
biomolecules

Review

Contribution of Non-Saccharomyces Yeasts to Wine
Freshness. A Review

Antonio Morata 1,* , Carlos Escott 1 , María Antonia Bañuelos 2, Iris Loira 1 ,
Juan Manuel del Fresno 1, Carmen González 1 and José Antonio Suárez-Lepe 1

1 enotecUPM, Department of Chemistry and Food Technology, Universidad Politécnica de Madrid,
28040 Madrid, Spain; carlos.escott@gmail.com (C.E.); iris.loira@upm.es (I.L.);
juanmanuel.delfresno@upm.es (J.M.d.F.); carmen.gchamorro@upm.es (C.G.);
joseantonio.suarez.lepe@upm.es (J.A.S.-L.)

2 enotecUPM, Department of Biotecnology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
mantonia.banuelos@upm.es

* Correspondence: antonio.morata@upm.es; Tel.: +34-910-671-127

Received: 11 December 2019; Accepted: 24 December 2019; Published: 25 December 2019 ����������
�������

Abstract: Freshness, although it is a concept difficult to define in wines, can be understood as a
combination of different circumstances. Organolepticwise, bluish red, floral and fruity, more acidic
and full-bodied wines, are perceived as younger and fresher by consumers. In traditional winemaking
processes, these attributes are hard to boost if no other technology or biotechnology is involved. In this
regard, the right selection of yeast strains plays an important role in meeting these parameters and
obtaining wines with fresher profiles. Another approach in getting fresh wines is through the use of
novel non-thermal technologies during winemaking. Herein, the contributions of non-Saccharomyces
yeasts and emerging technologies to these parameters are reviewed and discussed.
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1. Introduction

Wine freshness is a complex concept comprising mouth, smell and visual perceptions [1]. In this
regard, the freshness of the wine could be defined by the combination of a fruity aroma reminiscent
of the grape variety, moderate ethanol content and high acidity. Therefore, it is not only a question
of achieving a refreshing flavour in the wine, but also of preserving the typicity of the grape variety.
The freshness of wine can be reached from different microbiological perspectives, for instance, by using
different non-Saccharomyces yeasts that produce organic acids [2]. It can also be reached through
the ability of microorganisms, yeasts and bacteria, that synthesise and subsequently free enzymes
capable of releasing volatile thiols (e.g., 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate) or terpenes
(e.g., geraniol, linalool) [3], thus contributing to the fresh aroma of the wine. Similarly, the freshness of
the wine could also be correlated to some extent with increased production of acetate esters [4].

Fruity and floral aroma are responsible for wine aromatic freshness and they are strongly connected
with the production of acetate esters from higher alcohols or short chain fatty acids ethanolic esters
during fermentation [5]. Selected Saccharomyces strains can help to improve the concentrations of these
compounds, but especially several non-Saccharomyces species are able to increase them significantly
during fermentation. Among them, Torulaspora delbrueckii (Td) [6], Wickerhamomyces anomalus (Wa) [7],
Metschnikowia pulcherrima (Mp) [8], Hanseniaspora vineae (Hv) and Hanseniaspora/Kloeckera spp. [9],
Lachancea thermotolerans [2,10], or Candida stellata (Cs) [11] have proven their effectiveness. Some of
them also have the ability to release varietal aroma from precursors such as glycosylated terpenes or
bonded thiols by means of β-glucosidase [12] or C-S-lyase activities [13]. Many of these yeast species are
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commercialised as dry or frozen products, while others will be available in the near future. Moreover,
the number of available selected strains of these species is progressively growing in the market.

Concerning the sense of taste, freshness is strongly connected with acidity. Acid wines are
perceived as more refreshing than low acidity-high pH wines which frequently show heavy and
winey profiles. Acidity can be improved by a biological way during fermentation. Some yeasts are
able to produce malic acid and lactic acid affecting wine’s pH, but also some other acids in lower
concentrations such as succinic acid, pyruvic acid, etc., without significant repercussions to the pH
values. The production of malic acid is quite typical in many strains of Saccharomyces cerevisiae (Sc),
however, the production is low, usually below 1 g/L [14]. Malic acid is unstable because it can be
metabolised by lactic acid bacteria and its technical utility is quite low. Conversely, lactic acid is
an interesting option because some non-Saccharomyces yeasts as Lachancea thermotolerans (Lt) can
produce it in high concentration [2], even in oenological conditions at a variable range of pH [15].
Moreover, this acid is stable along the winemaking processes and its sensory perception is good [1]
and, unlike general belief, it can be described as citric fruit acidity without dairy notes [15].

Freshness can also be related to colour. Red-brown hues make consumers perceive wines as
oxidised, therefore colour hue and intensity influence the sensory profile. Yeast can affect colour in
several aspects [16]: (i) production of organic acids with repercussion on pH increases the colour of
anthocyanins by hyperchromic effect, but it also affects colour stability [2], (ii) the release of yeast
metabolites or the expression of hydroxycinnamate decarboxylase activities promote the formation
of stable pigments like vitisin or vinylphenolic adducts, respectively [17,18], (iii) the enhancement
of polymeric pigments formation [19,20], (iv) the removal of anthocyanins by cell walls adsorption
during fermentation [21–23], and (v) the production of reductive compounds as glutathione (GSH)
with protective effects on wine anthocyanins [2]. The use of some non-Saccharomyces species has proven
effective in colour protection through pH modification or the formation of stable pyranoanthocyanins
or polymeric pigments.

Wine structurewise, there is a release of yeast polysaccharides during fermentation and also during
ageing on lees (AOL). AOL is an interesting technique that involves contact between the lees and the
wine after fermentation. In addition, AOL protects the fruity aroma due to its reductive properties [24].
The use of non-Saccharomyces is a current biotechnology to increase the polysaccharide content and to
speed up the AOL process [25,26]. Moreover, emerging technologies such as ultrasounds [27–29] or
ultra-high pressure homogenization [30] facilitate the release of yeast cell wall polysaccharides during
AOL. Nonetheless, the use of AOL counteracts freshness by modulating the acidity.

The classification of some non-Saccharomyces used in wine biotechnology can be done by molecular
techniques according to their phylogenetic relations. The classification of yeast species and genera
was formerly assigned from phenotypical analysis in function of morphology of vegetative cells
and sexual states, and physiological responses in growth media and fermentation essays; at present,
this classification is given by gene sequencing [31] or genotype, and this is the reason why yeasts species
with similar phenotype are grouped in different clusters/branches of phylogenetic trees (Figure 1).

One of the main drawbacks in the oenological use of non-Saccharomyces is the difficulty in
reaching suitable implantations in musts with native microflora. Thus, their metabolome expression is
limited and so is the release of metabolites and the production of enzymatic activities with sensory
repercussion. Emerging non-thermal technologies open the door to eliminate the wild microbiome
from grapes allowing the suitable implantation of these non-Saccharomyces yeasts [32]. Many of these
techniques such as high hydrostatic pressures, ultra-high pressure homogenization, β-irradiation,
pulsed electric fields, etc., also have concomitant advantages as the enhancement of the extraction of
volatile compounds and polyphenols from grapes and the inactivation of oxidative enzymes allowing
the reduction in sulphites content.
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Saccharomyces cerevisiae NRRL Y-12632/AY048154; Metschnikowia pulcherrima NRRL Y-7111/U45736 

Metschnikowia fructicola B-4(1)/EU441890; Lachancea thermotolerans CBS 2803/KY108273; Torulaspora 

delbrueckii NRRL Y-866/U72156; Wickerhamomyces anomalus NRRL Y-366/U74592; Pichia kluyveri NRRL 

Y-11519/U75727; Hanseniaspora uvarum NRRL Y-1614/U84229; Hanseniaspora opuntiae CBS 

8733/AJ512453; Hanseniaspora vineae NRRL Y-17529/U84224; Hanseniaspora osmophila NRRL Y-

1613/U84228; Hanseniaspora guilliermondii NRRL Y-1625/U84230; Schizosaccharomyces pombe NRRL Y-
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Figure 1. Phylogenetic relationships among wine yeast species based on analysis of D1/D2 LSU rRNA
gene sequences. The evolutionary history was inferred by using the Maximum Likelihood method
based on the Tamura-Nei model in MEGA7. GenBank accession numbers follow strain numbers:
Saccharomyces cerevisiae NRRL Y-12632/AY048154; Metschnikowia pulcherrima NRRL Y-7111/U45736
Metschnikowia fructicola B-4(1)/EU441890; Lachancea thermotolerans CBS 2803/KY108273; Torulaspora
delbrueckii NRRL Y-866/U72156; Wickerhamomyces anomalus NRRL Y-366/U74592; Pichia kluyveri NRRL
Y-11519/U75727; Hanseniaspora uvarum NRRL Y-1614/U84229; Hanseniaspora opuntiae CBS 8733/AJ512453;
Hanseniaspora vineae NRRL Y-17529/U84224; Hanseniaspora osmophila NRRL Y-1613/U84228; Hanseniaspora
guilliermondii NRRL Y-1625/U84230; Schizosaccharomyces pombe NRRL Y-12796/AY048171; Starmerella
bombicola 16-D-2/KF935227; Starmerella bacillaris CBS 1713/KY109779.
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2. Influence of Non-Saccharomyces Yeasts on Wine Aroma

The formation of fruity or floral aroma during fermentation is an important contribution of
non-Saccharomyces yeasts to wine freshness. Many esters with sensory impact are formed as a
consequence of the amino acids catabolism by the Ehrlich transamination pathway (Figure 2). The higher
alcohols synthesised in this process can be esterified with acetic acid to produce low threshold aromatic
esters (e.g., 2-phenylethyl acetate, isoamyl acetate, isobutyl acetate), most of them with floral or
fruity descriptors (e.g., rose petals, banana, pear). Moreover, several acids and short chain fatty acids
(e.g., lactic, acetic, butyric) are also formed during the yeast metabolism. Some of them produce fruity
or sweet profiles (e.g., strawberry, toffee), enhancing freshness and reducing the neutral and winey
profile of the conventional S. cerevisiae strains.
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Figure 2. Metabolic pathways involved in the formation of floral and fruity esters in yeasts. Production
of acetate esters by Ehrlich catabolism of amino acids and production of fatty acids ethyl esters
(TA: transaminase, KDC: 2-keto acid decarboxylase, ADH: alcohol dehydrogenase, Atf: acyltransferase).
Formation of fatty acid ethyl esters by acylation with acyl-CoA (PDC: pyruvate decarboxylase, ADH:
alcohol dehydrogenase, Eeb1/Eht1: ethyl ester biosynthesis/ethanol hexanoyl transferase).

The production of aromatic compounds by yeasts has been previously reviewed in several key
studies that highlight the role of the production of acetate esters from higher alcohols, fatty acid
ethyl esters (Figure 2) and the enzymatic activities that release terpenes and thiolic compounds from
cysteine-derivatives [5,33,34].

Regarding the H. vineae species, the main esters with sensory repercussion from its exometabolome
are benzyl acetate, 2-phenylethyl acetate, ethyl lactate and 3-methylbutyl acetate [35]. Among them,
the first two esters are released in higher concentrations (2–7×) than S. cerevisiae; by comparison,
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ethyl lactate is usually produced below the sensory threshold. Formation de novo of benzyl acetate
and 2-phenylethyl acetate from sugars by the chorismate-prephenate pathway has been reported
([36], Figure 3). It has been observed that nitrogen nutrition affected the formation of benzyl and
2-phenylethyl acetates. High doses of diammonium phosphate (100–250 mg/L) inhibited the production
of these phenylpropanoid compounds and negatively affected the global balance of aromatic esters [37].
Benzyl alcohol, precursor of benzyl acetate, can be obtained de novo without using grape precursors by
11 different H. vineae strains at concentrations 20–200 fold higher than with S. cerevisiae strains [36].
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Figure 3. Metabolic pathways involved in the de novo synthesis from sugars of floral esters by
H. vineae following the chorismate-prephenate-(S)-mandelate/phenylalanine pathway (ChM: chorismate
mutase, PrD: prephenate dehydratase, hmaS: hydroxymandelate synthase, hmO: hydroxymandelate
oxidase, bDC: benzoylformate decarboxylase, aDH: benzyl alcohol dehydrogenase; aAT: aromatic
aminotransferase; Atf: acyltransferase). Adapted from [36,38,39].

Currently, Torulaspora delbrueckii is a non-Saccharomyces yeast with great oenological potential
due to its good fermentation performance with low levels of ethanol, higher alcohols, volatile fatty
acids and volatile acidity, and its notable contribution to the aromatic profile of the wine [6,40].



Biomolecules 2020, 10, 34 6 of 25

Some authors have found a synergistic effect between T. delbrueckii and S. cerevisiae when fermenting in
co-inoculation with a high proportion of the non-Saccharomyces yeast, leading to enhanced aromatic
properties in the wines [40,41]. In addition, certain volatile compounds contributed by T. delbrueckii
have been positively related to the fruity character of the wine. For instance, linalyl acetate, with citrus
aroma descriptor, far exceeded its odour threshold (0.05 mg/L) in white Muscat fermentations by
T. delbrueckii [40]. Similarly, sequential fermentation between T. delbrueckii and S. cerevisiae resulted
in higher concentrations of 3-mercaptohexan-1-ol (grape fruit and passion fruit descriptors [42])
and its acetate (boxwood and passion fruit descriptors [43]) [41]. 3-Ethoxy-1-propanol is another
interesting volatile compound that is produced specifically by T. delbrueckii and can contribute to
the fruity character of wine with a descriptor of blackcurrant aroma [44,45]. However, in most cases
it is not possible to state with complete certainty that a non-Saccharomyces yeast is responsible for
specific changes in the volatile profile (always in the same way), as other important factors may be
involved such as the strain variability factor or the ratio of dominance against other fermentative
yeasts, especially in comparison with Saccharomyces cerevisiae [6]. Therefore, it is of great interest to
know those species or strains that tend to preserve the fresh-fruit aromatic intensity coming from the
grape variety, as well as the working conditions under which these effects are enhanced.

Pichia kluivery is another yeast species capable of releasing varietal aromas. Among these aroma
precursors are thiol-type varietal aromas: 4-methyl-4-mercaptopentan-2-one (4M4MP-boxwood,
broom), 3-mercaptohexanol (3MH-grapefruit), 3-mercaptohexyl acetate (3MHA-passion fruit) [42].
P. kluivery produces thiol aromas in a concentration similar to S. cerevisiae strains in single fermentations,
but it is able to enhance the production of such compounds in co-inoculations with S. cerevisiae
strains [46]. The production of 3MH increases from 625 ng/L to 3000 ng/L while the production of
3MHA increases from 500 ng/L to 1700 ng/L from single to co-inoculation. respectively.

Metschnikowia pulcherrima, like the aforementioned non-Saccharomyces yeast species, are also able
to influence the aroma profile of wines and, therefore, to have an impact in the sensory quality of
wines [47]. M. pulcherrima contributes to the volatile fraction with the production of aroma compounds
due to its β-glucosidase activity [48]. In addition, some M. pulcherrima strains were also reported
to have β-xylosidase activity [48,49] which increases the enzymatic activity during fermentation.
In this regard, M. pulcherrima seems prone to releasing more monoterpenols and 2-phenyl ethanol
than other yeast species such as H. guilliermondii [48]. Linalool, geraniol and nerol are among these
monoterpenol compounds.

The following table summarises some of these metabolites mainly contributed by non-Saccharomyces
yeasts (Table 1).
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Table 1. Main metabolites of non-Saccharomyces yeasts, sensory repercussion and technical impact.

Non-Saccharomyces
Species

Metabolite/
Biopolymer Structure Sensory Repercussion Technical Impact

Sensory Olfactive
Threshold (µg/L)1 *

If usually above This Value
Reference

Hanseniaspora/Kloeckera

2-Phenylethyl acetate
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Monoterpens (e.g., 

linalool) 
  

 

Floral  
Increase varietal aromas by 

hydrolysing glucoside terpenes 
25 * [48] 

Pichia kluyveri 

Mercaptohexanol (3-

MH)   
Grapefruit, passion fruit 

Fruity smell: > 625 ng/L single 

fermentation to 3000 ng/L co-

inoculation 

0.060 * [46] 

Mercaptohexyl acetate 

(3-MHA)  
Grapefruit, passion fruit 

Fruity smell: > 500 ng/L single 

fermentation to 1700 ng/L co-

inoculation 

0.004 * [46] 

OH

CH2

OH CH3

CH3 CH3

CH3 OH

SH

CH3 O

SH

CH3

O

Floral, rose petals hints 10–50 mg/L 250 * [15]

Ethyl lactate
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OH

CH2

OH CH3

CH3 CH3

CH3 OH

SH

CH3 O

SH

CH3

O

Strawberry, toffee >40 mg/L
High sensory threshold 150,000 [15]

Lactic acid

Biomolecules 2019, 9, x 7 of 26 

Table 1. Main metabolites of non-Saccharomyces yeasts, sensory repercussion and technical impact. 

Non-Saccharomyces 

Species 

Metabolite/ 

Biopolymer 
Structure Sensory Repercussion Technical impact 

Sensory Olfactive 

Threshold (µg/L) 1 

* if usually above 

This Value 

Reference 

Hanseniaspora/Kloeckera 

2-Phenylethyl acetate 

O O

 
Floral, rose petals hints 

Enhance floral notes 

x2-10 compared to S. cerevisiae 
250 * [35,37] 

Mannans  
Cell wall polysaccharides, 

mannoproteins 

Increased mouthfeel, even 

perceptible after fermentation 
 [50] 

Hanseniaspora vineae Benzyl acetate O

O

 

Floral jasmine aroma Floral 2 * [35,51] 

Lachancea thermotolerans 

2-Phenylethyl acetate 

O O

 
Floral, rose petals hints 10-50 mg/L 250 * [15] 

Ethyl lactate O

O

OH  

Strawberry, toffee 
>40 mg/L 

High sensory threshold 
150,000 [15] 

Lactic acid OH

O

CH3

OH  

Citric acidity 

0.3–16 g/L 

Up to 0.5 pH reductions in 

oenological conditions 

Slight sugar depletion with some 

alcohol reduction 

 [15,52] 

Metschnikowia 

pulcherrima 

2-Phenylethanol 
  

Rose-like odour >30 mg/L 14,000 * [48] 

Monoterpens (e.g., 

linalool) 
  

 

Floral  
Increase varietal aromas by 

hydrolysing glucoside terpenes 
25 * [48] 

Pichia kluyveri 

Mercaptohexanol (3-

MH)   
Grapefruit, passion fruit 

Fruity smell: > 625 ng/L single 

fermentation to 3000 ng/L co-

inoculation 

0.060 * [46] 

Mercaptohexyl acetate 

(3-MHA)  
Grapefruit, passion fruit 

Fruity smell: > 500 ng/L single 
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OH

CH2

OH CH3

CH3 CH3

CH3 OH

SH

CH3 O

SH

CH3

O

Citric acidity

0.3–16 g/L
Up to 0.5 pH reductions in

oenological conditions
Slight sugar depletion with

some alcohol reduction

[15,52]

Metschnikowia
pulcherrima

2-Phenylethanol
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OH

CH2

OH CH3

CH3 CH3

CH3 OH

SH

CH3 O

SH

CH3

O

Rose-like odour >30 mg/L 14,000 * [48]

Monoterpens
(e.g., linalool)
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Fruity smell: > 625 ng/L single 

fermentation to 3000 ng/L co-
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OH

CH2

OH CH3

CH3 CH3

CH3 OH

SH

CH3 O

SH

CH3

O

Floral
Increase varietal aromas by

hydrolysing glucoside
terpenes

25 * [48]

Pichia kluyveri

Mercaptohexanol
(3-MH)
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25 * [48] 
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inoculation 
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OH

CH2

OH CH3

CH3 CH3

CH3 OH

SH

CH3 O

SH

CH3

O

Grapefruit, passion fruit
Fruity smell: > 625 ng/L
single fermentation to

3000 ng/L co-inoculation
0.060 * [46]

Mercaptohexyl acetate
(3-MHA)
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Rose-like odour >30 mg/L 14,000 * [48] 

Monoterpens (e.g., 

linalool) 
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Increase varietal aromas by 

hydrolysing glucoside terpenes 
25 * [48] 

Pichia kluyveri 

Mercaptohexanol (3-

MH)   
Grapefruit, passion fruit 

Fruity smell: > 625 ng/L single 
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0.060 * [46] 
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OH

CH2

OH CH3

CH3 CH3

CH3 OH

SH

CH3 O

SH

CH3

O

Grapefruit, passion fruit
Fruity smell: > 500 ng/L
single fermentation to

1700 ng/L co-inoculation
0.004 * [46]
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Table 1. Cont.

Non-Saccharomyces
Species

Metabolite/
Biopolymer Structure Sensory Repercussion Technical Impact

Sensory Olfactive
Threshold (µg/L)1 *

If usually above This Value
Reference

Schizosaccharomyces
pombe

Pyruvate
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Table 1. Cont. 

Schizosaccharomyces 

pombe 

Pyruvate O
–

O

O  

Stable pigments, colour stability 

Precursor for vitisin A type 

compounds: 

O
+

OCH3

OCH3

O

OH

OH

O

COOH

G R
1

 

Enhance the formation of vitisin A 

derivatives 

Some strains also vinylphenolic 

pyranoanthocyanins 

 [53] 

Cell wall polysaccharides, 

mannoproteins  
 

Better wine structure, softening of the 

astringency 
Increased mouthfeel   

Torulaspora delbrueckii 

2-Phenylethyl acetate 

O O

 
Flower, honey 

1.2-2x compared to S. cerevisiae & S. 

uvarum 
250 * [42,44] 

Ethyl hexanoate 
O

O

 
Apple Fruity smell 62* [44] 

3-Ethoxy-1-propanol O OH
 Black currant, solvent Black fruity smell  [44] 

Wickerhamomyces 

anomalus 

2-phenylethyl acetate 

O O

 

Flower, honey  250 * [42] 

Isoamyl acetate 
O O

 
Banana Enhance fruitiness 30 * [42] 

Ethyl acetate 
O

O

 
Fruity at low concentration 

Fruity smell at low concentration 

Enhance complexity 
12,300* [54] 

1 Odour thresholds [42,54];* It highlights all compounds which concentration is usually above the threshold value. 

Stable pigments, colour stability
Precursor for vitisin A type

compounds:
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Banana Enhance fruitiness 30 * [42] 

Ethyl acetate 
O
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Fruity at low concentration 

Fruity smell at low concentration 

Enhance complexity 
12,300* [54] 

1 Odour thresholds [42,54];* It highlights all compounds which concentration is usually above the threshold value. 

Enhance the formation of
vitisin A derivatives

Some strains also
vinylphenolic

pyranoanthocyanins

[53]

Cell wall
polysaccharides,
mannoproteins

Better wine structure, softening
of the astringency Increased mouthfeel

Torulaspora delbrueckii

2-Phenylethyl acetate
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Ethyl acetate 
O
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Fruity at low concentration 

Fruity smell at low concentration 

Enhance complexity 
12,300* [54] 

1 Odour thresholds [42,54];* It highlights all compounds which concentration is usually above the threshold value. 

Flower, honey 1.2-2x compared to
S. cerevisiae & S. uvarum 250 * [42,44]

Ethyl hexanoate
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Ethyl acetate 
O

O

 
Fruity at low concentration 

Fruity smell at low concentration 

Enhance complexity 
12,300* [54] 

1 Odour thresholds [42,54];* It highlights all compounds which concentration is usually above the threshold value. 

Apple Fruity smell 62 * [44]

3-Ethoxy-1-propanol
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Fruity smell at low concentration 

Enhance complexity 
12,300* [54] 

1 Odour thresholds [42,54];* It highlights all compounds which concentration is usually above the threshold value. 

Black currant, solvent Black fruity smell [44]

Wickerhamomyces
anomalus

2-phenylethyl acetate
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Flower, honey 250 * [42]

Isoamyl acetate
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1 Odour thresholds [42,54];* It highlights all compounds which concentration is usually above the threshold value. 

Banana Enhance fruitiness 30 * [42]

Ethyl acetate
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2-phenylethyl acetate 

O O

 

Flower, honey  250 * [42] 

Isoamyl acetate 
O O

 
Banana Enhance fruitiness 30 * [42] 

Ethyl acetate 
O

O

 
Fruity at low concentration 

Fruity smell at low concentration 

Enhance complexity 
12,300* [54] 

1 Odour thresholds [42,54];* It highlights all compounds which concentration is usually above the threshold value. 

Fruity at low concentration
Fruity smell at low

concentration
Enhance complexity

12,300 * [54]

1 Odour thresholds [42,54]; * It highlights all compounds which concentration is usually above the threshold value.
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3. Acidity and pH Control

The effect of L. thermotolerans in wine freshness is especially significant because of the influence
on pH by the production of lactic acid; some strains are capable of producing more than 16 g/L [52].
Recent reviews have highlighted the oenological relevance of this species [2,10]. The phenotypic and
genotypic variability of strains from many origins worldwide have been studied [55,56]. The formation
of lactic acid is derived from pyruvate in the glycolytic metabolism of sugars. The enzyme lactate
dehydrogenase is involved in the reduction of pyruvate to lactic acid and it is a typical feature found
in many strains of L. thermotolerans [15]. This acidification happens at the beginning of the alcoholic
fermentation, 3–5 days of fermentation [2], with a significant effect when the population exceeds
6-log CFU/mL. Effective pH reductions have been reported in mixed fermentations with inoculation
ratio 7-log:3-log (Lt:Sc) [57]. The early acidification helps L. thermotolerans to be competitive even
when high wild populations are present in the must during fermentation. Nitrogen contents also
affect the production of lactic acid; YAN values closed to 200 mg/L improve lactic acid production [2].
Strong effects in pH have been observed in Tempranillo red wines with initial pH ca. 4; lactic acid levels
exceeded 6 g/L when specific L. thermotolerans strain was used and the pH value decreased around
0.5 units [15]. L. thermotolerans has been described as low volatile acidity producer, ranging most
of the strains 0.3-0.5 mg/L [15,57,58], and also as an interesting bio-tool to control the acetic acid
production [59]. Since lactic acid production can come from sugar depletion, there could be a
slight reduction of alcoholic degree (0.3–0.5% vol.) [15]. Current literature describes fermentative
performances of around 8–10% vol. [56,57], however, this can be improved with appropriate strain
selection. Single pure fermentations with L. thermotolerans, isolated and selected in ongoing research
works, might be possible since these strains are able to yield 12–13% vol. ethanol.

Lactic acid can be described as citric fruit acidity without providing the wines with dairy notes.
The perceived effect is the enhancement of the freshness in mouth. Dairy notes resembling compounds,
such as diacetyl or acetoin, are produced at similar concentration when used in sequential inoculations
than in S. cerevisiae pure fermentations [15].

Even when non-Saccharomyces are described as low sulphite-resistant, many L. thermotolerans
strains have the capacity to grow and ferment in the presence of sulphites. Some strains can ferment in
the presence of conventional concentrations of 50–60 mg/L of total SO2 with a slight reduction in the
final alcoholic degree. It is also possible to ferment at slower rate under 18 ◦C with 70 mg/L of total
SO2 and 15 mg/L of free SO2 which resembles winemaking conditions.

4. Non-Saccharomyces-Mediated Formation of Stable Pyranoanthocyanin and Polymeric Pigments

Different yeast genera may contribute to the formation of stable pigments either during the
fermentation or during the ageing period. In this regard, anthocyanins extracted from the grape’s skins
are transformed through condensation reactions into less sensitive pigments against pH variations
in wines, addition of SO2 to improve the wine’s stability and temperature fluctuations during the
product’s shelf life. Among the species known for having this activity are S. pombe due to an increase
of vitisin A formation [60]; T. delbrueckii and M. pulcherrima that favour the production of oligomeric
fractions in sequential fermentations [19]; L. thermotolerans that is able to increase the amount of lactic
acid during must fermentation [2], which pH reduction improves the colour intensity of wines and its
stability by increasing the molecular SO2. It also adsorbs less pigments on the cell wall which produces
higher concentration of final total pigments in sequential fermentations [20].

Maloalcoholic fermentation (MAF) produces the metabolisation of malic acid into ethanol.
The malic enzyme (ME) of S. pombe has 15-folds higher affinity by malic acid than the ME of
S. cerevisiae [61]. This higher efficiency is due to the presence of the specific malate permease
transporter in S. pombe (mae1p) facilitating the entrance of malate into the cytosolic media, and also
because the ME is located in the cytosol conversely to S. cerevisiae in which this pathway is
produced in the mitochondrion [61]. MAF of S. pombe increases the release of extracellular pyruvate
facilitating the formation of stable vitisin A-type derivatives [62] by chemical condensation with
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grape anthocyanins [17] (Figure 4). The higher the extracellular release of pyruvate, the higher
the formation of stable pyranoanthocyanins. Pyranoanthocyanins are more stable pigments under
oenological conditions not only because of their lower sensibility to SO2 bleaching, but also to their
lesser hypochromic pH effect [63].
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Figure 4. Maloalcoholic fermentation by Schizosaccharomyces pombe and its influence in the subsequent
formation of stable vitisin A-type pigments by chemical condensation with grape anthocyanins (adapted
from [17,61]).

Besides pyruvic acid, acetaldehyde is another fermentative metabolite playing an important role
in the formation of stable pigments in red wines. Such is the case of all the pyranoanthocynin-type
pigments [18,64], and the oligomers condensed through ethyl bridges [65] (Figure 5). The formation of
ethyl linked oligomers happens preferentially with (-)-epicatechin rather than with (+)-catechin in
acidic conditions [66]. This mechanism is explained from the slower rate in which the condensation
with the latter flavanol takes place. Nonetheless, the stability of oligomeric pigments varies with the
absence/presence of acetaldehyde linkages and the configuration of the pigment. The configuration of
anthocyanin-flavanol ethyl linked dimers is more stable than the configuration of flavanol-flavanol
ethyl linked dimers [67], but both are apparently less stable than the dimers formed from direct
condensation of anthocyanin-flavanol moieties [68] which takes place slower over time in aged wines.
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Figure 5. Example of red wine pigments and their occurrence during the different winemaking stages.
From top to bottom the pigments shown in the figure are: malvidin-3-glucoside, malvidin-3-glucoside
pyruvic acid (vitisin A), malvidin-3-glucoside-4-vinyl (vitisin B), malvidin-3-glucoside 4-vinylcatechol
(pinotin A), dimer malvidin-3-glucoside-catechin, dimer malvidin-3-glucoside-ethyl-catechin,
malvidin-3-glucoside-pyruvic acid vinyl catechin (portisin type A) and malvidin-3-glucoside pyruvic
acid vinyl phenol (portisin type B). Yeasts species contributing to the formation of particular pigments
are also indicated.
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Pinotins are pigments produced from the reaction of anthocyanins or pyranoanthocyanins with
hydroxycinnamic acids or 4-vinyl phenols [69]; in this last case, the yeast strains with positive
hydroxycinnamate decarboxylase activity can produce the intermediate compound that will condense
via nucleophilic attack at position C4 of the anthocyanin structure [70]. Other pigments, mainly formed
during the ageing period, comprise the previous formation of vitisins for further condensation with
vinyl-flavan-3-ols and/or hydroxycinnamic acids or 4-vinyl phenols [71]; these reactions would produce
the so called portisin-type pigments with bluish tonality due to an absorption at 570 nm [72] of the
electromagnetic spectrum.

In the same way that yeast strains promote the formation of pigments, emerging preservation
technologies for grape berries/must processing and winemaking could improve the colour in wines
(Figure 5). Such is the case of the high hydrostatic pressure (HHP) that increases total anthocyanins
extraction and the formation of pyranoanthocyanins [73], especially the amount of vitisin A; the use
of pulsed electric fields (PEF) or the ultrasounds (US) that have shown to produce an increase
in anthocyanin extraction from cell wall structures after suffering membrane disruption [74,75];
the micro-oxygenation (MO) could also have an impact in the colour of red wines through the
formation of vitisins or direct condensation of anthocyanin and tannins where oxygen and reactive
species may play an important role [76].

Other information related to the nature and bioavailability of anthocyanins, their properties and
industrial applications as well as the formation of pyranoanthocyanins and polymeric pigments has
been recently published in reviews [77–80].

5. Commercially Available Non-Saccharomyces Yeasts

The use of non-Saccharomyces yeasts has grown progressively from the initial applications of
T. delbrueckii to enhance aromatic profile with two widely spread strains BiodivaTM Td291 (Lallemand,
Blagnac Cedex, France) and PreludeTM (CHR Hansen, Hoersholm, Denmark), and also from the
use of S. pombe reticulated in alginate beads for demalication (Proenol), L. thermotolerans (formerly
Kluyveromyces thermotolerans) and P. kluyveri (CHR Hansen). Non-Saccharomyces yeasts are frequently
offered mixed with S. cerevisiae to ensure the full depletion of the sugars and achieve wine dryness.
Main commercial non-Saccharomyces yeast species were described by Morata and Suarez [81], and are
shown in an updated list in Table 2.

Ternary inoculations have been proposed at industrial level by Chr. Hansen in the commercial
blend of three stains, S. cerevisiae (60%), T. delbrueckii (20%) and L. thermotolerans (60%:20%:20%) known
as Viniflora® Melody™. This approach is really interesting to improve freshness and complexity.
The use of two non-Saccharomyces species enhances the floral notes and fruitiness and S. cerevisiae
guarantees the suitable end of fermentation. Moreover, when an acidifier yeast is used, such as
L. thermotolerans, the wine freshness is also enhanced.
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Table 2. Non-Saccharomyces species commercially available and main applications in wine production.

Non-Saccharomyces
Species Commercially

Available

Brand, Producer,
Year, Format Sensory Repercussion

Fermentative Performance
(% vol. Ethanol)
Recommended

Inoculation Dose

Application. Requirements. Reference

Hanseniaspora vineae
OENOBRANDS

Launch 2021
Dry yeast

Enhance production of fruity and
floral esters

De novo formation of floral esters
from sugars

Increased body,
softness and roundness

10%
Low SO2

Nutrition: thiamine and
yeast extract

http://www.oenobrands.
com/en/our-innovation

Lachancea thermotolerans

CONCERTOTM

CHr HANSEN
2012

Dry yeast

Red and black fruit integration
Round mouthfeel
Soft acidification

Low volatile acidity, H2S and SO2

10%
25 g/HL

Red/White wines from
warm areas

https:
//www.chr-hansen.com/

LEVEL2 LAKTIA™
LALLEMAND

2018
Dry yeast

Enhancement of aromatic complexity,
freshness and acidity

Lactic acid production
Low volatile acidity

High glycerol production

<10%
25 g/HL

High nitrogen requirements
Free SO2 must be <15 mg/L

https://www.
lallemandwine.com/

Metschnikowia fructicola

Gaïa™
LALLEMAND

2016
Dry yeast

Improvement of the sensory
expression

Preservation of varietal character

Low to no fermentative
power

7–25 g/HL

Reduce the use of SO2 and
volatile acidity

Active K2. Biological control
Resistant to low pH and

50 mg/L SO2

https://www.
lallemandwine.com/

Metschnikowia pulcherrima

LEVEL2 FLAVIA®

MP346
LALLEMAND

2013
Dry yeast

Release of varietal aromas 9%
25 g/HL

Specific enzymatic activity
helping in releasing varietal
aromas (terpenes and thiols)
Free SO2 must be <15 mg/L

https://www.
lallemandwine.com/

LEVULIA® PULCHERRIMA
AEB

Dry yeast

High production of 2-phenyl and
isoamyl acetates and terpenes

Low volatile acidity

11.5%
20–50 g/HL

Release of varietal aromas
(terpenes)

https:
//www.aeb-group.com/

Pichia kluyveri

FROOTZEN®

CHr HANSEN
2010

Frozen yeast

Enhancement of volatile thiols
Blackcurrant, liquorice, black pepper,

menthol aromas

4–5%
1 bag/10kL Enhance fruitiness https:

//www.chr-hansen.com/

http://www.oenobrands.com/en/our-innovation
http://www.oenobrands.com/en/our-innovation
https://www.chr-hansen.com/
https://www.chr-hansen.com/
https://www.lallemandwine.com/
https://www.lallemandwine.com/
https://www.lallemandwine.com/
https://www.lallemandwine.com/
https://www.lallemandwine.com/
https://www.lallemandwine.com/
https://www.aeb-group.com/
https://www.aeb-group.com/
https://www.chr-hansen.com/
https://www.chr-hansen.com/
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Table 2. Cont.

Non-Saccharomyces
Species Commercially

Available

Brand, Producer,
Year, Format Sensory Repercussion

Fermentative Performance
(% vol. Ethanol)
Recommended

Inoculation Dose

Application. Requirements. Reference

Torulaspora delbrueckii

PRELUDETM

CHr HANSEN
2009

Frozen yeast

Enhance production of medium
chain fatty acid esters

Increased body, softness and
roundness

9%
25 g/HL

Enhance fruitiness
Promote malolactic

fermentation by depletion of
medium chain fatty acids

https:
//www.chr-hansen.com/

LEVEL2 BIODIVA™
TD291

LALLEMAND
2009

Dry yeast

Aromatic complexity, ester
production

Low volatile acidity

10%
25 g/HL

Tolerance to osmotic pressure.
Adapted for

fermenting late harvest and
ice wines

Free SO2 must be <15 mg/L

https://www.
lallemandwine.com/

ZYMAFLORE® Alpha
LAFFORT

2010
Dry yeast

Aromatic complexity and good
mouthfeel

Suitable for making expressive and
full-bodied wines

Revelation of thiol-type varietal
aromas (3MH, 3MHA)

10%
25 g/HL

Medium nitrogen requirements
Low volatile acidity, volatile

phenols and
H2S

https://laffort.com/en/

Torulaspora delbrueckii +
Saccharomyces spp.

Oenoferm® wild & pure F3
Erbslöh

Dry yeast

Enhanced mono terpenes and
formation of fruity esters

Support the ripe and exotic fruit
aroma

Full-bodied wines

-
20–40 g/HL

Moderate to high nitrogen
requirement

High alcohol tolerance
https://erbsloeh.com/en/

Torulaspora delbrueckii +
Metschnikowia pulcherrima

ZYMAFLORE® ÉGIDE
LAFFORT

2017
Dry yeast

Organoleptic neutrality and control
the microflora

10%
2–5 g/HL

Bioprotection of grapes and
juices

Restriction of the growth of
indigenous flora
SO2 reduction

https://laffort.com/en/

Schizosaccharomyces pombe
ProMalic®

PROENOL
Dry beads

Wine deacidification 100g/HL Maloalcoholic fermentation
Free SO2 must be <14 mg/L

https:
//www.proenol.com/

https://www.chr-hansen.com/
https://www.chr-hansen.com/
https://www.lallemandwine.com/
https://www.lallemandwine.com/
https://laffort.com/en/
https://erbsloeh.com/en/
https://laffort.com/en/
https://www.proenol.com/
https://www.proenol.com/
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6. Non-Saccharomyces and Off-Flavour Production

Undesired aroma compounds could be produced during fermentation by non-Saccharomyces yeasts
(Table 3). These volatile compounds comprise large amounts of volatile acidity, sulphur compounds,
excessive fusel alcohol aromas, etc. Among yeast strains known as sulphydric acid producers (H2S),
as in the case of T. delbrueckii strains [82], some M. pulcherrima isolates have been studied due to their
low ability to produce such volatile compound [83]. The production of H2S has been studied in 9 strains
of T. delbrueckii, all them ranked 3–4 in a 0 to 5 scale showing stronger production of this defective
compound compared with S. cerevisiae and other oenological non-Saccharomyces yeasts [57]. Other odd
smells related to the metabolism of M. pulcherrima are produced by aliphatic carboxylic acids such as
hexanoic acid and octanoic acid [84]. The aroma associated to these compounds resembles fatty and
cheese for the first acid, and rancid or harsh for the second one.

Apiculate yeasts with high prevalence in grape microbiome are usually described as high producers
of volatile acidity. When the production is measured in pure fermentation of 11 strains of different
species, some strains of H. osmophila, H. valbiensys and H. uvarum generated 0.6-0.8 mg/L acetic acid.
However, other strains of these species, and also H. vineae, produced 0.4-0.5 mg/L [85]. Therefore,
specific selection can help to obtain strains with suitable levels of volatile acidity. Many Hanseniaspora
species frequently show high values of ethyl acetate ranging from 50 to >300 mg/L [85].

Table 3. Non-Saccharomyces yeast species involved in the production of undesired volatile compounds
in wines.

Non-Saccharomyces
species Metabolite Structure Off-Smell/Off-Flavour

Technical Impact.
Sensory Threshold

(µg/L) 1
Reference

Hanseniaspora/Kloeckera

Acetic acid
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7. Biological Control of Indigenous Yeasts Producing Defective Off-Flavours

Biological control by yeasts is a powerful bio-tool to control spoilage indigenous populations
which produces off-flavours and metabolites affecting wine quality and freshness. Several antimicrobial
activities have been described in yeasts such as the production of pulcherrimin, killer factors, etc.
(Table 4).

Metschnikowia fructicola is used and commercialised for biological control of apiculate yeasts
(K. apiculate/H. uvarum) reducing the formation of volatile acidity at the early stages of fermentation.
M. fructicola produces Killer factor K2 which increases membrane permeability, that reduces respiration
activity and lowers intracellular ATP content decreasing cell viability [89]. Several volatile compounds
produced by Hanseniaspora uvarum have been described as effective inhibitors against the development
of Botrytis cinerea [90] and, among them, trans-cinnamaldehyde showed the stronger inhibition of
mycelium growth also avoiding conidia germination [91].

The species Wickerhamomyces anomalus has both properties conferred, biocontrol agent and
antimicrobial agent due to its activity against moulds in diverse environments and to the production
of killer toxins vs. spoilage yeast [92]. In the last decade, a Torulaspora delbrueckii killer strain was
successfully isolated and its fermentative performance was assessed against S. cerevisiae [45]. This killer
strain prevailed over S. cerevisiae, but only under conditions of must sterility or with high inoculum
population. This biocontrol tool is interesting to ensure the metabolic prevalence of non-Saccharomyces
yeasts versus the native must yeasts.

Table 4. Non-Saccharomyces yeast species involved in the production of biocontrol agents.

Non-Saccharomyces
Species Metabolite Antimicrobial Effect Technical Impact Reference

Hanseniaspora uvarum trans-Cinnamaldehyde
Inhibition of mycelium

growth and conidia
germination

Biocontrol of Botrytis cinerea [90,91]

Metschnikowia
pulcherrima

Pulcherrimin Iron depletion

Biological control Effective
inhibitory activity against

several yeasts: Candida
tropicalis, Candida albicans,

Brettanomyces/Dekkera,
Hanseniaspora and Pichia
genera; and some fungi:

Botrytis cinerea,
Penicillium spp., Alternaria spp.

and Monilia spp.

[8,93–98]

Killer factor Membrane
permeabilization Biological control [57]

Metschnikowia fructicola Killer factor: active K2 Increase of membrane
permeability

Biological control of apiculate
yeasts: K. apiculate/H. uvarum
Reduction of volatile acidity

www.
lallemandwine.

com/

Wickerhamomyces
anomalus

Exo-β-1,3 glucanase Wall-lytic enzymes Inhibition of Botrytis cinerea [92]

Pikt killer toxin Mycocins that control
apiculate wine yeasts

Biological control of
Dekkera/Brettanomyces spp. [92,99]

Torulaspora delbrueckii Kbarr-1 killer toxin
Toxicity against

sensitive strains of
S. cerevisiae

Better implantation and
domination of the

fermentation on the native
S. cerevisiae of the must

[45]

8. Emerging Technologies to Improve the Implantation of Non-Saccharomyces

A suitable expression of metabolites during fermentation, and therefore a significant sensory
effect, depends on the implantation of the non-Saccharomyces yeasts used. The influence of the
wild initial population, usually around 4-log CFU/mL of yeasts and 2-log CFU/mL of bacteria, is a
determining factor for the successful implantation of the desired selected yeast. Especially when the
non-Saccharomyces to implant is a weak fermenter (M. pulcherrima, H. vineae, L. thermotolerans, etc.) or it

www.lallemandwine.com/
www.lallemandwine.com/
www.lallemandwine.com/
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has slow fermentative kinetics (e.g., S. pombe). The reduction or elimination of the wild microbiota in
the grape is a way to promote the implantation of non-Saccharomyces species, and therefore, to better
express their metabolome producing a significant impact in the sensory profile.

The use of non-thermal technologies provides a way to eliminate or control the indigenous
population. At the same time, the sensory profile of the grape is preserved and thermal degradation of
pigments and aromatic compounds or undesired oxidations are avoided. Some of these technologies
can be highly effective in the control of microorganisms, and at the same time extremely gentle with
the sensory components [32]. Most of the technologies affect the structure of skin cells facilitating the
extraction of tannins, anthocyanins and aroma compounds. The use of High Hydrostatic Pressure
(HHP), Ultra High Pressure Homogenization (UHPH), Pulsed Electric Fields (PEF), Ultrasound (US),
β-irradiation (βi), Pulsed Light (PL) and Ozonation, favour the control of indigenous yeasts in grape
and musts promoting the implantation of weak yeast starters of non-Saccharomyces.

HHP has demonstrated a high efficiency eliminating yeast in crushed grapes reaching 4-log
inactivation [100]; however, lactic acid bacteria populations were partially reduced too, and only
1-log remained viable even at 550 MPa-10 min. Several non-Saccharomyces: S. pombe, T. delbrueckii,
M. pulcherrima and L. thermotolerans, showed better implantation when grapes are processed at
400 MPa-10min [73]. In addition, HHP increases the extraction of phenols, especially anthocyanins,
facilitating faster macerations and wines with higher colour intensity [100–102].

UHPH is also a highly efficient technology to eliminate indigenous microorganisms from musts
and, conversely to HHP, it is also extremely efficient against bacteria. Initial populations of 6-log
CFU/mL yeast and 4-log CFU/mL aerobic and lactic acid bacteria were undetected in 1 mL after
continuous processing of the must at 300 MPa [103]. Additionally, UHPH can inactivate oxidative
enzymes favouring the reduction of SO2 levels [30].

PEF produces cell wall poration causing microbial inactivation [104], and it also promotes
the extraction of phenolic compounds from the cell wall of grape’s skins, especially anthocyanins.
The pre-fermentative use of 10 kV/cm increased anthocyanin content and wine colour intensity,
and 5 kV/cm affected total polyphenol extraction [105]. PEF technology can be used continuously at
industrial scale to facilitate maceration [75,106,107]. The use of PEFs to control microbial populations
requires higher intensities, frequently >30 kV/cm [108].

Ultrasound irradiation is also an interesting technique to increase the extraction of phenolic
compounds from grapes. However, the antimicrobial efficiency is reduced and it is associated to the
thermal effect which produces degradation of sensory quality.

PL is another highly effective non-thermal technology with the ability to destroy vegetative
and sporulate forms of microorganisms. The application can be done in a continuous way over the
destemmed grape when is selected in a sorting table. The use of this technology can help reducing
SO2 levels and improving the implantation of non-Saccharomyces, as well as performing yeast-bacteria
co-inoculations [109].

9. Cell Wall Polysaccharides from Non-Saccharomyces Yeasts

The ageing on lees (AOL) process consists in a long contact of lees with wine during the ageing
period. The lees are formed essentially by yeast biomass. This technique is traditionally used in the
elaboration of sparkling wines after the second fermentation in the bottle [110]. During the AOL,
the yeast autolysis is produced. This phenomenon involves the decomposition of the cell membranes
and the release of intracellular compounds to the wine. In addition, the cell wall is degraded by the
action of enzymes produced by the dead yeast [111]; this includes the mannoproteins, the major cell
wall polysaccharide. A major drawback of this technique is the time needed for the autolysis to be
completed and the mannoproteins to be released which, in most cases, is of several months under
conventional oenological conditions [25,26,112]. Research studies using different techniques to speed
up this process include ultrasounds [28,29] and pulsed electric fields [113–115]. In this way, the time
required for the AOL is shorten.
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The different compounds released during yeast autolysis have a direct organoleptic repercussion
in the wine aged. The amino acids and peptides act as flavour precursors and malolactic fermentation
promoters [116]. A lipid fraction is also released to the wine during AOL; these compounds seem to have
an impact on the foaming properties [117]. Regarding the wall polysaccharides, the mannoproteins
work against tartaric and protein precipitations [118]. Polysaccharides decrease the astringency
perception [119] and increase the body of the wine aged. Finally, the mannoproteins provide a higher
monomeric anthocyanins stabilization [120].

The AOL could also impact the freshness perception of wines in terms of acidity and volatile
fraction. The AOL seems not to have a direct influence on the acidity of aged wines. A decrease of
tartaric acid after AOL has been observed [121], nonetheless, no significant differences were detected
in the rest of the acids and titratable acidity. Other authors showed only minor differences in total
acidity after 180 days of AOL in Chardonnay white wines [122].

The repercussion of the AOL on the aromatic fraction has been also studied. It has been observed
that the AOL significantly increases the volatile compounds in wines from Bombino bianco grapes [123],
and it was also observed that after long AOL (30 months), the wines from different grape varieties
do not change their varietal aromatic characteristics [124]. In this regard, other aromatic compounds
related to freshness perception such as volatile thiols, terpenes, acetate esters of higher alcohols or ethyl
esters of short chain fatty acids, have been under study. Volatile thiols (4-methyl-4-mercaptopentanone
and 3-mercaptohexanol) were analysed in wines after eight months of AOL in oak barrels [125].
The concentration of these compounds was larger in AOL wines. Therefore, it existed a protective
effect on typical fruity aromas found in young wines. This effect could be explained by the increase of
the sulphur tripeptide glutathione that play a major role in protecting volatile thiols during the aging
of bottled white wines [125]. Terpenoid compounds, important contributors to varietal aroma of wines
because of their low perception threshold and their relation with floral odour, increased their content
in wines after ten months aged on lees [126]; α-terpineol, E-nerolidol and Z-nerolidol, as an example,
significantly increased in Airén variety after contact with lees during ageing [124]. This effect might be
possible due to the release of β-glucosidases during the yeast autolysis. Esters, compounds responsible
in large part for the fresh and fruity aroma of wine, experienced a significant increase after the AOL
of Chardonnay wines [126]. This increase was observed in Airén wines as well [124]. Nonetheless,
besides that increase in the concentration of esters during ageing, some of these compounds could be
absorbed by the yeast lees after long periods [127].

The nature of the cell wall of the different yeast species is different, therefore the use of
non-Saccharomyces in AOL technique will result in wines with different chemical and organoleptic
composition. The use of Torulaspora delbrueckii and other yeasts as Saccharomycodes ludwigii and
Zygosaccharomyces bailii, both considered spoilage yeasts, can increase the polysaccharides content in
wines, especially when spoilage yeasts are used [128]. Other yeast species such as Schizosaccharomyces
pombe and Saccharomycodes ludwigii can also modify the polysaccharides content in wine [25]; an increase
of ten-folds, in comparison to S. cerevisiae, were observed in wines after only 28 days of ageing when
using both species, S. pombe and S. ludwigii; despite these observation, better results were obtained
with S. pombe, S. ludwigii and D. bruxellensis compared to the control Saccharomyces strain [26].

10. Conclusions

If the 20th century was the time of S. cerevisiae, then the 21st is the time of non-Saccharomyces
yeasts. The applications and commercial relevance of these species is becoming increasingly important
to develop new opportunities to improve wine’s quality. Today’s research lines are mainly focused
on the use of non-Saccharomyces yeasts to enhance sensory quality, including wine aroma, colour and
structure. To describe wine’s quality and stability, is to talk about molecules with sensory repercussion
or microbiological and physicochemical properties that are highly influenced by pH variations.
The natural production of organic acids by some non-Saccharomyces yeasts helps to get safer and
more stable wines even during barrel and bottle ageing. Moreover, the biocontrol properties of these
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yeasts enables the safe production of wines by the reduction of the content of wine preservatives
such as sulphites. In this regard, the use of emerging non-thermal physical technologies would also
become the basis for the new oenology with low use of chemical additives and a more controlled
fermentative microbiota.
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