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Abstract

Motivation: Sequence-to-function models interpret genomic DNA and predict functional outputs, suc-
cessfully characterizing regulatory sequence activity. However, interpreting these models remains
challenging, raising questions about the generalizability of inferred sequence functions. Cross-species
prediction of transcription factor (TF) binding offers a promising approach to enhance model general-
ization by leveraging sequence variation across species, and it can contribute to the discovery of a
conserved gene-regulatory code. However, addressing systematic differences between the genomes of
various species is a significant challenge.
Results: We introduce MORALE, a framework that utilizes a well-established domain adaptation ap-
proach that is "frustratingly easy." MORALE trains on sequences from one or more source species and
predicts TF binding on a single target species where no binding data is available. To learn an invariant
cross-species sequence representation, MORALE aligns the first and second moments of the data-
generating distribution between all species. This direct approach integrates easily into representation
learning models with an embedding layer. Unlike alternatives such as adversarial learning, it does not re-
quire additional parameters or other model design choices. We apply MORALE to two ChIP-seq datasets
of liver-essential TFs: one comprising human and mouse, and another comprising five mammalian
species. Compared to both a baseline and an adversarial approach termed gradient reversal (GRL),
MORALE demonstrates improved performance across all TFs in the two-species case. Importantly, it
avoids a performance degradation observed with the GRL approach in this study. Furthermore, feature
attribution revealed that important motifs discovered by MORALE were closer to the actual TF binding
motif compared with the GRL approach. For the five-species case, our method significantly improved
TF binding site prediction for all TFs when predicting on human data, surpassing the performance of a
human-only model — a result not observed in the two-species comparison. Overall, MORALE is a direct
and competitive approach that leverages domain adaptation techniques to improve cross-species TF
binding site prediction.
Availability and implementation: All source code is available at https://github.com/loudrxiv/frustrating.

1 Introduction

Genomic regulatory activity is largely governed by transcription factors (TFs) that bind to DNA and influence
gene expression. However, a fundamental question remains: can we accurately predict TF binding
from sequence alone to determine regulatory function and cell identity? Sequence-to-function (S2F)
models, typically implemented as deep neural networks, have become a cornerstone for addressing
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these questions and have facilitated a wide range of genomic analyses (e.g., downstream interpretation,
prediction, functional element discovery, in silico sequence perturbation, and directed sequence design
[1–3]). State-of-the-art models use convolutions, pooling, and autoregressive components to annotate
sequences functionally and have been successfully applied to many tasks, revealing principles of gene
regulation and guiding the analysis of genetic variations [4–7]. A crucial question, however, is the extent to
which these models learn universal biochemical principles that allow generalization to out-of-distribution
tasks.

An underexplored area of current machine learning techniques is moving beyond reliance on data
from a single domain. Models exposed to data from only one domain are more likely to overfit to domain-
specific features, which hampers generalization and weakens predictive power. Training on sequence data
from multiple species, including model organisms with unique functional annotations, offers a promising
approach to improving generalization. Specifically, training models with a multi-domain dataset could
help identify underlying biological principles that are robust to species-specific variations while capturing
shared, conserved information. However, can we assume that genomic elements with conserved regulatory
functions between humans and model organisms are detectable through sequence alone? While some
sequence-conserved regions can be identified based on multiple sequence alignments, at a finer scale,
the majority of sites that bind transcription factors (TFs) are subject to rapid turnover — even between
closely related species — making these sites difficult to annotate or characterize [8]. Yet, there is promise:
the amino acid sequences of TFs, particularly their DNA-binding domains, are remarkably conserved,
often showing high whole-protein sequence similarity across diverse species, alongside strong intrinsic
DNA sequence preferences. This high degree of conservation in TF structure suggests a conserved
"vocabulary" encoding rules of gene regulation. It also could suggest a cross-species gene regulatory
grammar—a set of underlying rules governing TF-DNA interactions and their regulatory roles—that might
be discovered using machine learning models trained on multi-species sequence data [9–12].

Recent methods have begun using sequence data from humans and model organisms to characterize
regulatory elements, achieving some success. Kelley et al. [9] found that training Basenji (a convolutional
model with pooling and dilated residuals) on combined human and mouse data increased test set accuracy
on CAGE annotations (Cap Analysis of Gene Expression, a technique for mapping transcription start
sites) compared to models trained on human data alone. Cochran et al. [13] found that when predicting
transcription factor binding, a joint model (a CNN with an autoregressive component operating on 500-bp
windows) trained on human and mouse data improved performance in predicting binding in humans. Their
model used an adversarial approach (gradient reversal, GRL), training a classifier head to predict binding
in the target species, alongside an adversarial discriminator that predicts the sequence’s species of origin.
Gradients from this discriminator branch are penalized to encourage the model to learn species-invariant
features. This approach requires both the parameterization of an adversarial branch.

Current approaches for cross species TF binding do not directly target latent embeddings to encourage or
enforce an invariant representation of input sequences. One such approach is the the correction/alignment
of moments from multiple domains of data [14]. Unlike the gradient reversal layer (GRL), which requires
extra parameters for modeling domain discrimination, moment alignment can be expressed in closed
form. This eliminates the need for additional parameters and allows for integration into any model with an
embedding layer.

We offer MORALE, a framework that is “frustratingly easy" in that we implement a moment alignment
scheme (we use first and second moments) to built on previous work [15]. We compare our method with
existing ones [13] to predict the binding of two sets of transcription factors in humans and mice, and we
perform a multi-species evaluation. Our framework shows strong overall predictive performance and learns
a robust species-invariant feature set.
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Figure 1: Schematic overview of domain adaptation framework with MORALE compared to leading alternatives. (A) We
one hot encode input sequences from the source and target domains (i.e., human and mouse) such that we can create a latent
embedding after a set of convolution layers, pooling, and autoregressive components. The embedding is then used for all pertinent
tasks downstream (classification and domain-adaptive). We evaluate on three procedures: (1) Training a naive model on source
data only, to predict in the target domain, (2) Leveraging an adversarial, discriminator approach to penalize learned gradients,
and (3) Leveraging a loss that operates on the moment alignment of all domains of data, which is added to the total loss. In (B)
we describe the setup of the different approaches in more detail, including that of MORALE: (1) Under the naive, source-only
model, we input the relevant part of the batch (the embedded features coming from the source domain) into a classifier head to
predict the label for the corresponding sites. After training, this can be evaluated on the target domain. (2) The GRL approach
adds a separate branch to the overall scheme. We still predict labels during training on the source data, but now also feed in the
source and target data (in the batch) to a classifier whose purpose is to predict the domain (U ) the data comes from. This learned
gradient is then penalized to encourage the learning of an invariant representation for downstream target evaluation. (3) Finally,
we showcase MORALE. We use one branch to predict labels on the source features during training. We also align the moments
of the data between the source and target in an intermediary stage. In order to have an effect on training, this moment alignment
loss is added to the overall model loss during training.

2 Materials & Methods

2.1 Data pre-processing

2.1.1 Two-species case

We follow the procedure of Cochran et al. [13] to process ChIP-seq data from four TFs: CTCF, HNF4α,
RXRA, and CEBPA in human and mouse liver tissue. ChIP-seq experiments and corresponding controls
were collected from three sources: ENCODE, the NCBI Gene Expression Omnibus, and ArrayExpress,
with the experiments and controls for each are listed under the following accession numbers: (1) EN-
CODE: ENCSR000CBU, ENCSR911GFJ, ENCSR098XMN, (2) ArrayExpress: E-TABM-722, and (3) Gene
Expression Omnibus: GSM1299600.

Datasets were constructed into 500-bp windows, with a 50-bp overlap. We remove any windows marked
as ENCODE blacklist regions [16]. FASTQ files were aligned to the human and mouse genomes (GRCh38,
and GRCm38 respectively) using BowTie2 [17]. Peak-calling was performed using multiGPS v0.75 with
default parameters [18]. Information on called peaks can be seen in STab. 7. Data was subsequently
binarized for the 500-bp windows, and a window is called ’bound’ if covers a peak’s center, and ’unbound’
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otherwise. In order to create balanced data for model training, we manually construct each minibatch of
samples to contain an equal number of bound and unbound examples (for the source species, where
this data is available). Because positive examples are sparse, they are shuffled and re-used more often
than negative examples. For the domain-adaptive tasks, we also construct a ’background’ set of random
samples from each species, balanced based on species identity.

In order to construct validation and test sets for model evaluation, chromosomes 1 and 2 were held
out from all training datasets. At the end of each training epoch, we evaluate 1 million randomly sampled
windows from chromosome 1 and select the best-performing model. In order to assess model performance,
we evaluate on all windows from chromosome 2. Sex chromosomes were excluded from training, validation
and test sets.

2.1.2 Multi-species case

We used ChIP-seq data in liver tissue across five species (human, rhesus macaque, mouse, rat, and dog)
for four TFs (CEBPA, FOXA1, ONCECUT1 (HNF6), and HNF4α) from a previous study [19]. All files are
available on Array Express, ID E-MTAB-1509. FASTQ files were aligned to the reference genome; we
performed peak-calling using multiGPS v0.75 with default parameters. Filtered peaks from this analysis
are in STab. 8. Filtering was done with SAMtools and Sambamba [20, 21]. We split the genomes into
1000-bp windows with a 50-bp overlap. Where applicable (i.e., mouse and human genomes) we removed
any windows that are marked as ENCODE blacklist regions. Genomic data for processing (e.g., the
references, BowTie2 indices, and blacklists) were obtained using the python package genomepy [22].
Binary window-labels were determined as in the two-species case (see Section 2.1.1).

Validation and test-sets were chosen differently from the two-species case, using an automatic approach
to identify chromosomes approximating a pre-specified fraction of windows and covering a similar fraction
of positive and negative windows, as we reported before [23]. Briefly, we solve the following optimization
problem:

argmax{xi}22i=1

∑nC

i=1
cixi

subject to
∑nC

i=1
w+
i ≤ f and xi ∈ {0, 1},

where nC is the number of chromosomes, f is the desired fraction of positive windows, w+
i the fraction of

positive windows on chromosome i (compared to all positive windows genome-wide), w−
i the corresponding

fraction of negative windows, and ci = w+
i − |w+

i − w−
i |. The optimization problem was solved using the

R-packafge lpSolve. Selected chromosomes were held out for validation or testing, and excluded from
training. Sex chromosomes were excluded. Similar to the two-species case, we re-use positive examples
to create label-balanced minibatches shuffling and re-using positive windows more frequently than negative
windows. We train over the course of 15 epochs and save the best performing model based on the target
auPRC validation at the end of every epoch. For background sequences used for domain adaptive tasks,
in each minibatch we randomly choose, without replacement, sequences from all chromosomes other than
the validation, test, and sex chromosomes. Sequences are balanced by species identity. Overall batch
construction is therefore similar as in the two-species case: a label-balanced part and a species-balanced
(background) part that is label-agnostic but used for domain-adaptive losses.

2.2 Model Architecture

2.2.1 Two-species case

We use the same network architecture as Cochran et al. [13] for this study. The network takes in 500-bp
windows of one-hot encoded nucleotide sequences and passes it through an initial convolution layer with
240 20-bp-wide filters. This is followed by a pooling layer of size 15, an LSTM with 32 internal nodes, and
then dense layers for the classification branch.
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MORALE does not require a separate branch domain classification, so we simply calculate the moments
based on the learned embedding after the LSTM (a vector of 32 internal nodes). We adapt the implemen-
tation from the python package ADAPT [24] in order to do so. For the gradient reversal, the instantiation of
an adversarial discriminative branch is also defined. Following Cochran et al. [13], after max pooling this
branch of the network is reshaped into a vector of size 8,160 and feeds into the GRL. The GRL merely
outputs the identity of its input during the feed-forward step of model training, but during backpropagation, it
multiplies the gradient of the loss by a factor of −λ. This layer is followed by a flatten layer, a ReLU-activated
fully connected layer with 1024 neurons, a sigmoid-activated fully connected layer of 512 neurons, and,
finally, a single-neuron layer with sigmoid activation. Notably this domain-classification branch increases
the number of parameters of the overall network from 613,498 to 9,495,666. The domain-classification
part, for GRL, therefore contributes the vast majority of model parameters.

2.2.2 Multi-species case

We construct our model drawing from the gReLU collection of architectures [25], particularly adapting a
model that contains a bidirectional GRU. The network consumes one-hot encoded windows of 1000-bp
length, followed by 1-D convolutional layer with 240 filters of 20-bp width, and ReLU activation. Next, we
apply a 1-D max-pooling layer of size 16. The output of the pooling is fed into single-layer bidirectional
GRU with a hidden size of 240 for each direction. This is followed by two fully-connected layers with
non-linear activations (ReLU). Next, we apply size-1 convolutions with 63 channels, followed by global
average pooling. This forms the input for MORALE’s moment alignment [24], and for a linear classification
head with sigmoid activation. In total, this network contains 960,367 parameters.

2.3 Model Training

2.3.1 Two-species case

All models were trained using TensorFlow 2.18 [26, 27]. The Adam optimizer was used with a learning
rate of 1e-3 for all models. Models were trained for 15 epochs. Following the protocol in Cochran et
al. [13] for direct comparison, models were saved based on the best validation performance achieved on
the source genome’s validation set. Batch size in the supervised setting was 400 (200 bound and 200
unbound examples from the source species). For domain adaptation, and additional 400 random regions
were sampled for each species. We use the scikit-learn [28] implementation of average_precision_score
to estimate the auPRC, which is our primary performance metric.

2.3.2 Multi-species case

We train all models with PyTorch 2.5.1 [29] using the Adam optimizer with a learning rate of 1e-3. Models
were trained for 15 epochs, with validation and test chromosomes constructed as discussed above (see
Section 2.1.2). Minbatches were constructed to contain 200 bound and unbound examples, respectively,
with equal contributions from all source species. The domain-adaptive task operates on 250 random
examples (50 from each species, including the target). We validate all sources and the target species at
the end of every epoch. The best performing model, on the target, during the course of training (based
on validation performance, auPRC) is saved for test set evaluation. Like in the two-species case use
average_precision_score in order to estimate auPRC for performance assessment.
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2.4 Hyperparameter tuning

2.4.1 Two-species case

For the GRL approach, to find λ, we construct a grid of values from 0.0 to 10.0 with a step size of 0.50
and select the maximal auPRC value for each transcription factor we study. We find the following: In the
mouse-to-human direction (i.e., human is the target-species), we select 1.5, 6.0, 0.5, 7.5 for CTCF, CEBPA,
HNF4α, and RXRA, respectively. In the human-to-mouse direction (i.e., mouse is the target species, we
select 6.5, 8.5, 10.0, 1.0 for CTCF, CEBPA, HNF4α, and RXRA, respectively.

For MORALE’s hyperparameter (see Equation 1) we use a range from 0 to 10 with a step size of 1. In
the mouse-to-human direction (i.e., human is the target-species), we select 4, 7, 8, and 8 for CTCF, CEBPA,
HNF4α, and RXRA, respectively. In the human-to-mouse direction (i.e., mouse is the target species, we
select 4, 8, 6, and 7 for CTCF, CEBPA, HNF4α, and RXRA, respectively.

2.4.2 Multi-species case

We follow a similar procedure to tune MORALE in the multi-species case. We construct a tuning grid
ranging from 1 to 8 with a step size of 1, for computational efficiency and based on the range of optimal
values found in Section 2.4.1.

2.5 Differentially predicted site categorization

We follow Cochran et al. [13] in defining a "differentially predicted site" to quantify site enrichment between
models. Specifically, we focus on differentially predicted false positives and false negatives to compare
domain-adaptive models. Across five folds of data that we use to construct performance measures, we
average model output for each window in our chromosome 2 test set, with either mouse or human as
the target species. If the average sigmoid value for a window exceeds 0.5, we classify it as a "bound"
prediction; if it is less, we classify it as "unbound.

To identify errors not made by the target-trained model but made by the source-trained model we focus
on sites where the difference between the outputs of the source-trained model (no domain adaptation,
DA) and the target-trained model exceeds 0.5. A differential false positive is a false positive from the
source-trained model but a true negative in the target-trained model. A differential false negative is defined
similarly.

2.6 Attribution & Importance scoring

For a sequence window and model, we generate both ’attribution’ and ’importance’ scores. Attribution
scores estimate the per-nucleotide contribution as measured by expected integrated gradients. Specifically,
we use the contribution_scores function within the Cis Regulatory Element Sequence Training, Explana-
tion, and Design (CREsted, [30]) package. To create an overall importance score, we average over the
channel dimension.

To capture over-represented sequence patterns to generate Contribution Weight Matrices (CWMs), we
use the motif discovery tool TF-MoDISCo lite [31]. We focus on capturing the motif of the transcription
factor (TF) that each model is trained on. Therefore, we subset the overall set of test windows to include
only true positive sites sites where the model produced a sigmoid value of at least 0.98 across the five
folds, defining a ’strong’ true positive site. We randomly sample 2,000 of these sequences when applicable.
For the parameters of TF-MoDISco, we use a maximum of 1,000,000 seqlets per cluster on a 500-bp
window. In order to annotate found motifs and their corresponding CWMs, we use Tomtom [32] to label the
patterns uncovered by TF-MoDISCo.
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2.7 Repeat analyses

All analyses of repeat elements used RepeatMasker tracks for the corresponding genome from the UCSC
Genome Browser [33]. Windows were labeled as containing a respective repeat type if there was any
overlap with the corresponding annotation from RepeatMasker.

2.8 Evolutionary analyses

To construct a cladogram showing the evolutionary relationships between species, we use the phyloT v2
visualization tool. This program generates phylogenetic trees based on the NCBI taxonomy or Genome
Taxonomy Database using a list of taxonomic names, identifiers, or protein accessions [34].

3 Results

3.1 Approach

Our approach, MORALE, is a straightforward generalization of the Deep CORAL [15] method, applied to
TF binding data. In the following we briefly describe the method:

We assume labeled (sequence) data from n different source domains, and unlabeled data from a target
domain. In our application, the domains are species. We also have an encoder model (see Section 2.2),
mapping input sequences xi|j to vector embeddings zi|j ∈ Rd, where i = 1, . . . ,mj and j = 1, . . . , n+ 1
and mj is the overall number of sequences in the j-th domain. The domain index j runs to n+ 1 because
the target domain is included. Vector representations, in turn, are input to a classification model predicting
the sequence label (e.g., whether the input sequence binds a specific TF) with an associated loss (e.g.,
cross entropy) that we denote by Llabel-classification.

Given a number of sequence representations {zi|j}bi=1 for a b < mj we denote the sample estimate
of the z’s mean by µ̂j and of the covariance matrix by Ĉj . For a mini-batch containing multiple exam-
ples/sequences of each domain/species, the MORALE loss is then calculated as

LMORALE =
2

n(n+ 1)

∑
l ̸=k

(
||Ĉ l − Ĉk||2F + ||µ̂l − µ̂k||22

)
quantifying the difference in first and second moments between all domain pairs. Here || · ||F denotes

the Frobenius (Euclidean / L2) norm for matrices. In our analyses we estimate the moments (µ̂j) and
(Ĉj) for the (L[MORALE]) loss by utilizing the ’background’ portion of the mini-batch (described in Section
2.1), which contains an equal number of unlabeled sequences sampled from each domain (source(s) and
target). For source domains, the vector representations {zi|j}bi=1 are used for label classification.

The MORALE loss is then added to the label classification loss, encouraging a vector representation of
examples/sequences that is moment-aligned across domains:

L = Llabel-classification + λLMORALE. (1)

We note gradient reversal layers (GRL) are a successful adversarial learning approach to encourage
domain-invariant representations [35–37]. Briefly, a domain classifier and associated classification loss for
predicting embeddings’ domains (e.g., cross entropy) is added to the model for an overall loss of

L = Llabel-classification + Ldomain-classification. (2)
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Backpropagated gradients from the corresponding domain classification loss Ldomain-classification are penal-
ized by a factor of −λ (for λ > 0, therefore "gradient reversal"), encouraging vector representations that are
not informative about the domain of origin.

In our analyses we compare MORALE (Equation 1) with the GRL approach (Equation 2) and find it
generally outperforms GRL. We also note that MORALE does not require additional parameters on top of
the encoder and label classification model, whereas GRL requires additional design and parameterization
of the domain classifier. Figure 1 summarizes our approach, also in the context of gradient reversal and
naive classification without domain adaptation.

3.2 Cross-species TF-binding prediction between human and mouse

3.2.1 MORALE improves cross-species TF binding prediction performance
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Figure 2: Moment alignment improves cross-species TF binding site predictions. For four TFs and human as the target
species, prediction performance is shown for four models: (1) Source-trained on target (red), (2) gradient reversal (green), (3)
moment alignment (blue), and (4) and target-trained on target (purple). (A) We display the results across the four transcription
factors when adapting mouse model to human data. MORALE outperforms or matches the GRL performance in each case, while
not suffering from degradation. (B) The same as in (A), but in the other adaption direction, human adapted models to mouse. We
find that the degradation is persistent in this study under the scope of using gradient reversal. MORALE is able to at least meet
source-trained baselines, or outperform the GRL.

First, we applied our framework to re-analyze a dataset introduced by Cochran et al. [13]. In this
scenario, the binding of four TFs (CTCF, HNF4α, RXRA, and CEBPA) was assayed in liver tissue samples
from humans and mice. This makes for two species/domains, and we assess TF binding site prediction for
each species as target, and the other as source. See the Methods section for details. Test set performances
are summarized in Figure 2. For each TF, we report the performance of the source-trained model on
the target data labeled as "source" (i.e., no domain adaptation, no access to the target domain); the
target-trained model on the target data labeled as "target" (i.e., learned within the target domain and with
access to binding labels on that domain); and two approaches for domain adaptation (with access to vector
embeddings on the target domain, but without access to binding labels on the target domain): our method
(labeled "MORALE") and domain classification task with gradient reversal layer (labeled "GRL").

As expected, we overall find that no domain adaptation (i.e., "source") performs the worst, training
on target (i.e., "target") performs the best, and domain adaptations are in-between. Interestingly, we
find that using human as target species for CTCF, the GRL approach performs worse than no domain
adaptation, while MORALE does not suffer from this drop in performance. Likewise, using mouse as
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Table 1: We display the true positives (TPs), false positives (FPs), false negatives (FNs) with the auPRC across four TFs
and three methods in this study. In order to generate this confusion matrix across five-folds of data, we average the sigmoid
value over the folds and compute the relevant prediction types w.r.t. the ground truth label, percentages are with respect to the
complete dataset. We observe that the GRL more often predicts positives than either the source model, or MORALE, however this
comes at much higher occurrence of FPs, leading to performance degradation as in CTCF when the target is human. MORALE,
on the other hand, takes a much more conservative step towards the target model, finding a middle ground that strictly results in
improvement or meeting baselines.

Target=Human
TF TPs (%) FPs (%) FNs (%) auPRC

GRL MORALE Source GRL MORALE Source GRL MORALE Source GRL MORALE Source

CTCF 0.413 0.402 0.401 1.847 1.384 1.397 0.068 0.079 0.08 0.553 0.58 0.581
CEBPA 0.542 0.545 0.547 10.436 9.77 11.938 0.048 0.045 0.044 0.209 0.233 0.183
HNF4A 0.605 0.578 0.574 9.137 8.496 10.806 0.136 0.164 0.168 0.181 0.183 0.157
RXRA 1.133 1.035 1.076 9.981 8.023 13.181 0.468 0.566 0.526 0.184 0.19 0.137

Average 0.673 0.64 0.649 7.85 6.918 9.33 0.18 0.213 0.205 0.282 0.296 0.264

Target=Mouse
TF TPs (%) FPs (%) FNs (%) auPRC

GRL MORALE Source GRL MORALE Source GRL MORALE Source GRL MORALE Source

CTCF 0.7 0.699 0.697 3.937 3.237 3.591 0.042 0.044 0.046 0.56 0.62 0.528
CEBPA 0.988 0.996 0.952 7.158 6.66 5.732 0.335 0.328 0.372 0.251 0.271 0.27
HNF4A 0.824 0.828 0.813 11.026 10.388 9.802 0.122 0.118 0.133 0.217 0.233 0.23
RXRA 0.831 0.827 0.843 17.891 16.039 19.208 0.087 0.091 0.075 0.19 0.205 0.21

Average 0.836 0.837 0.826 10.003 9.081 9.583 0.146 0.145 0.156 0.304 0.332 0.31

target, GRL performs worse than no domain adaptation in three (CEBPA, HNF4α, RXRA) of the four TFs;
again, MORALE does not experience a corresponding performance drop. In addition, for the TFs where
GRL domain adaptation outperforms no domain adaptation, MORALE either matches or exceeds GRL’s
performance. The exact numerical values for the comparisons in can be found in Table 1 under the column
"auPRC", we exclude the target model as none of the source or source-adapted models come close to its
performance.

Upon laying out the confusion matrix (Table 1) to understand what types of predictions are being
made to contribute to the model performance, we observe that in the mouse-to-human direction the GRL
model often makes more positive predictions overall, but also has disproportionately more false positive
predictions compared with MORALE. This leads to comparatively worse performance, especially for CTCF.
MORALE, on the other hand, has lower false positive rates (e.g., 1.38% versus the GRL’s 1.85% for CTCF)
while suffering from only slightly increased false negative rates (0.079% vs. 0.068%, again for CTCF). In
the human-to-mouse direction this is also the case for CTCF. For CEBPA and HNF4α MORALE has more
true positives and less false positives than GRL, and consequently shows better performance. For RXRA
MORALE’s performance is close to the source model, while GRL performs somewhat worse.

From these analyses, we conclude that MORALE improves over GRL for cross-species TF binding
prediction on this dataset. Next, we compare models and the quality of their predictions in more detail.

3.2.2 MORALE improves cross-species TF binding prediction quality

To quantify/inspect the quality of TF binding predictions and compare MORALE and GRL domain adaptation
approaches, we take the following approach. Taking the target-trained model as a reference, we compare
how well MORALE and GRL "adapt" the source-trained model to the target-trained model. We use two
metrics to quantify this concept, both of which rely on importance scores generated by post-hoc attribution
analysis (see Methods section for details, Section 2.6). Briefly, for a given model, these scores summarize
the importance of a sequence position. We use those scores to quantify the quality of the GRL/MORALE
models in two ways.

First, we compare the correlation of GRL/MORALE importance scores with importance scores of the
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Figure 3: Pearson correlation
coefficients between MORALE’s
importance scores and the "tar-
get" model (x-axes) and GRL’s
importance scores and the "tar-
get" model (y-axes) for differen-
tially false positive sites (dFPs) and
differentially false negative sites
(dFNs), see text for details. Panel
A shows the analyses for mouse-
to-human and panel B for human-
to-mouse. P-values for a one-sided
Wilcoxon Rank Sum Test are indi-
cated for each plot.

"target" model. Specifically, we focus on sequences where the "source" model disagrees with the target
model: on differential false positives (dFPs), where the "source" model wrongly predicts TF binding but
the target model does not; and on differential false negatives (dFNs), where the "source" model wrongly
predicts no TF binding, but the "target" model correctly predicts a binding event. Figure 3 shows contour
plots of correlation coefficients between GRL/MORALE scores and "target" scores, stratified by TF and by
type of sequence (dFP/dFN). Higher correlation means that the corresponding domain adaptation method
better reproduces the importance of the target-trained model and is desirable.

We see that for the mouse-to-human direction and for dFP sequences, MORALE importance scores
are significantly more correlated with the target model than GRL scores for CEBPA and RXRA, whilst
things look even for the CTCF and HNF4α comparisons; for dFN sequences, MORALE’s correlation is
significantly closer to the target models for RXRA and HNF4α. For human-to-mouse and dFPs, MORALE
importance scores have higher correlation with target scores for RXRA, while the other comparisons (also
for dFN sequences) are not significant. Overall, this analysis demonstrates that MORALE can improve
upon GRL in terms of highlighting meaningful sequence positions after domain adaptation, while we have
not observed the reverse (GRL improving over MORALE).

Second, based on calculated attribution scores via expected integrated gradients, we quantified se-
quence motifs highlighted by the different models for TF binding prediction using TF-MoDISCo ([31]) (see
Methods section for details, Section 2.6). Figure 4 summarizes our findings. In panel A we see that for
CTCF binding sites the most-frequently found motif of the target model corresponds to CTCF, which is
recapitulated in the MORALE domain adaptation model. GRL domain adaptation, like the source-only
trained model, finds a larger fraction of motifs corresponding to other TFs. In panels B to E we see that
the target-trained, MORALE, and the source-only trained model find CTCF as their most-frequent motif
matches for CTCF-bound sites. Surprisingly, GRL domain-adapts the source-only trained model in a way
that motifs that poorly match CTCF become more frequent.

Finally, we note that Cochran et al. [13] have reported that the GRL domain-adapted model reduces over-
prediction of TF binding sites in the mouse-to-human direction. Therefore, we explored the performance of
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Table 2: We display the performance (auPRC) for windows that overlap both SINE and LINE repeats, and their average.
We observe that MORALE performs competitively in the performance across windows that contain species-specific repeats in the
mouse-to-human direction, and outperforms the GRL in the human-to-mouse direction. Notably, for HNF-4α and RXRα, the GRL
does a convincly better job windows that overlap SINE elements in human, which would be Alus in the majority.

Target=Human
TF LINE SINE Average

GRL MORALE Source GRL MORALE Source GRL MORALE Source

CTCF 0.149 0.173 0.17 0.181 0.191 0.177 0.165 0.182 0.173
CEBPA 0.039 0.042 0.034 0.04 0.04 0.027 0.039 0.041 0.031
HNF4A 0.043 0.04 0.03 0.048 0.034 0.023 0.046 0.037 0.026
RXRA 0.058 0.056 0.036 0.062 0.052 0.029 0.06 0.054 0.033

Average 0.072 0.078 0.068 0.083 0.079 0.064 0.077 0.079 0.066

Target=Mouse
TF LINE SINE Average

GRL MORALE Source GRL MORALE Source GRL MORALE Source

CTCF 0.103 0.124 0.111 0.102 0.129 0.104 0.102 0.126 0.107
CEBPA 0.077 0.08 0.082 0.097 0.103 0.108 0.087 0.092 0.095
HNF4A 0.04 0.043 0.045 0.061 0.063 0.062 0.051 0.053 0.053
RXRA 0.027 0.029 0.026 0.041 0.042 0.035 0.034 0.036 0.03

Average 0.062 0.069 0.066 0.075 0.084 0.077 0.068 0.077 0.071

GRL, MORALE and the source-only trained base model ("source") on test data overlapping LINE and SINE
elements. Results are summarized in Table 2. Indeed, we observe that the GRL domain-adapted model
outperforms both MORALE and "source" for HNF4α and especially for RXRA in this direction. Nevertheless,
for CTCF and CEBPA MORALE does outperform GRL. Further on, in the human-to-mouse direction,
MORALE outperforms GRL for all four TFs and has the best average performance for three of the four.

Overall, comparing MORALE with GRL on this dataset we conclude that MORALE outperforms GRL for
some cases, while it rarely performs worse. This renders MORALE a robust domain adaptation method in
this setting.

3.3 Learning TF-binding in human by leveraging data across five mammals

Next, we explored whether multiple species, together with domain adaptation, can improve TF binding
prediction in human. Using ChIP-seq data from rhesus macaque, rat, mouse, and dog liver, we evaluate
generalization to human target/test data, comparing three approaches: training solely on human data (the
best case, target-on-target model, but trained on a single domain), training on multi-species data without
adaptation, and training on multi-species data with MORALE’s correction for moments. We study four
TFs, FOXA1, HNF4α, HNF6, and CEBPA. Results are summarized in Figure 5. We observe two notable
behaviors under the scope of working with five mammalian domains for TF binding prediction. The first, as
in Figure 2, the source-adapted models, leveraging information from two domain, cannot approach the
performance of the target-on-target model in any case. However, now when training a plain model under
the scope of five mammals, we are able to outperform the target-on-target model on all TFs under the
scope of the human species being the target species. The next observation is with regards to MORALE, as
when applied to the joint model, we are still able to increase performance past the joint model. MORALE is
the top performer for each TF under this setting, indicating its broad application to encourage a learned,
invariant representation in the case of multiple (> 2) domains.

Given this result, we move towards a working understanding of the effect of the domain contribution
based on the individual species. We lay out the phylogenic tree of evolutionary distance at the top of
Figure 6, constructed with phyloT (see Section 2.8 for details). We perform a species-holdout analysis
when the target is human and showcase the auPRC results in panel A. Given the tree, we would expect,
in order, rhesus macaque, mm10, rn7, and finally canFam6 to have a series of decreasing effects on
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Figure 4: MORALE discovers de-novo motifs more similar to CTCF. Using calculated attribution scores across source,
source-adapted, and target models, we compare the de-novo motifs found across 2000 randomly samples bound sites for CTCF.
We display the output of TF-MoDISCo in the following format. In (A) we show the proportions of all found motifs across the four
models, notably, the target model (human-on-human) only finds CTCF (and CTCFL, a paralog). The source-trained model, along
with all source-adapted models, in the majority, do find CTCF primarily, however both find other motifs in these CTCF bound sites
at a higher proportion than MORALE, which nearly only report CTCF. In (B) We display the top 5 de-novo motifs found by the
source trained model, with annotated p-values and the corresponding TomTom matches on the right, y-axes. The same is done
for (C), (D), and (E). The top match of MORALE strongly resembles the established CTCF motif with a significant q-value.

performance. Nevertheless, we observe a slight deviation from the expectation in these findings. Across
three of the four TFs (CEBPA, FOXA1, and HNF4α), as expected, the rhesus macaque holdout has the
largest impact on predicting on human. The other holdouts more or less have an impact, but may or may
not follow such a trend in the expected cost of holding each out; we observe for HNF6 especially, the
expected evolutionary trend does not hold. Interestingly, for HNF6, the rn7 holdout tends to have just as
large of an impact on the performance when the target is human (rn7 tends to be enriched in bound sites
when compared to other species for the same TF, which can be seen in STab. 8).

We move to a group holdout analysis in panel B. We perform successive group holdouts to showcase
that the effect of training of multiple species aids in performance over the target-on-target model. From
left-to-right we holdout: (1) No species, (2) rhesus macaque, (3) rhesus macaque, and mouse, (4) rhesus
macaque, mouse, and rat. We see parallel observations in the group holdout setting that we observed in
panel A, each successive holdout contributing to the drop in performance — emphasizing the importance
that the multiple species aide to the overall performance over the target-on-target model.

4 Discussion

In this study, we develop and apply a new framework, MORALE, for domain adaptation in the context of
generalizing TF binding across species. The MORALE approach encourages a domain-invariant sequence
representation, and we show it improves upon an adversarial approach in a two-species case, and that
it can successfully leverage additional information in a multi-species case. Specifically, we show that
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Figure 5: MORALE attains higher performance when training on multiple source species and predicting in human as the
target. Across the four transcription factors tested, leveraging MORALE unilaterally increases performance — compared to no
domain adaptation at all. Of note, unlike the two-species case, training on multiple source species allows us to outperform the
human-on-human model, previously acting as an upper bound not attainable.

MORALE is able to avoid performance degradation observed by an adversarial approach in both adaptation
directions, that is, when predicting TF binding in mouse liver, based on human data, and vice versa. In
addition, we show that using TF binding data in five species noticeably improved TF binding site prediction
in human liver. In contrast to current approaches like gradient reversal layers, MORALE is not adversarial
and does not require an adversarial component in the network model. Instead, MORALE uses moment
alignment [15] and aligns the learned moments of sequence embeddings for data across all pairs of
domains. MORALE integrates easily with other approaches that utilize embedding layers and does not
require extra parameters or decisions in model design, like creating an adversarial classifier. We believe
this is a meaningful improvement over the status quo in TF binding prediction, because identifying precise,
evolutionarily conserved sequence patterns that enhance and complement widely used TF binding site
motifs can advance our understanding of the gene regulatory code. Specifically, it is attractive to address
TF binding from a causal modeling perspective. In this paradigm, domain adaptation techniques like
MORALE are needed to construct identifiable latent sequence embeddings that typically underlie this type
of analysis.

5 Conclusion

MORALE is a domain adaptation method for cross-species sequence-based modeling using representation
learning in computational genomics. It allows for flexibility in addressing species-specific differences,
and it is geared toward stable model generalization. MORALE helps reveal learned invariant sequence
representations in regulatory genomics and advances the study of TF-DNA binding.
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Figure 6: Species contribution to the overall boost in mutli-species results shows to be differential in nature, still
ultimately resulting in benefit. We seek to quantify the effect of holding out species: (1) individually, and (2) in groups, to
understand how it changes model performance under the scope of using MORALE for domain-adaption. In (A) we present the
results for the per-species holdout performance. ’No knockout’ describes the model performance when all source species are
used, with human as the target species. From left to right, we proceed to holdout a single species from the overall source species
to determine its holdout’s affect on performance. In (B) we display the results for holding our groups of species at a time. From left
to right, we display a monotonically decreasing set of source species from all included (i.e., leftmost) to just a singular species
(i.e., rightmost). This showcases that the number of species included in training set does aide in overall model performance.
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10 Supplement

BA

Figure 7: The species gap is closed during training when using MORALE. We display the training, in the two-species case,
of the five-fold cross validation performance over 15 epochs between the basic model, and MORALE. The gap between the peak
performance between the source-on-target and the target-on-target models are annotated at the bottom of each plot. In (A) we
have the basic model across each TF-target pair, and in (B) we display the same information, but with MORALE.
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TF Species Raw Peaks Filtered Peaks Bound Windows Frac. Bound Accession ID

CTCF Mouse 32006 28943 296117 0.71% ENCSR000CBU
Human 29067 26477 270100 0.55% ENCSR911GFJ

CEBPA Mouse 62636 48812 566945 1.35% E-TABM-722
Human 32243 28545 298066 0.61% E-TABM-722

HNF4A Mouse 44800 36540 415846 0.99% E-TABM-722
Human 42766 34714 387077 0.79% E-TABM-722

RXRA Mouse 46443 33751 404284 0.97% GSM1299600
Human 95085 71032 854289 1.75% ENCSR098XMN

Table 7: The binding site information for the four transcription factors used in the two-species case. The following
quantities are listed: the number of peaks called across the entire genome; the number of called peaks within the filtered window
set, merged if within 500 bp of each other; the number of windows in the filtered window set labeled bound due to peak overlap;
the fraction of the filtered window set labeled bound; and the database accession ID (ENCODE, GEO, or ArrayExpress). The size
of the filtered window sets for the mouse and human genomes were 41883806 and 48742577, respectively.

TF Species Raw Peaks Filtered Peaks Bound Windows Frac. Bound Accession ID

CEBPA Mouse 50263 32751 830115 1.80% E-MTAB-1509
Human 34253 26749 615953 1.16% E-MTAB-1509

Rhesus Macaque 11600 9985 214440 0.40% E-MTAB-1509
Dog 44749 32816 780102 1.77% E-MTAB-1509
Rat 50851 37010 900363 1.84% E-MTAB-1509

FOXA1 Mouse 66728 38683 1071971 2.32% E-MTAB-1509
Human 36454 27406 651070 1.22% E-MTAB-1509

Rhesus Macaque 30546 22421 532725 1.00% E-MTAB-1509
Dog 24316 18151 436461 0.99% E-MTAB-1509
Rat 59983 37940 993292 2.02% E-MTAB-1509

HNF4A Mouse 135057 54343 1762041 3.82% E-MTAB-1509
Human 50611 34022 856878 1.61% E-MTAB-1509

Rhesus Macaque 32331 21628 535077 1.01% E-MTAB-1509
Dog 69264 37839 1049132 2.38% E-MTAB-1509
Rat 52694 33640 891098 1.82% E-MTAB-1509

HNF6 Mouse 57255 38899 966248 2.09% E-MTAB-1509
Human 17021 14378 311320 0.59% E-MTAB-1509

Rhesus Macaque 9425 8238 174525 0.33% E-MTAB-1509
Dog 9283 7687 168142 0.38% E-MTAB-1509
Rat 22686 18058 407416 0.83% E-MTAB-1509

Table 8: The binding site information for the four transcription factors used in the multi-species case. The following
quantities are listed: the number of peaks called across the entire genome; the number of called peaks within the filtered window
set, merged if within 1000 bp of each other; the number of windows in the filtered window set labeled bound due to peak overlap;
the fraction of the filtered window set labeled bound; and the database accession ID (ArrayExpress).
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Figure 8: We display performance across all targets in the multi-species case. In (A) we show the performance across all 4
transcription factors when the target is mouse, (B) displays monkey, (C) displays rat, and (D) display dog.

Figure 9: We construct heatmaps based to understand relatedness of learned embeddings through the different species
models. We do so for each TF under study in the multi-species case. For each TF we use the models trained to predict in each
species and run the test data through the feature extractor in our models to capture the embeddings. In (B) we should the lower
triangular for CEBPA, (C) FOXA1, (D) HNF6, and (E) HNF4α.
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Figure 10: We include group holdouts under each species (other than human) as the target species.

BA

DC CEBPA FOXA1 HNF4A HNF6

No K
no

ck
ou

ts
−h

g3
8

−rh
eM

ac
10

−m
m10 −rn

7

No K
no

ck
ou

ts
−h

g3
8

−rh
eM

ac
10

−m
m10 −rn

7

No K
no

ck
ou

ts
−h

g3
8

−rh
eM

ac
10

−m
m10 −rn

7

No K
no

ck
ou

ts
−h

g3
8

−rh
eM

ac
10

−m
m10 −rn

7

0.00

0.05

0.10

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0.25

0.0

0.1

0.2

0.3

au
PR

C
 b

as
ed

 o
n 

ho
ld

ou
t s

pe
ci

es

Target=canFam6

CEBPA FOXA1 HNF4A HNF6

No K
no

ck
ou

ts
−rn

7

−rh
eM

ac
10

−h
g3

8

−c
an

Fa
m6

No K
no

ck
ou

ts
−rn

7

−rh
eM

ac
10

−h
g3

8

−c
an

Fa
m6

No K
no

ck
ou

ts
−rn

7

−rh
eM

ac
10

−h
g3

8

−c
an

Fa
m6

No K
no

ck
ou

ts
−rn

7

−rh
eM

ac
10

−h
g3

8

−c
an

Fa
m6

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

au
PR

C
 b

as
ed

 o
n 

ho
ld

ou
t s

pe
ci

es

Target=mm10

CEBPA FOXA1 HNF4A HNF6

No K
no

ck
ou

ts
−h

g3
8

−m
m10 −rn

7

−c
an

Fa
m6

No K
no

ck
ou

ts
−h

g3
8

−m
m10 −rn

7

−c
an

Fa
m6

No K
no

ck
ou

ts
−h

g3
8

−m
m10 −rn

7

−c
an

Fa
m6

No K
no

ck
ou

ts
−h

g3
8

−m
m10 −rn

7

−c
an

Fa
m6

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.00

0.05

0.10

0.15

0.20

au
PR

C
 b

as
ed

 o
n 

ho
ld

ou
t s

pe
ci

es

Target=rheMac10

CEBPA FOXA1 HNF4A HNF6

No K
no

ck
ou

ts

−m
m10

−rh
eM

ac
10

−h
g3

8

−c
an

Fa
m6

No K
no

ck
ou

ts

−m
m10

−rh
eM

ac
10

−h
g3

8

−c
an

Fa
m6

No K
no

ck
ou

ts

−m
m10

−rh
eM

ac
10

−h
g3

8

−c
an

Fa
m6

No K
no

ck
ou

ts

−m
m10

−rh
eM

ac
10

−h
g3

8

−c
an

Fa
m6

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

au
PR

C
 b

as
ed

 o
n 

ho
ld

ou
t s

pe
ci

es

Target=rn7

Figure 11: We include per species holdout under each species (other than human) as the target species.
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