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Melatonin plays a critical role in the pathophysiological process including circadian rhythm,
apoptosis, and oxidative stress. It can be synthesized in ocular tissues, and its receptors
are also found in the eye, triggering more investigations concentrated on the role of
melatonin in the eye. In the past decades, the protective and therapeutic potentials of
melatonin for ocular diseases have been widely revealed in animal models. Herein, we
construct a knowledge map of melatonin in treating ocular diseases through bibliometric
analysis and review its current understanding and clinical evidence. The overall field could
be divided into twelve topics through keywords co-occurrence analysis, in which the
glaucoma, myopia, and retinal diseases were of greatest research interests according to
the keywords burst detection. The existing clinical trials of melatonin in ocular diseases
mainly focused on the glaucoma, and more research should be promoted, especially for
various diseases and drug administration. We also discuss its bioavailability and further
research topics including developing melatonin sensors for personalized medication,
acting as stem cell therapy assistant drug, and consuming food-derived melatonin for
facilitating its clinical transformation.

Keywords: melatonin, circadian rhythms, ocular diseases, therapeutics, pharmacology

INTRODUCTION

Melatonin is a pleiotropic hormone synthesized from serotonin, which is mainly secreted by the
pineal gland controlled by the hypothalamic suprachiasmatic nucleus (SCN) (Gillette andMcArthur,
1995). The secretion of melatonin presents the character of increasing at night and decreasing during
the day, indicating its role in regulating circadian rhythms (Fedele et al., 2018). Besides, the
melatonin also demonstrates superior properties in antioxidant, immunomodulation, and
neuroprotection (Mayo and Sainz, 2020; Moradkhani et al., 2020; Ramos et al., 2020). The
function realization of melatonin depends on the receptor-independent or -mediated processes,
andMT1 andMT2 are the main receptors, both of which belong to G-protein–coupled receptors and
are widely distributed in various tissues (Singh et al., 2017; Legros et al., 2020). MT3 is the low-
affinity receptor for melatonin, which is considered an enzyme with different characteristics,
compared with MT1 and MT2 including kinetics in the ligand association/dissociation and
pharmacological profile (Paul et al., 1999; Nosjean et al., 2001).

Given that the photoreceptive retinal ganglion cell is the important zeitgeber of the SCN and the
circadian rhythms can be influenced under suffering ocular diseases, the relationship between
melatonin and eye has attracted much attention (Turner et al., 2010; Andrews et al., 2019). Several
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studies have reported that the melatonin could be produced in
various ocular tissues following the circadian rhythms including
the lachrymal gland, retina, crystalline lens, iris, and ciliary body
(Mhatre et al., 1988; Faillace et al., 1995; Alkozi et al., 2017b;
Alkozi et al., 2017c). The melatonin receptors were also widely
detected in the eye, such as sclera, cornea, choroid, and retina
(Savaskan et al., 2002; Wiechmann and Rada, 2003; Summers
Rada and Wiechmann, 2006). Much research revealed the
correlation between melatonin with various ocular conditions,
especially for glaucoma, inflammatory, and age-related diseases,
as well as explored the therapy methods based on melatonin
(Aranda et al., 2017; Crooke et al., 2017; Alkozi et al., 2020). This
perspective will incorporate the existing studies based on the
knowledge map and clinical trials of melatonin in ocular diseases,
which aims to provide novel insights into promoting the
melatonin from the bench to bedside from the point of view
of enhancing the bioavailability and future research direction
based on pharmacological issues.

Melatonin in Ocular Diseases
A knowledge map based on bibliometric analysis can present
the overall research topics and trends compared with the

topical review, which provides an in-depth insight into its
frontiers and hotspots in this field (Deng et al., 2020; Valera-
Gran et al., 2020). However, the role of melatonin in ocular
diseases has not yet been analyzed through this method as far
as we know. Therefore, its knowledge map was constructed in
this research through keyword co-occurrences, and the
keyword burst was also conducted to explore its trends. As
shown in Figure 1, all the studies of melatonin in ocular
diseases could be divided into twelve different clusters, and
their connections and average year appeared were reflected by
the thickness (closely in thick) and color (newly in yellow) of
lines, respectively. #0 melanopsin is an opsin located in the
retina and crystalline lens epithelial cells, which plays an
important role in visual functions like detection and color,
and non-visual functions like regulating pupil size and
melatonin secretion (Hannibal et al., 2017; Prayag et al.,
2019b; Spitschan, 2019). The melanopsin is sensitive to
480 nm blue light and leads to the low expression of the
melatonin synthesis enzyme AANAT, which can be used to
understand the mechanism of sleep disturbances and
depression in patients with cataracts and retinal diseases
(Feigl and Zele, 2014; Shenshen et al., 2016; Alkozi et al.,

FIGURE 1 | Knowledge map of melatonin treating ocular diseases based on keywords co-occurrence and keywords burst detection.
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2017c; Münch et al., 2017). The influences of melanopsin in
ocular diseases have been proven, and several research studies
developed novel therapy methods in regulating the melatonin
content in the eye including wearing yellow filter for
controlling intraocular pressure (IOP) (Lledó et al., 2019;
Zheng et al., 2020). #1 Dopamine and melatonin together
organize the retinal circadian rhythmicity through dopamine
D-4 and MT1 receptors, respectively; however, the former is
mainly synthesized during the day indicating the different
phase relationship with melatonin (Adachi et al., 1998; Bartell
et al., 2007; Kunst et al., 2015; Goel and Mangel, 2021). They
take opposing roles in regulating physiological functions of
the eye, and the dopamine can reduce the expression of
AANAT, resulting in the limitation of melatonin synthesis
(Zawilska et al., 2004; Lorenc-Duda et al., 2009; Lavoie et al.,
2010; Lavoie et al., 2013). It has been reported that the
dopamine D-3 receptor could form heteromers with the
MT1 or MT2 receptor and presented a negative correlation
with intraocular hypertension, which might impact the
occurrence of glaucoma (Reyes-Resina et al., 2020).
Besides, the dopamine has been well-studied in myopia;
however, its potential relevance with melatonin needs to be
further explored (Wang et al., 2021c; Landis et al., 2021). #5
autoradiography, #8 serotonin N-acetyltransferases, #9
ganglion cell, #10 photoreceptor guanylyl cyclase, and #11
catecholamines represent the fundamental research of
melatonin including its receptor distribution, synthesis,
responses to light, regulation, and photoreceptor
degeneration (Falcon et al., 1991; Mazurais et al., 1999;
Benyassi et al., 2000; Sato et al., 2018; Prayag et al., 2019a).
Such topics are not directly connected to the ocular diseases;
therefore, they are in the marginal positions of the
knowledge map.

The #2 intraocular pressure, #3 retina, #4 myopia, #6
pathogenesis, and #7 inflammation reflect the main
research topics of melatonin in ocular diseases. Combining
with keywords burst detection, it can be seen that the myopia,
glaucoma, and retinal diseases, especially age-related diseases,
are the most concerned diseases in the clinical practice, while
sleep is the major intervention. Several research studies have
reviewed the influence of melatonin on IOP and glaucoma,
especially emphasizing the role of circadian rhythms (Alkozi
et al., 2020; Ciulla et al., 2020; Martinez-Aguila et al., 2021).
Exogenous application of melatonin or its analog performs
well for controlling IOP in both animal models and clinical
trials, and its neuroprotective effect can further prevent
retinal injury under intraocular hypertension (Carracedo-
Rodríguez et al., 2020; Gubin et al., 2021). Melatonin can
act as antioxidant, anti-inflammatory, and
immunomodulation agents besides neuroprotection, which
demonstrated superior therapy effect in retinal diseases, such
as age-related macular degeneration (AMD) and diabetic
retinopathy (DR), and immunologic ocular diseases like
uveitis (Sande et al., 2014; Chesnokova et al., 2016; Diéguez
et al., 2020; Ferreira de Melo et al., 2020). Furthermore,
melatonin also regulates the secretion of vascular
endothelial growth factor (VEGF) in the retina, and it

promotes physiological secretion for protecting the retina
from oxidative stress, while reduces pathological secretion
for inhibiting neovascularization (Klettner et al., 2021). It has
been reported that the refractive error, optical axial length,
and power demonstrated diurnal variation, and the myopes
presented higher melatonin concentrations in serum and
salivary, while lower in urine than non-myopes (Campbell
et al., 2012; Kearney et al., 2017; Flanagan et al., 2020;
Chakraborty et al., 2021). Compared with emmetropes, the
myopes generally have much evening-type diurnal preference
with approximately 1 h phase-delay but no significant
difference in outdoor light exposure, and such properties
are expected to further understand the mechanism and
effect of outdoor time and light environments in myopia
control (Burfield et al., 2019; Wang et al., 2021b).
Moreover, melatonin has been also widely used to reveal
the pathogenesis and provide possible therapy methods for
many other ocular diseases, including cataract based on the
oxidative stress (Kiliç et al., 2008; Ohanness et al., 2009).
Nonetheless, the exact role of melatonin in ocular diseases
needs to be further explored, especially for the relationship
between its biological activity and circadian rhythm
regulation. Certain research proposed the secretion and
signaling of melatonin were under control of the circadian
rhythm, which could further influence its pleiotropy (Tosini
and Menaker, 1996; Hardeland, 2019). However, it has been
proven that the melatonin in myopia seemed independent of
the circadian rhythm, and the research about how the
circadian rhythm impacted the molecular mechanism of
ocular disease occurrence is still lacking (Leidl et al., 2014;
Flanagan et al., 2020). There is also a lack of research on
further integrating mechanisms of melatonin therapy
considering several protective effects, including DNA
damage, cell apoptosis, and mitochondrial dysfunction
(Doğanlar et al., 2019; Mehrzadi et al., 2020). Furthermore,
the causality between melatonin and ocular diseases is still
unknown, despite many studies reporting the various
melatonin concentrations between patients and control
groups; therefore, it needs more prospective clinical
studies. Similarly, the clinical trials of melatonin in treating
ocular diseases are still insufficient, resulting in the huge
obstacles in its transformation. Table 1 lists its
representative clinical trials in publications, which can be
seen mostly focused on the glaucoma and sleep disorders,
while it is rare for other ocular diseases.

ENHANCING THE BIOAVAILABILITY

The existing clinical trials about using melatonin to treat ocular
diseases are mainly based on oral administration; however, the
recent systematic reviews present that its bioavailability was only
approximately 15% with significant individual difference owing
to the first-pass metabolism in the liver (Harpsøe et al., 2015). The
dosage forms of melatonin are also discussed, and the continuous
release and absorption dosage forms demonstrate superior
efficacy versus immediate release dosage forms. The latter with
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properties of short half-life and ultrahigh maximal plasma
concentrations may further result in low bioavailability due to
the deficient absorption and high risk of tolerability issues (Seiden
and Shah, 2019). In the current treatment of ophthalmic diseases,
the ocular surface is the most common drug delivery route, and
the eye drops have been widely used for delivering melatonin in
animal experiments; however, their bioavailability should be
further examined owing to the ocular barriers (Dal Monte
et al., 2020). For bypassing the barriers, the efficacy of
intravitreal injection is also examined, especially in treating
retinal diseases; however, the previous study reported that the
high-dose melatonin injection resulted in degeneration of retinal
cells (Yilmaz et al., 2004; Sande et al., 2014; Tao et al., 2020).
Therefore, the potential toxicity of melatonin must be further
scrutinized for both the ocular surface and retina, and the proper
dosages for treatment must be determined, which may be
different in various ocular diseases and individuals. Moreover,
the appropriate administration time window of melatonin and
the therapeutic effect of other administration routes, including
subconjunctival injection, should also be further examined based
on the large-scale clinical trials.

Novel nanotechnologies provide a promising delivery strategy
with high efficiency in penetration into the ocular surface and
sustained release, and the nanocarriers for ocular drug delivery
are generally divided into four categories according to the
geometric structure: 0D-like (D, dimension) nanoparticles, 1D-
like nanofibers, 2D-like nanofilms, and 3D-like nanogels (Yu
et al., 2020). The melatonin encapsulated by 0D and 1D
nanocarriers has been proven to further improve the
bioavailability and therapeutic prognosis of ocular diseases
(Quinteros et al., 2014; Ahn et al., 2017). Musumeci et al.

(2013) found the PLGA-PEG nanoparticles loaded with
melatonin synthesized through the solvent displacement
method held twice as long as melatonin aqueous solution (8 h
vs. 4 h) in decreasing intraocular pressure with good tolerability.
Cationic and mucoadhesive carriers are the most common
melatonin delivery systems for enhancing the ability of
permeation across the ocular surface barriers and prolonging
their retention time (Hafner et al., 2015; Carbone et al., 2016).
Bessone et al. (2020) reported that the melatonin coated by
ethylcellulose nanoparticles showed greater penetration into
the cornea with slow releasing speed compared with melatonin
solution owing to the mucoadhesive effect with mucin, which
significantly increased the retinal thickness and reduced
approximately 16% apoptosis of retinal ganglion cells in the
RD model, indicating the better retinal protective effect.
However, the advanced high-dimensional nanocarriers with
the characteristics of high drug-loading capacity and stimuli-
responsive capacity used in loading melatonin for ocular drug
delivery are still rare, which should be further developed and
explored. Recently, co-delivery strategies of melatonin have also
been proposed based on the synergy effect on therapies, including
with glial cell line–derived neurotrophic factor and
neuroprotective agents, which demonstrate better prognosis
compared with the single drug. The encapsulation of
melatonin in multidrug system further enhances the sustained
release of formulation; however, the potential adverse effect on
pharmacology caused by drug-loading site competition and
pharmaceutical cocrystal formation should be considered
(García-Caballero et al., 2018; Arranz-Romera et al., 2019).
Moreover, the mass production of melatonin nanodrugs is still
challenging, and the clinical trials are still lacking.

TABLE 1 | Representative clinical trials of melatonin treating ocular diseases.

Type of diseases Intervention and dosage Outcomes and measures Phase and reference

Cataract Experimental: melatonin 10 mg tablet
Other: placebo tablet

Melatonin could provide anxiolytic effects and
decrease IOP

Ismail and Mowafi, (2009)

Hypertensive primary open-
angle glaucoma

Agomelatine 25 mg/day, oral, 30 days Agomelatine could decrease approximately 30% IOP Pescosolido et al. (2015)

— Daily group: melatonin 1 mg tablet, intake between
22:00 and 23:00, 3 days

Melatonin could reduce the IOP intake after 2 h or daily
intake

Carracedo-Rodríguez et al.
(2020)

Acute group: melatonin 1 mg tablet, intake at 11:
00, 1 day

Blindness with non-24 h
sleep–wake disorder

2 weeks placebo run-in, 6 weeks randomized
placebo or Circadin

®
2 mg, 2 weeks placebo

run-out

Circadin
®
improved the sleep difficulties for totally blind

individuals
Roth et al. (2015)

Cataract surgery patients
with non-exudative AMD

Experimental: yellow Alcon IOL Primary: Melatonin content of serum during day Terminated, NCT00444249

Other: white Alcon IOL Secondary: Drusen number, retinal thickness, pupil
size, sleeping time

Totally blind Experimental: 0.5 mg tablet of melatonin, twice a
week, 1 year

The efficacy of melatonin treatment in entraining blind
free-running children and young adults

Terminated, NCT00795236

Other: observational
DR Experimental: melatonin 3 mg, 8 weeks Sleep pattern, and melatonin and cortisol rhythm II, NCT04547439

Other: placebo, 8 weeks
DR Experimental: melatonin 4 mg, 21 day Primary: Progression of diabetic retinopathy III, NCT03478306

Other: placebo, 21 day Secondary: Pupillary light response after
postillumination, circadian photoentrainment and retinal
structure

Washout 1 week and switching arm

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7218694

Yu et al. Melatonin in Ocular Diseases

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TOWARD THE FUTURE

The effect of melatonin in controlling myopia and treating
cataract, glaucoma, uveitis and retinal diseases based on the
circadian rhythm and its biological activity has been widely
discussed, while for ocular surface, the data are insufficient
(Crooke et al., 2017; Alkozi et al., 2020). Limited research
reported the melatonin could promote the corneal wound
healing, improve oxidative stress injuries in the dry eye, and
decrease endoplasmic reticulum stress in granular corneal
dystrophy type 2 (Choi et al., 2017; Crespo-Moral et al., 2018;
Wang et al., 2021a). As the ocular surface might directly get
exposed to the eye drops with melatonin, it is necessary for
further understanding their potential interactions and influences.
Besides, Gil et al. (2019) reported the melatonin and its analogs
could promote the tear secretion in terms of volume, indicating
that the melatonin could also impact the tear secretion; however,
they did not notice the changes of the tear component. Tears are
generally rich in proteins and biomarkers, which are helpful in
revealing the mechanism in pathogenesis and treatment of
diseases; therefore, the tear variations should be further
focused before and after treating with melatonin (Chesnokova
et al., 2016; Zou et al., 2020). Furthermore, melatonin also
demonstrates potential biomarkers for ocular diseases. Many
studies have proven that the concentration changes in
melatonin could be detected in tears, saliva, or other body
fluids during occurrence and development process of certain
ocular diseases (Alkozi H. et al., 2017; Kearney et al., 2017;
Pontelli et al., 2019). The sensors for melatonin content have
also been developed for determination in biological fluids under
ultratrace and real conditions (Camargo et al., 2020; Duan et al.,
2020; Kumar and Goyal, 2020; Castaldo et al., 2021). Combining
such parameter with other physical signs provides favorable
application prospects in differential diagnosis and monitoring
of ocular conditions, like dry eye, which is difficult to diagnose
accurately in clinical work. Therefore, the correlation between
melatonin concentration, especially in tears, and different ocular
diseases and their stages in large samples based on sensors should
be further explored, which might also provide a reference in
personalized medication and understanding the role of melatonin
in the eye (Teymourian et al., 2020).

Nowadays, stem cells have been widely used in the ocular
disease therapy with well-achieved (Salih et al., 2020; Lin et al.,
2021). Reprograming endogenous neural stem cells (NSCs) for
promoting neuronal regeneration is considered the most
promising way to treat retinal diseases and recover visual
acuity (Madelaine and Mourrain, 2017). Melatonin has been
proven to facilitate this process. Bai et al. (2016) found 10 μm
melatonin could enhance the viability and promote proliferation
and reprograming of bovine retinal–derived NSCs in vitro
through inhibiting the p53-p21–mediated apoptotic pathway
and regulating DNA methylation. The proliferation of
NSC–induced pluripotent stem cells could also be stimulated
through the activation of the ERK 1/2 signaling pathway under
melatonin. Similarly, Gao et al. (2019) reported the retinal neural
stem cell proliferation and its marker, nestin, increased
significantly after using melatonin through melatonin receptor

one-mediated in ERK and TGF-β/Smad pathways. However, the
role of melatonin in regulating other ocular stem cells, such as
corneal epithelial stem cells, and the assessment of their effect in
treating ocular diseases in animal models are still unknown.
Furthermore, melatonin also exhibits regulating ability for
exogenous stem cells such as mesenchymal stem cells (MSCs)
in viability, proliferation, differentiation, paracrine, and apoptosis
through certain signaling pathways like Wnt and MAPK and acts
as antioxidant agents to reduce the oxidative stress–induced
apoptosis and enhance activity of stem cells (Ping et al., 2017;
Chatterji et al., 2018; Lee et al., 2018; Majidinia et al., 2018; Fan
et al., 2020; Giannaccare et al., 2020). Such properties of
melatonin have been successfully applied in various disease
therapies, including chronic kidney diseases, neurodegenerative
diseases, and orthopedic disorders, through pretreatment or
combining with scaffold, while its application is rare for ocular
diseases (Ramezani et al., 2020; Yan et al., 2020; Yoon et al., 2020).
Given the superiority and large potential of melatonin in
regulating stem cell therapy in ophthalmology, further
exploration of its treating methods, effects, and mechanisms
should be emphasized, and the preliminary small-scale clinical
trials can also be considered, for example, in limbal stem cell
deficiency patients.

The concept of “food is medicine” has been considered an
important measure in prevention, management, and treatment
of chronic diseases, which was proven by several
epidemiological studies and case reports (Downer et al.,
2020; Goldenberg et al., 2021; Tribble et al., 2021). The
integration of foods with clinical practice will help gain a
better prognosis, lower medical expenditure, and more general
public health recommendations (Lee et al., 2019). Ocular drugs
like latanoprost are usually obtained through chemical
synthesis; however, the melatonin can also be detected in
various edible animals and plants, which creates possibilities
for “food is medicine.” The concentration of melatonin in
foods depends heavily on the breed, and much higher
melatonin is found in the generative organs of plants like
seeds, while for animal foods, eggs and fish present higher
contents than other meats (Ma et al., 2019). Several studies
have observed the increase in the content of melatonin in
serum and its metabolite 6-sulfatoxymelatonin in urine after
consumption of beer, grape juice, pineapple, orange, and
banana (Maldonado et al., 2009; González-Flores et al.,
2012; Sae-Teaw et al., 2013). However, certain research
reported the increasing amount of melatonin in the body
could not match its intake from foods, and the clinical
effects of dietary melatonin were still controversial, which
might be ascribed to the individual variation, lack of
effective detectable biomarkers in vivo, and uniform
analyzing methods for melatonin in foods (Kennaway, 2017;
Meng et al., 2017). Nonetheless, considering the limitation that
clinical trials use melatonin in treating ocular diseases in the
current situation and the potential synergistic effect with other
medicines, the dietary melatonin should be given priority to
patients when ingesting compared with synthesized melatonin
from perspectives of safety and relative comprehensive
nutrition. In this context, the prophylaxis usage of dietary
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melatonin can also be considered, and the clinical trials should
also be facilitated to provide evidence-based interventions with
the participation of clinicians and dietitians.
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