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Abstract: Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways,
causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for
early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface
plasmon resonance (SPR) sensor was designed. The sensor performance was evaluated for various
concentrations of DA. Increasing DA levels yielded blue-shifted SPR dips. The experimental findings
revealed an excellent sensitivity response of 0.138◦/pM in a linear range from 0.001 to 100 pM and
a high binding affinity of 6.234 TM−1. The effects of varied concentrations of DA on the optical
characteristics of CQD thin film were further proved theoretically. Increased DA levels decreased the
thickness and real part of the refractive index of CQD film, according to fitting results. Furthermore,
the observed reduction in surface roughness using AFM demonstrated that DA was bound to the
sensor layer. This, in turn, explained the blue shift in SPR reflectance curves. This optical sensor
offers great potential as a trustworthy solution for direct measurement due to its simple construction,
high sensitivity, and other sensing features.

Keywords: dopamine; neurotransmitters; surface plasmon resonance; optical sensor; carbon quantum
dots; refractive index sensor; sensitivity enhancement

1. Introduction

Dopamine (DA) is a catecholamine neurotransmitter that is produced by neurons in
the brain and plays a crucial role in the transmission of neurological signals. DA has a
substantial impact on the functions of the human metabolism, central nervous system,
and renal and hormonal systems. Some neurological diseases such as Parkinson’s disease
and schizophrenia are caused by DA deficiency [1–3]. The physiological levels of DA
in different human biofluids vary. According to the Human Metabolome Database, the
concentration of DA in blood is less than 130 pM, whereas it is 5 nM in human cerebrospinal
fluid and urine [4]. Therefore, the sensitive and rapid detection of very low concentrations
of DA is critically needed and receiving a lot of attention in clinical diagnostics. Up to
now, many methods have been conducted to detect DA levels, including high-performance
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liquid chromatography (HPLC) [5,6], fluorescence [7–10], chemiluminescence [11,12], mass
spectrometry [13], capillary electrophoresis [14], and electrochemical [15,16] and surface
plasmon resonance (SPR) [17–30]. Among them, SPR has recently emerged as a promising
technique for the rapid detection of DA molecules, with the potential to reduce the chal-
lenges associated with many interfering chemicals. To this day, the use of SPR sensors to
detect DA is quite limited, although the published results are encouraging. SPR biosensors
have proven their efficacy due to their capacity to monitor diverse biomolecular interac-
tions label free and in real time, as well as their fast response and accuracy, and excellent
performance [31–38]. SPR sensors are particularly sensitive to boundary conditions and
may detect even small variations in the surrounding refractive index caused by interactions
between the analyte in solution and the SPR sensor thin film [39–44]. Therefore, the theo-
retical analysis enables understanding and prediction of the responses of plasmonic-based
systems as a function of their microscopic properties, which may be crucial and provide a
guideline for the precise control of the design of SPR-based sensors [45–47]. However, to
monitor normal or extremely low levels of DA solution using an SPR sensor, the sensor’s
sensitivity must be increased. To overcome this drawback, nanomaterials can be employed
to modify the sensor chip. Carbon-based nanomaterials have a significant surface plas-
mon resonance, and surface plasmon resonance technology can enable it to break past the
conventional optical diffraction limit, as well as demonstrate characteristics of local elec-
tromagnetic field augmentation, attaining perfect absorption [48]. Carbon quantum dots
(CQDs), which are nanoparticles with extremely small sizes, typically less than 10 nm, have
recently become widely used in a variety of applications, including biosensors, bio-imaging,
drug delivery, cancer therapy, and bacterial infection control, due to their advantages, such
as ease of preparation, low toxicity, good biocompatibility, and stability [49–51]. The use of
CQDs in the preparation of SPR sensor chips for DA detection has not yet been reported.
Based on these properties of CQDs, they were employed in this work as an active layer to
improve the SPR sensor sensitivity to DA. The direct detection of DA with high sensitivity
by the proposed sensor was demonstrated and the sensor performance was evaluated. In
addition, the structural analysis of the sensor film in the absence and presence of DA was
studied. Following that, the experimental SPR curves were mathematically processed in
order to investigate the variation of the refractive index of the sensing medium as well
as to analyze the optical properties of DA and CQD thin film, measure the thickness of
CQD film, and determine the refractive index sensitivity of the proposed system. To the
best of our knowledge, this is the first study on the detection of DA utilizing a CQD thin
film-based SPR sensor.

2. Materials and Methods
2.1. Chemical Preparation

Dopamine hydrochloride and CQDs (0.2 mg/mL) with quantum efficiency (>5%) were
supplied by Sigma-Aldrich. To make a 1 M concentration of dopamine aqueous solution,
4.741 g of dopamine hydrochloride were dissolved in 25 mL of deionized water (DW). Then,
following the dilution formula (M1V1 = M2V2), DW was used to dilute the DA solution to
produce extremely low values of 1 fM.

2.2. Sensor Chip Preparation

Using the SC7640 Sputter Coater, gold thin films for SPR measurements were deposited
on clean glass substrate surfaces with dimensions of 24 mm × 24 mm 0.1 mm. To produce
the active layer, the surface of the gold thin layer on the glass substrate was evenly coated
with 0.5 mL of 0.2 mg/mL CQD solution. Then, a thin layer of CQDs was obtained using
the spin-coating process at 2000 rpm for 30 s.

2.3. Configuration of SPR System

The ability of CQD thin film to detect DA was investigated using a custom-built SPR
spectroscopy based on angle interrogation. The Kretschmann setup for surface plasmon
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wave resonance excitation was used with this handmade SPR sensor. As illustrated in
Figure 1, it included a He-Ne laser with a wavelength of 632.8 nm, a light chopper, a linear
polarizer, a tiny pinhole, a prism with refractive index of 1.77861, an optical rotating stage,
a photodetector, and a lock-in amplifier. Using a matching gel, SPR chips were connected to
the prism. SPR tests were performed, as well as angular spectral analysis, on gold thin films
and CQD thin films that were exposed to DW and DA at varied concentrations. DW was
introduced into the flow cell and made contact with the gold film and then the sensing layer
one by one to get the reference signal. Thereafter, various concentrations of DA solution
were gradually introduced into the flow cell in order to carry out the experiments, which
included measuring the intensity of reflected light as a function of angle of incidence.
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Figure 1. SPR configuration.

2.4. Structural Characterization Techniques

The FTIR spectra of CQD thin film before and after exposure to DA solution was
recorded in the range of 400–4000 cm−1 using a Bruker ALPHA II FTIR Spectrometer in
ATR mode. The Bruker AFM multimode 8 in Scan Asyst mode was used in the range of
2 × 2 µm for topographic imaging of all thin films and to analyze the roughness changes of
CQD film after DA adsorption on its surfaces.

3. Results and Discussion
3.1. Structural Analysis

To analytically characterize CQD thin film before and after the adsorption of DA
on its surface, FTIR spectra were recorded to elucidate the functional groups on the film
surface. Figure 2 depicts the FTIR spectrum of CQD thin film (black spectrum), which was
consistent with previous works and contained a variety of functional groups. The existence
of abundant hydroxyl groups at the CQD surface was verified by the presence of the charac-
teristic bands of O–H at the 3929, 3780, 3678, 3530 and 3175 cm−1 peaks [52–56]. The peaks
appearing at 3031 and 2882 cm−1 were attributed to C–H stretching vibration [52,55–60].
The peak located around 2158 cm−1 corresponds to the stretching frequency of alkyne C≡C
groups [61,62], and the peak at 2016 cm−1 originated due to C=O stretching of the carboxyl
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group [63]. The available peaks at 1682 and 1585 cm−1 were ascribed to C=C and C=O bond
stretching [58,64]. In addition, the peaks appearing at 1491 and 1412 cm−1 were due to C–C
stretching [65]. The peaks appearing at 1337 cm−1 originated due to C=C vibration [66]. The
peaks at 1192 and 1028 cm−1 were attributed to C–O–C stretching vibrations [56,58,60,67],
and the peaks located at 886 and 691 cm−1 corresponded to C–H bending vibrations [55].
The FTIR spectrum obtained for CQD film after exposure to DA (red spectrum) showed
a reduction in the intensity of the O–H stretching band at 3780 cm−1 due to the overlap
with the N–H stretching vibrations. It is also clear that the peak at 3031 cm−1 originating
from C–H stretching vibrations was shifted to 3008 cm−1 and increased in intensity due to
the –NH group. The peak located at 2882 cm−1 was shifted slightly to 2904 cm−1 due to
alkyl C−H stretching [68]. The intensity of the observed peak around 1507 cm−1 was in-
creased due to aromatic C=C stretching, and the peak located around 1287 cm−1 originated
due to amine C–N stretching [68,69]. These findings confirmed the reaction between DA
and CQD film and revealed that once DA was introduced, the functional groups of CQDs
altered conformationally. This verifies that DA was bonded to the surface of the sensor film
and was detected.
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Figure 2. FTIR spectrum of CQD thin film before and after interaction with DA.

AFM was used to continue structural characterization of the sensor film. The surface
morphology of a CQD thin film before contact with DA is depicted in Figure 3a, where
the 2D image shows the random distribution of CQDs on an Au substrate. The 3D AFM
image (Figure 3c) of Au/CQD film in the absence of DA shows that the maximum height
of CQD peaks was 7.4 nm, which is consistent with previous studies [70]. However, it
is obvious from Figure 3b that DA adsorption on the sensor chip influenced the surface
morphology. Furthermore, the presence of DA on the film surface made the detected peaks
fewer and sharper, with a maximum height of 3.4 nm (Figure 3d). After DA injection, the
average roughness of the sensor surface Ra was reduced from 1.60 nm to 0.642 nm, and
the standard deviation of the Z values Rq, also known as the RMS roughness (root mean
square), was reduced from 2.99 nm to 1.04 nm. These findings revealed that DA binding to
CQD thin film strongly affected its morphology.
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with DA.

3.2. Detection of DA Using CQD-Based SPR Sensor

The measurements were done using DW and DA solution at various low concentra-
tions ranging from 0.001 pM to 100 pM. When CQDS film made contact with DW, the
resonance occurred at an angle of 53.28702◦. By continuing the measurements, the reso-
nance angle determined using SPR reflectivity curves for 0.001 pM of DA was 53.28647◦,
which is somewhat less than the angle obtained using DW, showing that the SPR dip
underwent a blue shift compared to the reference signal. After increasing the DA level to
0.01 pM, the SPR dip was moved to 53.01033◦, with a blue shift amounting to 0.27669◦ from
the baseline. The introduction of a 0.1 pM DA solution made the resonance take place at
angle of 53.01144◦. Afterwards, DA concentration was raised to 1 pM and the resonance
angle was conspicuously shifted to 52.73346◦. The SPR dip stayed blue shifted while DA
levels were increased to 10 pM, but the resonance angle altered by a very little step from the
prior concentration’s SPR angle, as shown in Table 1. The same was true when detecting a
DA concentration of 100 pM. Figure 4a depicts the recorded SPR spectra, which exhibited a
blue shift as the concentration of DA increased. It may be observed that the SPR response
curves did not appear to be shifted when high concentrations of DA were introduced.
Since the sensing layer had a limited surface and hence a finite number of binding sites,
this saturated the sensor response where the number of binding sites accessible per DA
molecule reduced as its concentration in the sample solution increased.
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Table 1. The resonance angle, refractive index, and thickness values for CQD film determined by
fitting experimental SPR curves to the theoretical, change in the real part of the refractive index ∆n,
and change in the resonance angle ∆θ.

DA
Concentration

(pM)

Resonance
Angle

(Degree)

Refractive Index of CQD
Layer Exposed to DA Thickness of

CQD Layer
d (nm)
(±0.01)

∆n ∆θReal Part, n
(±0.0001)

Imaginary
Part, k

(±0.0001)

0 53.28702 1.309 0.000 13.72 0.000 0.00000
0.001 53.28647 1.309 0.000 13.72 0.000 0.00055
0.01 53.01033 1.291 0.000 12.82 0.018 0.27669
0.1 53.01144 1.289 0.000 12.70 0.020 0.27558
1 52.73346 1.267 0.000 10.20 0.042 0.55356

10 52.73401 1.256 0.000 9.30 0.053 0.55301
100 52.73401 1.256 0.000 9.30 0.053 0.55301

The blue shift can be explained by the changes in the refractive indices and thickness
of the sensing medium [71–76]. To determine the refractive index and the thickness of
the Au/CQD thin film, the SPR experimental curves were fitted using a developed fitting
program based on Fresnel equations [77–83] (Figure 4b–h). The obtained refractive index
of the gold film was found to be in good agreement with previous studies [84,85], which
yielded the n- and k-values of 0.276 and 3.897, respectively, with a thickness of 57.1 nm. The
n- and k-values of the DA solution were the same as deionized water for concentrations
less than 10 pM; after that, the k-value increased to 0.003. Meanwhile, the refractive index
of CQD film was found to be 1.309 + 0i with a thickness of 13.72 nm. The real part of the
refractive index of the CQD thin film decreased after contact with DA, as shown in Table 1.
This decrease in the sensing layer’s refractive index after its exposure to DA solutions of
varying concentrations was reflected in the blue shift of the SPR dips. It is worth noting that
this interaction affected both the real part of the refractive index as well as the thickness of
the sensor surface.

Indeed, a blue shift occurred in the SPR spectrum simultaneously with the morphologi-
cal change in CQD thin film in the presence of DA. This blue shift elucidated morphological
changes caused by DA adsorption, which resulted in CQD film tip truncation and a change
in electron cloud density over the film surface [86]. This is completely consistent with the
results of the AFM analysis. These findings confirm that the sensor film degraded where
its thickness decreased from 13.72 nm to 9.30 nm and its roughness was decreased from
1.60 nm to 0.642 nm during DA adsorption on the surface of the film, although there is
no strict linear correlation between the thickness and roughness of thin films. This is in
agreement with other studies that reported that relation between the film thickness and its
surface roughness [87,88].

It is clear from Figure 5 that increasing DA concentrations increased the change in
n-value of the sensor film. This in turn increased the change in the resonance angle and
indicated the high potential of the proposed sensor to detect extremely low levels of DA
depending on the variation that occurred in the refractive index of the sensing layer.
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Figure 4. Cont.
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3.3. Evaluation of Sensing Characteristics

Considering that sensitivity is so important in evaluating the sensor performance, high
sensitivity is always preferred. The sensitivity of SPR sensors depends on the configuration
of the sensor, as well as surface roughness and homogeneity. The angular sensitivity of
SPR sensors is defined as the change in resonance angle ∆θ per the change in the target
concentration [89–94]. Figure 6 depicts the relationship between DA solution concentration
and the change in resonance angle for the CQD-based sensor. The good linear fitting
demonstrates that this CQD film-based SPR sensor had a good sensitivity of 0.138◦/pM for
a DA level ranging from 0.001 to 100 pM with an R2 value of 0.856.

This sensitive, simple, and label-free sensor has the ability to detect DA directly down
to 0.01 pM. This lowest concentration of DA solution distinguished by the sensor from its
baseline signal is defined as the limit of detection (LOD) [95,96], which is the lowest level of
DA that was detected by carbon dot-based sensors, as shown in Table 2. This comparison
highlights the sensor’s remarkable performance and emphasizes its efficiency in monitoring
very low levels of DA without the need to use any additives or to functionalize CQDs.
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Table 2. Comparison of the proposed SPR sensor with other DA sensors using CQDs in terms of limit
of detection and response range.

Material Sensor LOD Linear Range Reference

S, N-CQDs Fluorescence 0.082 µM 0–50 µM [97]
NB-CQDs Photoluminescence 11 nM 0.1–70 µM [98]

CQDs Photoluminescence 0.2 mM 20–100 mM [99]
N-CQDs Fluorescence 50 nM 0.25–243 µM [100]

CDs/TYR Fluorescence 60 nM 0.206—131.8 µM [101]
CDs@MIP Fluorescence 1.7 nM 25–500 nM [102]

CDs/CuNCs Fluorescence 32 nM 0.1–100 µM [103]
CDs-AuNCs Fluorescence 2.9 nM 5–180 nM [104]

S-CDs@Au NPs/Fe+3 Colorimetric chemical 0.23 µM 0.81–16.80 µM [105]
DECDs-AuNPs Fluorescence 0.037 µM 0.1–3 µM [106]

0.23 µM 0.5–3 µM
Aptamer-CDs/NG Fluorescence 0.055 nM 0.1–5 nM [107]

N-CQDs/DA/Tyr/AA Fluorescence 0.035 µM 0.01–15 µM [108]
SiCDs Fluorescence 56.2 nM 0.1–100 µM [109]

CQDs/Au NPs Fluorescent
aptasensor 0.01 µM 0.05–250 µM [110]

CDs@ZIF-8 Fluorescence 16.6 nM 0.1–200 µM [111]
CDs-CS/GCE Electrochemical 11.2 nM 0.1–30 µM [112]

CDs Fluorescence 33 µM 33–1250 µM [113]
CDs Electrochemical 4.6 nM 0.05–2 µM [66]

H-CQDs Fluorometric
Colorimetric sensor

8 nM
163 µM

100–1000 µM
1000–100 mM [69]

CQDs/Au SPR 10 fM 1 fM-100 pM This work
S, N-CQDs: sulfur and nitrogen co-doped carbon quantum dots; NB-CQDs: nitrogen and boron co-doped
carbon quantum dots; N-CQDs: nitrogen-doped carbon quantum dots; CDs/TYR: carbon dots/tyrosinase hybrid;
CDs@MIP: molecularly imprinted silica nanosphere-embedded carbon dots; CDs/CuNCs: carbon dots/copper
nanoclusters dual-emitting nanohybrids; CDs-AuNCs: carbon dots/gold nanoclusters hybrid; S-CDs: S-doped
carbon dots; DECDs-AuNPs: dual-emission carbon dots and gold nanoparticles; aptamer-CDs/NG: DA aptamer-
labeled carbon dots and nano-graphite; SiCDs: aminosilane-functionalized carbon dots; ZIF-8: zeolitic imidazolate
framework-8; H-CQDs: honey-based carbon quantum dots.

Furthermore, the refractive index sensitivity SRI of this SPR sensor was also investi-
gated. In angular interrogation mode, it is defined as the change in ∆θ per the change in
the real part of the refractive index of the sensor film and denoted as [114–117]:

SRI =
∆θ

∆n
(1)
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Figure 7 shows the linear fitting of the calculated values from experiments (∆θ) and
theoretical fitting (∆n) listed in Table 1. The proposed sensor exhibited high refractive index
sensitivity of 10.612◦/ RIU (refractive index unit) that was obtained from the slop of the
fitting line with R2 value of 0.951.
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To investigate the binding affinity of the CQD-based sensor towards DA molecules,
non-linear fitting based on the Langmuir and Freundlich isotherm model was applied to the
experimental data, as shown in Figure 8. This model, known as the Sips model, combines
both the Langmuir and Freundlich models, which give information on the heterogeneity
in the adsorption behavior over a wide concentration range up to saturation, overcoming
the Freundlich model’s limitation that appears at high concentrations of adsorbate. As a
result, when the analyte concentration is low, the Sips model is reduced to the Freundlich
model, whereas when the analyte concentration is high, it predicts monolayer adsorp-
tion and is indicative of the Langmuir model [118–120]. The Sips model is expressed as
follows [121,122]:

∆θ =
∆θmax K Cn

1 + KCn (2)

where K is the Sips affinity constant, C is the concentration of DA solution, and n is the
system heterogeneity index. The obtained correlation coefficient (R2 of 0.958) proves that
Sips isotherm model was well fitted to the experimental results, with an affinity constant of
6.234 TM−1. The ∆θmax value obtained from this model was very close to the experimental
value (0.553◦), and the Sips exponent value was 0.567.

The lowest full width half maximum (FWHM) value of 2.84704◦ was obtained for
the detection of 1 fM DA, and the highest detection accuracy of 0.35124 (deg−1) was
achieved for this level of DA, as shown in Table 3. Since the detection accuracy is inversely
proportional to FWHM, the detection accuracy decreased by increasing DA concentrations.
To explain this, increasing DA levels increased the truncation of the sensor film. Based
on SPR dependance on the surface morphology, one of the key reasons for the blue shift
in the SPR dips is that the induced dipoles were all out of phase. As the truncation in
the sensor film increased and the number of faces of the nanoparticle increased, the main
resonance underwent a blue shift owing to the augmentation in coulombic restoring force.
Moreover, the truncation of the spherical nanoparticle into a multi-face structure caused
the secondary SPRs to overlap, increasing the FWHM values, which in turn decreased the
detection accuracy [123,124].

It is critical to include the signal-to-noise ratio (SNR) while evaluating the sensor
performance and quantifying its precision since it encompasses the impacts of resonance
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angle shift and detection accuracy. Figure 9 depicts the change in SNR and detection
accuracy as a function of DA concentration. It is obvious that increasing DA levels resulted
in noise reduction of the SPR signals and higher SNR values for the developed sensor.
To explain this, increasing DA concentrations affected the refractive index of the sensor
surface, causing the SPR dips to shift. SNR could be a binding affinity indicator since it is
essentially dependent on the resonance angular shift [125,126].
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Table 3. The FWHM, detection accuracy, and SNR values of the CQD-based SPR sensor in response
to varied DA concentrations.

DA Concentration (pM) FWHM (Deg) Detection Accuracy (Deg−1) SNR

0.0000 2.83521 0.35270 0.00000
0.001 2.84704 0.35124 0.00019
0.01 2.89353 0.34559 0.09562
0.1 2.89652 0.34524 0.09514
1 2.90773 0.34391 0.19037
10 2.89538 0.34537 0.19099

100 2.95798 0.33806 0.18695
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4. Conclusions

To summarize, a CQD-based refractive index SPR sensor was developed and employed
to detect DA. The performance of the proposed sensor was examined for different doses
of DA solution. The experimental results showed that increasing DA levels resulted in
blue-shifted SPR dips due to the adsorption of DA on the surface of the sensor film and
the change in the morphology of the sensor film, which was confirmed by FTIR and AFM
characterization and was proven subsequently by fitting the experimental SPR curves to
theoretical ones based on Fresnel equations that made it possible to determine the optical
parameters and thickness of the sensor film. This sensor exhibited an excellent sensitivity
response of 0.138◦/pM in a linear range from 0.001 to 100 pM and a high binding affinity of
6.234 TM−1. Because of its simple design, high sensitivity, and other detecting capabilities,
this optical sensor has promising significance as a suitable platform for direct measurement
of DA. The challenge of improving sensor chip stability throws out interesting possibilities
for future work and the widespread use of nanomaterials.
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