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Abstract

Application of artificial intelligence (AI) in precision oncology typically involves predicting 

whether the cancer cells of a patient (previously unseen by AI models) will respond to any of 

a set of existing anticancer drugs, based on responses of previous training cell samples to those 

drugs. To expand the repertoire of anticancer drugs, AI has also been used to repurpose drugs that 

have not been tested in an anticancer setting, i.e., predicting the anticancer effects of a new drug 

on previously unseen cancer cells de novo. Here, we report a computational model that addresses 

both of the above tasks in a unified AI framework. Our model, referred to as deep learning-based 

graph regularized matrix factorization (DeepGRMF), integrates neural networks, graph models, 

and matrix-factorization techniques to utilize diverse information from drug chemical structures, 

their impact on cellular signaling systems, and cancer cell cellular states to predict cell response 

to drugs. DeepGRMF learns embeddings of drugs so that drugs sharing similar structures and 

mechanisms of action (MOAs) are closely related in the embedding space. Similarly, DeepGRMF 

also learns representation embeddings of cells such that cells sharing similar cellular states and 

drug responses are closely related. Evaluation of DeepGRMF and competing models on Genomics 

of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets show 

its superiority in prediction performance. Finally, we show that the model is capable of predicting 

effectiveness of a chemotherapy regimen on patient outcomes for the lung cancer patients in The 

Cancer Genome Atlas (TCGA) dataset.*
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1. Introduction

Precision oncology aims to treat each patient with an individually tailored therapy regimen 

to achieve better outcomes and minimize side effects.1 Currently, a common practice in 

precision oncology is to prescribe molecularly targeted drugs that are intended specifically 

to counteract aberrant signals resulting from tumor-specific genomic alterations. However, 

such genome-driven precision oncology has so far covered a limited fraction of patients.2 

Furthermore, responses to specific targeted therapeutics are often short-lived due to tumor 

heterogeneity and development of resistance.3,4 Currently, most cancer patients are treated 

with “standard chemotherapies” that are not personalized, and a large proportion of patients 

do not respond to these therapies but suffer the full brunt of their side effects.

Therefore, the success of precision oncology requires the capability to accurately predict 

the responses of a patient’s cancer cells to existing anti-cancer drugs and select an optimal 

regimen, potentially adjusting over time in response to incipient resistance. The resulting 

need for an expanded repertoire of anticancer drugs has led to an active research effort 

to discover and repurpose FDA-approved drugs that are not yet considered as anticancer 

therapeutics but may function as such. Furthermore, anticancer therapies often involve a 

combination of multiple drugs, and the large number of possible combinations of anticancer 

drugs prevents systematic clinical trials to develop novel therapies. The above unmet needs 

call for methods for predicting effects of drugs on cancer cells even when they have not 

been tested in such a setting, i.e., de novo prediction of drug effects. Contemporary large-

scale pharmacogenomic studies, such as Genomics of Drug Sensitivity in Cancer (GDSC),5 

Cancer Cell Line Encyclopedia (CCLE),6 The Cancer Genome Atlas (TCGA),7 Library 

of Integrated Network-based Cellular Signatures (LINCS)8,9 provide valuable information 

for exploring the above directions, but would benefit greatly from computational systems 

capable of mining the information they provide and using it to make accurate prediction 

about potential new therapeutic regimens and thus advance precision oncology.

Prediction of cell-drug responses can be formulated as a recommendation problem (e.g., 

collaborative filtering10). More specifically, given information regarding a collection of 

cancer cells (e.g., genomic and transcriptomic profiles of different cancer cell lines) and 

their responses to different drugs, we would like to learn the representations of the 

cells such that cells sharing similar representations respond similarly to drugs. Similarly, 

given information regarding a collection of drugs (e.g., chemical structures and knowledge 

regarding the drugs) and their effects on different cancer cells, we would like to learn 

representations of the drugs such that drugs sharing similar representations have similar 

effects on the cells. After training, when provided with information of a new sample of 

cells, a recommendation system should be able to predict response of each cancer cell to 

different drugs. Alternatively, provided information on a new drug, the system should be 

able to predict the effects of the drug on different cells. Finally, given a new cell sample and 

a new drug (both previously unseen in training process), the recommendation system should 

be able to map the cell and/or the drug to respective representations and predict the cell-drug 

response de novo.
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A variety of computational methods have been developed to predict the drug sensitivities 

of cancer cell lines to a large number of drugs.11–13 However, the majority of previous drug-

sensitivity models concentrate on predicting responses of different cells to an individual 

drug, and few have attempted to address the problem as posed above. These models do not 

fully take advantage of available information on other drugs with respect to cells to learn 

from drugs with similar chemical structures or mechanisms of action (MOAs), nor do they 

take advantage of the fact that some cancer cells share similar drug response profiles to 

learn common representations of such cells. Prior approaches to learning representations 

of drugs have transformed their chemical structures from a form defined by the simplified 

molecular-input line-entry system (SMILES) into a vector (an embedding) that can be 

concatenated with cell embeddings in a deep learning model to predict drug response.14–16 

However, this approach does not utilize a rich body of information regarding the functional 

impact of chemicals on cell signaling systems,8,9,17 which is highly relevant to the MOAs of 

drugs18 and thus relevant to predicting drug responses.

In this study, we developed a method called DeepGRMF (deep learning-based graph 

regularized matrix factorization). The main innovation of our model lies in integration of 

multiple sources of information and different learning techniques, including: 1) Integrative 
representation of drugs. For the representation of drugs, we combined three kinds 

of information regarding a drug — its chemical structure,19 its impact on cellular 

transcriptomic signaling,17 and its pathway information20 — to make the representation 

more informative. 2) Representation learning through collaborative filtering. Our model 

employs a framework of collaborative filtering based on matrix-factorization, which learns 

representations of cells based on the shared responses with respect to drugs as well 

as representations of drugs based on their common effects on cells. 3) Graph-based 
regularization. We adopted a graph-based regularization approach21 to enhance the 

performance of collaborative filter modeling of cell-drug responses. 4) Neural-network-
based mapping from raw data to cell and drug factor matrix. We incorporated two 

neural network models which map cells (or drugs) to their corresponding factor matrix. This 

enables us to perform de novo prediction of responses between a pair of previously unseen 

cell and drug.

Our results indicate that each of the above steps individually enhanced overall performance, 

and that the complete model outperforms current state-of-the-art models in predicting drug 

responses.

2. Materials and methods

2.1. Data pre-processing

We collected the pharmacogenomic data from GDSC (https://www.cancerrxgene.org) and 

CCLE (https://portals.broadinstitute.org/ccle) to train and test models for predicting drug 

cell-drug responses. We used the method described in previous work11 to process the gene 

expression data and drug sensitivity data. In brief, the gene expression data were normalized 

by the robust multi-array averaging, and genes with high variances were identified by 

medium variance analysis, bimodal mixture fitting, and statistical significance of modes. 

After filtering, we applied a nonparanormal transformation for distribution normalization 
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and a min-max normalization to normalize the value of expression data in a range between 

0 to 1. Finally, we retained GDSC and CCLE datasets containing gene expression data of 

2,758 genes in 954 and 477 cell lines separately. For drug sensitivity data, activity area (AA) 

was used. To facilitate application in clinical practice, we discretized the continuous value 

into two categories, sensitive (one) and resistant (zero).11 Since drug embedding is based on 

SMILES strings, we only selected drugs with known SMILES strings, which resulted in 301 

drugs in GDSC and 24 drugs in CCLE (16 drugs existing in GDSC and 8 new drugs). For 

the drug pathway information, the GDSC dataset has already provided a type of pathway 

name for each drug. For the new drug in CCLE, we labeled its pathway name manually 

using the pathway name in GDSC.

For predicting effectiveness of a chemotherapy regimen on real patients using the cell-line 

trained drug sensitivity prediction model, we collected RNAseq expression data of lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients from the 

UCSC Xena TCGA data portal (https://xena.ucsc.edu). The gene expression data in TCGA 

was processed using the same procedure of processing the gene expression data in GDSC 

and CCLE. The drug usage data of 179 LUAD and 144 lung squamous cell carcinoma 

LUSC patients were downloaded from the Genomic Data Commons Data Portal (https://

portal.gdc.cancer.gov). We downloaded the corresponding survival data from the UCSC 

Xena data portal. We kept data of patients who received adjuvant therapies. This resulted in 

a lung cancer test dataset with drug usage and survival information for 182 patients. Since 

we focused on four drugs, cisplatin, pemetrexed, paclitaxel, and vinorelbine, finally we had 

a dataset with 62 adjuvant LUAD and LUSC patients.

2.2. Learning integrative drug embedding

To obtain an integrative drug embedding (IDE) reflecting multiple aspects of the drug, 

we adopted a semi-supervised method19 that integrated two sources of information: 1) 

chemical structure of the drug, and 2) functional impact of the drug on gene expression.17 

To represent chemical structures, we used the SMILES22 representation of molecules and 

obtained SMILES strings of 250K drug-like molecules from the ZINC23 database. To 

represent the functional impact on gene expression, we trained a variational auto-encoder 

(VAE)24 model on the transcriptomic data of cell lines treated by different drugs from 

the LINCS database.8 Based on the assumption that the cellular transcriptomic profile in 

response to a drug treatment reflects the MOAs of the drug on the cell, we learned the 

MOAs representations of 1,825 drugs.17 After obtaining the two sources of information, 

we used a VAE to encode the SMILES strings of molecules19 and utilized the drug-drug 

similarity computed from their MOAs representations to regularize the drug embedding 

space so that drugs with similar MOAs profiles were clustered together. Note that our 

approach allows us to obtain the IDE of a new drug by mapping its SMILES string to the 

pre-trained drug embedding space.

2.3. Model architecture

The overall architecture of DeepGRMF is shown in Fig. 1. This model has two modules: 1) 

a graph regularized matrix factorization that decomposes the drug response matrix into the 

product of two lower dimensional matrices, i.e., cell line factor matrix A and drug factor 
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matrix B; 2) two neural networks that learn the functions that map the representations of cell 

line and drug to their hidden factors, i.e., C A and D ∪ E B, respectively.

2.3.1. Graph-regularized matrix factorization—We used matrix factorization to 

decompose the drug response matrix, Y ∈ ℝn × m into the cell line factor matrix, A ∈ ℝn × d

and the drug factor matrix, B ∈ ℝd × m. The variables n, m and d indicate the number of 

cell lines, the number of drugs, and the latent dimension respectively. The representations 

of cells and drugs in factor matrices capture the similarity of cell responses to drugs 

and effects of drugs on cells, so that if two cell lines have similar representations, they 

would respond similarly to certain drugs, and vice versa. However, this encoding does 

not incorporate intrinsic information of cells (e.g., cellular states) or drugs (e.g., chemical 

structures). Inspired by the work of Guan et al,21 we employed graph-regularized terms so 

that the similarities among the latent vectors in A and B are consistent with the pairwise 

similarities derived from the cell line gene expression matrix C and the drug embedding by 

concatenating IDE matrix D and pathway embedding matrix E denoted as D ∪ E.

The graph-regularized matrix factorization can be formulated as an optimization problem 

with loss functions and constraints. For the constraints, we used both graph regularizations 

of cell lines and drugs. We created adjacency matrices for cell lines (W cell ∈ ℝn × n) and 

drugs (W drug ∈ ℝm × m), respectively. The adjacency matrix is a representative description 

of a graph structure in matrix form and the elements of it represent whether pairs of 

vertices are adjacent in the graph or not. In our experiment, Wcell was constructed from 

the gene expression matrix C to measure the affinity between cell lines. To create Wcell, a 

kernel function25 Scell i, j = exp −Ti, j/σ  was first applied to convert the Euclidean distance 

between a pair of gene expression profiles into a similarity score within the range of [0, 1], 

where Ti, j = Xi − Xj  is the Euclidean distance between expression profiles xi and xj, and 

σ is the mean of all the elements in T. We used Scell to identify the set of top p-nearest 

neighbors for each cell line, and we set entries of these neighbors in the adjacency matrix to 

1, and rest to 0.

To derive the drug adjacency matrix (Wdrug), we first created a similarity matrix Sdrug based 

on the IDE using similar procedures describing above to obtain Scell, then we added a value 

of 0.5 to the similarity score in Sdrug if a pair of drugs are in a common pathway. We 

then created an adjacency matrix (Wdrug) by only keeping edges connecting the p-nearest 

neighbors of each drug.

Given a cell line factor A i (ith row of matrix A), and a drug factor B j (jth column of matrix 

B), we optimized the following loss function:
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ℒi, j Ai, Bj; yi, j, W cell, W drug = CrossEnt yi, j, yi, j + λc ∑
r = 1

n
W cell

i, r
⋅ A i − A r

2

+ λd ∑
k = 1

m
W drug

j, k

⋅ B j − B k
2
,

(1)

where yi, j = σ A i, B j = 1 + exp A i
⊺
, B j

−1
 is the predicted sensitivity, yi,j is the ground 

truth sensitivity, and λc and λd are positive regularization weights. The loss function 

contains three terms. The first term is a cross-entropy loss. The second term is the graph 

regularization of cell lines, which enforces cell lines with similar gene expression to be close 

in the cell line factor space A. The last term is the graph regularization of drugs, which 

enforces drugs that are connected in the adjacency graph to be close in the drug factor space 

B. The final loss function is the sum of individual cell lines and drugs: ℒ = ∑i, jℒi, j.

At the training time, we implemented factor matrices A and B as two embedding layers with 

randomly initialized weights. Then we trained the graph-regularized matrix factorization 

module using Adaptive Moment Estimation (Adam) as gradient descent optimization 

algorithm (see 5.1 for implementation details). After the optimization was converged, we 

obtained the learned cell line factor matrix A and the learned drug factor matrix B and kept 

them as fixed during the training of the second module.

2.3.2. Using neural networks to learn mapping function—To enable de novo 
prediction of responses between a pair of previously unseen cell and drug, we used neural 

networks to learn two mapping functions. Specifically, we used the neural network I 

(denoted as fθ) to map a cell line gene expression profiling (C i) into its corresponding 

cell line factor (A i). We used the neural network II (denoted as fϕ) to map a drug’s 

embedding, which is concatenated by its IDE (D j) and pathway embedding (E j), into its 

corresponding drug factor (B j). We adopted an embedding layer (denoted as fγ) to convert 

a drug’s pathway information (P j) into its pathway embedding (E j = fγ P j ). We trained 

these two neural networks separately and used the two loss functions for each network:

ℒ θ; C i = ∑
i = 1

n
fθ C i − A i

2
(2)

ℒ γ, ϕ; D j, P j = ∑
j = 1

m
fϕ D j ∪ fγ P j − B j

2
(3)
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2.4. Evaluating drug sensitivity prediction on cell lines

We considered 3 scenarios of using our model to predict cell-drug responses: 1) Given 

a new cell line that has not been treated by any drug (Fig. A1a), we would apply our 

neural network I to predict its cell factor based on its transcriptomic profile and then 

apply collaborative filtering to predict its response to all the drugs. 2) Given a new drug 

that has not been tested on any cell line before, we would apply the neural network II to 

predict its drug factor based on its IDE and pathway information, and we would then apply 

collaborative filtering to predict its effects on all cells (Fig. A1b). Finally, 3) Given a new 

cell line and a new drug, we would first use neural network I and II to predict cell and drug 

factors respectively, and then apply collaborative filtering to predict the cell-drug response 

(Fig. A1c).

We used three schemes to evaluate the performance: 1) the disentangled performance of 

individual cell lines to all drugs (per-cell-line performance); 2) the disentangled performance 

of individual drugs to all cell lines (per-drug performance); 3) and the global performance 

ignoring the distinctions among cell lines and drugs (micro performance). We used area 

under the receiver operating characteristic (AUROC) and area under the precision-recall 

curve (AUPR) as evaluation metrics. We reported average per-cell-line and average per-drug 

AUROCs/AUPRs for comparisons.

2.5. Survival analysis on real patients

We evaluated performance of our model on real-world patients by first assigning patients 

into predicted responders and non-responders, and we then compared their survivals as a 

surrogate indicator of drug efficacy. From TCGA consortium, we collected clinical data, 

including treatments and overall survival, of 62 LUAD and LUSC patients, who received 

different combinations of cisplatin (41 cases), pemetrexed (19 cases), paclitaxel (17 cases), 

and vinorelbine (10 cases) as adjuvant therapies. We applied our model, which has been 

trained on GDSC dataset, to each patient to derive the probabilities of being sensitive to 

the drugs in the prescribed regimen. Since the probabilities for different drugs were not 

well calibrated, we assigned a patient as sensitive to a drug if the prediction probability for 

the patient is among the top 40th percentile of all patients treated with the drug. We then 

designated a patient as a responder to a regimen if the patient is predicted to be sensitive 

to any of drugs in the regimen, otherwise as a non-responder. We tested our model on 

these drugs in two schemes: 1) Predicting efficacy of existing drugs to treat new cancer 

cells (previously unseen by models) as in Fig. A1a; 2) and predicting efficacy of new drugs 

(unseen during training) on new cancer cells as shown in Fig. A1c. For the second scheme, 

we removed these four drugs from GDSC dataset during training.

3. Results

3.1. Drug embedding analysis

We evaluated the quality of IDE and the contribution of each of its components, i.e., 

chemical structure, MOAs, and pathway information. Our evaluation was based on the 

heuristics that a pair of drugs with similar effects on cancer cells should be close in the drug 

embedding space. To that end, we calculated the drug-drug similarity (Jaccard coefficient) in 
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terms of their cell-drug response profiles, and we computed the pairwise Euclidean distances 

between drug embeddings. For easy visualization, we divided drug-drug pairs equally into 

low (bottom 33%), medium, and high (top 33%) quantiles with respect to their Euclidean 

distances. Fig. 2A shows the relationship between these two pairwise measurements. We 

observed a decreasing trend (the blue curve) of drug sensitivity similarity from the low 

quantiles of Euclidean distance to the high quantiles of Euclidean distance in the drug 

embedding space using only chemical structure information. This trend (the orange curve) 

becomes more evident by using the MOAs as a regularization, suggesting that the drug 

embedding is augmented by adding the MOAs information. Similarly, Fig. 2B shows that 

including the pathway information into the IDE further boosted its quality.

3.2. Drug sensitivity prediction on cell line

To evaluate the performance of DeepGRMF, we applied 25-fold cross-validations to GDSC 

dataset. As shown in Fig. A2, we adopted different train-test split strategies. In order to 

test the out-of-sample performance across different platforms or pipelines and examine the 

robustness of DeepGRMF, we also predicted and evaluated the drug response of unseen 

CCLE dataset with the GDSC-trained models.

3.2.1. Drug sensitivity prediction of new cell lines to existing drugs—To 

predict drug sensitivity of new cell lines to existing drugs (Fig. A2a), the cell lines were 

split into 25 folds, every time we trained on 24 folds and tested on the remaining one. We 

evaluated the performance of DeepGRMF and compared it with two models: Lasso and 

DeepDSC,15 where Lasso is a classic model and DeepDSC is a state-of-the-art model to 

predict drug sensitivity. DeepGRMF outperformed these two models (all three were trained 

on GDSC data) in both GDSC and CCLE datasets (Table 1), indicating both better accuracy 

and generalization of the model. These results show the superiority of non-linear modeling 

for drug and gene expression in DeepGRMF over the linear modeling in Lasso. DeepDSC 

introduces non-linearity by concatenating the drug chemical features with cell line genomic 

features followed by a neural network to predict the drug sensitivity data. We assumed the 

collaborative filtering in DeepGRMF could better capture the interaction between cell line 

and drug.

3.2.2. Drug sensitivity prediction of existing cell lines to new drugs—To 

predict drug sensitivity of existing cell lines to new drugs (Fig. A2b), we split drugs into 25 

folds and used 24 folds for training and the remaining one for testing. The performance of 

DeepGRMF was compared to DeepDSC in the task of predicting drug sensitivity of existing 

cell lines to new drugs. DeepGRMF compared favorably to DeepDSC on both AUROC and 

AUPR (Table 2). We did not compare with Lasso because Lasso needs to build a different 

model for each cell line, while 1k cell lines in the dataset are too many. Since CCLE has 

different cell lines from GDSC, for this task we can not train on GDSC and test on CCLE.

3.2.3. Drug sensitivity prediction of new cell lines to new drugs—To predict 

drug sensitivity of new cell lines to new drugs (Fig. A2c), we used both new cell lines and 

new drugs to test the prediction performance. The cell lines and drugs were firstly split into 

five folds, and we then paired each drug fold with each cell line fold to create 25 folds in 
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total. Every time we utilized one fold of cell line paired with one fold of drugs to test, the 

remaining pairs of cell lines and drugs were used to train the model.

Table 3 shows the comparison between DeepGRMF and DeepDSC in this evaluation 

scheme. DeepGRMF has better performance than DeepDSC on both AUROC and AUPR. 

Compared with DeepDSC, the graph regularization technique could further capture the 

similarity among cell lines and drugs, thus improving our performance.

3.3. Survival analysis on real patients

As shown in Fig. 3, patients in the responders group survived significantly longer than the 

non-responders group regardless of whether we treated the four drugs (cisplatin, pemetrexed, 

paclitaxel, and vinorelbine) as existing drugs or new drugs. The log-rank test p-value is 0.03 

and 0.05 for existing and new drugs, respectively. Our model successfully discriminated 

lung cancer patients into different drug response groups that are correlated with survival 

outcomes in both schemes. Compared with treating the four drugs as new drugs, treating the 

four drugs as existing drugs better separated the two groups.

4. Discussion

Accurate prediction of drug sensitivity is crucial for the success of precision oncology. 

We presented a model called DeepGRMF, which demonstrated enhanced capability 

for predicting drug sensitivities in comparison to the previous state-of-art algorithm. 

Furthermore, our model can predict drug responses de novo for previously unseen drugs, 

which enables one to repurpose existing FDA-approved drugs for treating cancer as well as 

potentially discover novel anticancer chemicals. This capability is achieved by innovative 

integration of four machine learning technologies: 1) The IDE representation of drugs that 

incorporates the information of drug chemical structures and MOAs. 2) Matrix-factorization-

based collaborative filtering, which captures characteristic interactions between a set of 

similar cell lines and a set of similar drugs. 3) Graph-based regularization that encodes the 

similarity of cells and drugs in original input space. As shown in Table A2, using both 

similarities can improve AUROC and AUPR compared with using one similarity or not 

using any similarity to constrain solutions. 4) Neural networks that accurately map a new 

input (a new cell or a drug) to factor space. We also tried other methods to learn the mapping 

function, such as random forest and elastic net. As shown in Table A3, since the neural 

network had higher performance, we selected it to learn the mapping functions.

We have shown the generalizability and robustness of our model in transferring the 

prediction models trained with GDSC data to make predictions on cell lines from another 

large-scale cell-line-based pharmacogenomic study, CCLE, and, more excitingly, predictions 

on real-world patients. It is foreseeable that future precision oncology may involve designing 

a personalized regimen consisting of multiple effective drugs for each patient. Developing 

prediction systems transferring knowledge from cell lines to real-world clinical practice 

offers promise for greatly accelerating this process.

The DeepGRMF model can be improved in several aspects. Currently, the DeepGRMF 

model only utilizes gene expression profiling data, and we anticipate that further integrating 
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genomic alterations (mutations and copy number alterations) and epigenetic information 

will likely further improve the performance of the model. We noted that the performance 

of new drug sensitivity prediction is not as good as new cell line prediction, which may 

be due to limited expressiveness of our VAE-based representation of chemical structures. 

Recently, it has been shown that a family of graph neural networks can better provide 

a representation of chemical structures,26 which can be explored in the future. Finally, 

the current representations of cellular states of cancer cells are derived using “black-box” 

neural networks, and interpretable deep learning models can be explored not only to achieve 

interpretability of our model but also to enhance its performance.
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Fig. 1: Diagram of DeepGRMF model.
1) The orange dotted box shows the procedure of the first module: using a graph regularized 

matrix factorization to decompose the drug response matrix into the product of cell line 

factor matrix A and drug factor matrix B. 2) The blue dotted box shows the procedure of 

the second module: using two separate neural networks to learn the mapping functions. The 

neural network I is used to learn the mapping function for cell lines, which maps gene 

expression matrix C to cell line factor matrix A. The neural network II is used to learn the 

mapping function for drugs, which maps the drug embedding obtained by concatenating 

integrative drug embedding matrix D and pathway embedding matrix E to drug factor matrix 

B.
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Fig. 2: 
A) The relationship between similarities of drug sensitivity and Euclidean distance of 

drug representations using chemical structure with/without the drug MOAs information. 

B) The relationship between similarities of drug sensitivity and Euclidean distance of drug 

representations using chemical structure, drug effect with/without pathway information.
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Fig. 3: 
Kaplan-Meier curves of responder and non-responder group of lung cancer patients that took 

Cisplatin, Pemetrexed, Paclitaxel, and/or Vinorelbine for adjuvant therapy which these four 

drugs treated as existing drugs (A) or as new drugs (B).
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Table 1:

Performance of different models to predict drug response of new cell lines to existing drugs.

Per Cell Line Per Drug Micro

Train/Val Data Test Data Model AUROC AUPR AUROC AUPR AUROC AUPR

GDSC GDSC Lasso 79.1 53.8 67.1 38.2 79.3 55.4

DeepDSC 80.0 54.8 67.7 38.8 79.9 56.4

DeepGRMF 83.2 60.1 70.9 41.8 83.1 62.0

GDSC CCLE Lasso 79.2 67.5 66.2 38.2 74.1 50.5

DeepDSC 80.0 68.3 67.0 40.5 75.1 51.5

DeepGRMF 82.0 70.9 67.9 41.6 76.0 53.7
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Table 2:

Performance of different models to predict drug response of existing cell lines to new drugs.

Per Cell Line Per Drug Micro

Train/Val Data Test Data Model AUROC AUPR AUROC AUPR AUROC AUPR

GDSC GDSC DeepDSC 58.6 33.0 64.5 35.3 65.4 37.7

DeepGRMF 65.5 38.1 70.7 41.8 72.9 46.7
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Table 3:

Performance of different models to predict drug response of new cell lines to new drugs.

Per Cell Line Per Drug Micro

Train/Val Data Test Data Model AUROC AUPR AUROC AUPR AUROC AUPR

GDSC GDSC DeepDSC 58.2 31.6 55.6 28.5 59.8 31.9

DeepGRMF 64.6 36.6 61.4 33.8 66.9 38.9

GDSC CCLE DeepDSC 49.1 49.4 58.5 38.1 55.1 32.2

DeepGRMF 56.1 55.5 69.1 49.4 61.0 44.6
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