
hold‑out validation and the results of the proposed method 
on the test set are shown in Tables 3‑5. In this study, the 
hold‑out method is used with 70% data as a training set and 
30% data as a test set.[6] The 70% and 30% of data were 
chosen randomly for training and test sets in each time of 
running the whole algorithm. The complete procedure of 
data processing has been done 7 times and the results that 
are shown in Tables 3‑5 are mean of 7 times of running. 
These results indicate that the procedure with the proposed 

methods is robust. The final classification system is a 
multiclass system in which its parameters are calculated 
based on systematic analysis of multiclass classification 
approach[66] which are shown in Tables 3‑5.

The F‑score on the training set and the test set against PSO 
iteration is depicted in Figure 2.

The average time measured for validating 454 patients 
were 0.33 ± 0.07, 0.30 ± 0.05, and 0.34 ± 0.08 second,  
respectively, for SVM, DT, and MLP. All results were 
obtained on a computer of Intel Core‑i7, 2 GHz CPU with 
8 GB of RAM.

Due to data imbalance, it seems that overall accuracy is not 
a suitable fitness measure.[67] As a matter of fact, selecting 
inappropriate objective function instead of Eq. 1 creates 
bias toward majority prevalence. The average sensitivity 
and specificity of the algorithm based on SVM classifier 
are estimated as 99.8 ± 0.7 and 99.9 ± 0.6 [Table 4], 
respectively, as the best classifier in this approach. 
Furthermore, the maximum error type I () and II () 
are 0.009 and 0.076, subsequently. Thus, in the proposed 
method, the average of type I and II errors showed 
consistency in the results of the algorithm and this method 
has the capability to be used in clinical applications.

The proposed method could be called a general framework 
since it uses a dictionary of normalization’s method and 
optimized feature selection. As a comparison with others’ 
works which just use t‑test or Wilcoxon feature selection with 
a fixed type normalization method, this method could search 
more space of the solutions and present a comprehensive 
answer. In other words, methods which only use one 
normalization method and feature selection procedure are 
one of the solutions in the search space of the proposed 
framework. As the purpose of illustration, Stafford et al.[2] 
worked on the same dataset and used t‑test method as feature 
selection and global median centering as normalization that 

Table 2: Validation parameters
Parameters Definition
Accuracy TP + TN

TP + TN + FP + FN

Sensitivity TP
TP + FN

Specificity TN
TN + FP

Precision TP
TP + FP

F1‑score 2 Pr Se
Pr + Se
× ×

MCC TP
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

× TN FP × FN
× × ×

−

MCC – Matthews correlation coefficient

Figure 2: The value of the fitness function. F‑score on the training set is 
the solid line and the F-score on the test set is the dash-dot line during 
optimization procedure. The termination criterion was only the maximum 
number of iterations (i.e., 20) in this plot
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Table 5: The average of five holdout performance estimates for decision tree method
Proposed method: DT

Cancer type Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F (%) MCC (%)
Recurrence breast cancer 81.5±1.5 99.1±0.9 97.0±1.1 87.5±2.1 84.3±1.9 81.7±2.6
Astrocytoma 99.1±1.4 99.0±1.1 99.9±0.4 99.2±1.2 98.2±1.3 99.1±0.7
Breast cancer stages II, III 99.9±0.8 99.2±1.3 99.3±0.4 71.3±2.6 83.5±1.4 85.7±2.4
Breast cancer stage IV 99.0±1.1 99.9±0.2 99.3±0.6 99.1±0.6 99.2±1.1 99.2±0.9
Ovarian cancer 98.9±0.6 98.5±0.8 98.5±1.0 89.2±1.5 93.6±0.8 94.1±2.3
Lung cancer 99.3±0.8 99.9±0.4 99.9±0.2 99.3±0.8 98.6±1.0 98.9±0.9
Multiple myeloma 99.2±0.6 99.9±0.2 99.9±0.1 99.1±0.9 98.4±1.2 98.8±0.7
Aggressive‑type astrocytoma 98.7±1.0 99.2±0.6 99.5±0.6 91.6.±2.0 95.3±1.3 95.1±0.8
Oligodendroglia 99.8±0.5 97.4±3.0 98.5±1.1 86.9±3.0 93.7±3.0 91.3±2.4
Oligoastrocytoma 99.9±0.9 97.8±3.2 98.5±1.0 88.3±1.5 93.5±1.8 92.1±2.0
Pancreatic cancer 99.2±1.3 99.9±0.1 99.9±0.1 99.3±0.9 98.1±0.9 99.1±1.0
Ewing sarcoma 67.4±1.5 99.4±1.3 98.2±1.9 75.9±3.1 71.3±2.4 72.0±1.5
Overall 95.4±1.5 99.1±1.1 99.3±1.4 90.6±2.1 92.2±1.3 92.5±1.1
MCC – Matthews correlation coefficient; DT – Decision tree

Table 4: The average of five holdout performance estimates for support vector machine method
Proposed method: SVM

Cancer type Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F (%) MCC (%)
Recurrence breast cancer 99.1±1.1 99.9±0.1 99.9±0.1 97.3±1.5 99.9±0.1 99.5±0.6
Astrocytoma 99.3±0.4 99.2±0.6 99.0±0.3 98.2±0.4 99.6±0.2 99.5±0.5
Breast cancer stages II, III 99.1±0.4 99.9±0.2 99.8±0.3 99.0±0.6 99.1±0.3 99.7±0.4
Breast cancer stage IV 99.8±1.0 99.2±0.9 99.9±0.3 99.3±1.3 99.4±1.0 99.4±0.7
Ovarian cancer 99.1±0.2 99.9±0.4 99.9±0.3 96.9±1.1 98.1±1.6 99.4±0.6
Lung cancer 99.9±0.2 99.4±0.3 99.9±0.1 99.2±0.6 99.4±0.4 99.4±0.5
Multiple myeloma 99.1±1.0 99.9±0.3 99.9±0.2 99.9±0.7 99.1±1.1 99.6±0.4
Aggressive‑type astrocytoma 99.2±0.3 99.9±0.5 99.9±0.1 99.9±0.8 99.0±0.2 99.7±0.6
Oligodendroglia 99.0±1.3 99.6±0.4 99.1±0.4 99.0±1.1 98.3±0.7 99.2±0.5
Oligoastrocytoma 98.9±1.0 99.9±0.2 99.9±0.2 98.1±0.9 99.0±0.8 99.5±0.6
Pancreatic cancer 98.6±0.9 99.9±0.1 99.9±0.4 98.4±0.3 98.7±0.4 99.3±0.7
Ewing sarcoma 99.8±1.2 97.0±2.4 98±1.1 86.7±3.1 93.3±1.2 99.4±0.5
Overall 99.8±0.7 99.9±0.6 99.9±0.5 97.6±1.6 98.9±1.6 99.5±0.8
MCC – Matthews correlation coefficient; SVM – Support vector machine

Table 3: The average of five holdout performance estimates for multilayer perceptron method
Proposed method: MLP

Cancer type Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F (%) MCC (%)
Recurrence breast cancer 98.1±1.3 97.9±0.5 98.9±0.4 86.3±1.6 93.0±1.1 91.8±1.2
Astrocytoma 99.4±0.8 99.9±0.3 99.9±0.1 99.5±0.6 98.3±1.4 99.3±0.9
Breast cancer stages II, III 96.5±2.1 99.9±0.6 96.5±1.2 74.4±1.4 84.5±1.3 84.3±1.5
Breast cancer stage IV 99.0±1.1 99.5±0.8 99.9±0.4 99.0±1.5 99.2±1.1 98.9±0.9
Ovarian cancer 54.8±4.2 99.9±2.2 96.3±2.3 99.8±1.0 70.4±0.5 71.5±1.9
Lung cancer 99.0±1.0 99.7±1.0 99.7±1.0 98.3±2.3 99.0±1.4 98.7±2.1
Multiple myeloma 99.1±2.0 99.6±0.7 99.9±0.1 93.6±1.1 97.5±0.1 99.2±1.8
Aggressive‑type astrocytoma 98.5±0.4 99.8±0.5 99.9±0.1 99.0±0.4 98.1±0.7 97.3±0.4
Oligodendroglia 96.6±0.3 99.9±0.7 99.3±0.4 95.1±0.9 97.3±0.8 98.0±0.7
Oligoastrocytoma 99.9±0.1 99.8±0.2 98.2±1.3 91.6±0.9 96.4±0.6 95.6±1.5
Pancreatic cancer 99.9±0.4 97.7±0.6 98.5±1.0 86.4±1.6 93.3±1.8 92.4±1.1
Ewing sarcoma 66.9±2.4 99.3±0.4 99.5±0.8 73.4±1.5 71.9±2.2 70.2±1.9
Overall 92.4±1.1 99.5±0.8 98.3±1.0 91.2±0.9 91.4±1.1 91.5±1.5
MCC – Matthews correlation coefficient; MLP – Multilayer perceptron

gained an average accuracy of 98% and an average sensitivity 
of 89%, while in the proposed method, the average accuracy 

was 99.16% and the average sensitivity was 95.87% which 
revealed the advantages of the proposed method.
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Conclusion
This article provides a novel method for predicting cancer 
with immunosignature. In the proposed method, the PSO 
algorithm was first used to filter some features. The 
selected features were refined by the statistical feature 
selection methods and estimated weights by PSO. The 
overall feature selection process is performed as part of a 
learning procedure. Instead of PSO, other meta‑heuristic 
population‑based stochastic optimization methods that could 
deal with discrete (feature and normalization selection) and 
continuous (feature weights) problems could be used. The 
performance of the algorithm was dependent on the PSO 
initialization and classifier tuning. As an instance, choosing 
proper numbers of hidden layers and neurons in each layer 
in MLP, kernel’s parameters in SVM, and search space for 
initialing weight on feature selection by PSO procedure 
could have the paramount effect on results.

In the proposed method, the normalization dictionary 
is independently used for each feature because each 
normalization method was tested on the statistical selected 
features; however, we cannot confidently select an 
appropriate normalization method to reach high performance; 
therefore, an optimization framework was designed.

In a nutshell, the modified Z‑score normalization method 
is selected more than other methods by PSO optimization. 
To shed light on it, it seems that modified Z‑score 
normalization could map features to the suitable new space, 
in which discrimination between classes would be made 
more effective than other subspaces.

In the proposed study, different algorithms were analyzed 
on immunosignature data to give a clear insight into the 
classification and identification of biological markers for the 
diagnosis of diseases. It can help to adopt useful approaches 
to early diagnoses and treatments. More specifically, this 
study proposes a comprehensive algorithm by presenting 
different methods of normalization and feature selection 
using PSO which can help to attain optimal results.

The proposed algorithm is promising and can be utilized as 
a new offline tool in clinical applications. The developed 
program is available to interested readers upon request.

One of the limitations of the current study is that results might 
have been biased because scant of enough available samples. 
The sample size must be increased to improve the statistical 
power in our diagnosis system.[68] Another limitation of the 
proposed algorithm is that output of the classification system 
is not fuzzy.[69] It will be useful to report the risk of having a 
cancer type, which is the focus of our future activity.
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