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Simple Summary: Plutella xylostella is a very serious pest to cruciferous vegetables. At present, the
control methods used are mainly traditional insecticides and the cultivation of Bt crops. However,
with the long-term and large-scale use of insecticides, the diamondback moth has developed strong
resistance to many kinds of insecticides and Bt crops. The Cry1S1000 strain of P. xylostella used
here is a strain with more than 8000 times resistance to Bt Cry1Ac protoxin. In this paper, we used
transcriptome sequencing to determine the midgut transcriptome of the G88-susceptible strain,
Cry1S1000-resistant strain and its corresponding toxin-induced strains to find more genes related to
Bt resistance. Our results will provide a reference for optimizing the control strategy of diamondback
moth resistance and improving the control efficiency of biopesticides and Bt crops.

Abstract: The diamondback moth, Plutella xylostella, is a lepidopteran insect that mainly harms crucif-
erous vegetables, with strong resistance to a variety of agrochemicals, including Bacillus thuringiensis
(Bt) toxins. This study intended to screen genes associated with Bt resistance in P. xylostella by
comparing the midgut transcriptome of Cry1Ac-susceptible and -resistant strains together with two
toxin-treated strains 24 h before sampling. A total of 12 samples were analyzed by BGISEQ-500, and
each sample obtained an average of 6.35 Gb data. Additionally, 3284 differentially expressed genes
(DEGs) were identified in susceptible and resistant strains. Among them, five DEGs for cadherin,
14 for aminopeptidase, zero for alkaline phosphatase, 14 for ATP binding cassette transport, and five
heat shock proteins were potentially involved in resistance to Cry1Ac in P. xylostella. Furthermore,
DEGs associated with “binding”, “catalytic activity”, “cellular process”, “metabolic process”, and
“cellular anatomical entity” were more likely to be responsible for resistance to Bt toxin. Thus,
together with other omics data, our results will offer prospective genes for the development of Bt
resistance, thereby providing a brand new reference for revealing the resistance mechanism to Bt
of P. xylostella.

Keywords: Plutella xylostella; transcriptome; Cry1Ac; differentially expressed gene; resistance
mechanism; Bacillus thuringiensis

1. Introduction

The diamondback moth, Plutella xylostella, is an important pest of cruciferous crops
worldwide [1]. The total economic cost of its damage and management worldwide is
more than US $4–5 billion per year [1], primarily due to strong resistance to multifarious
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synthetic- and bio-insecticides. As the first species that developed resistance to Bt toxins in
outdoor populations [2], P. xylostella has evolved resistance to all major insecticides and
has become increasingly difficult to control. Hence, there is an urgent need to identify the
complete mechanisms underlying Bt resistance.

Many different hypotheses have been proposed for the mechanism of action of Bt
toxins: the pore formation model [3–5], the signal transduction model [6], the direct action
model [7], and the dual model [8,9]. The pore formation model believes that the activated
toxins in the form of monomers bind to the receptors on the brush border membrane
vesicle (BBMV) of the insect midgut, leading to the oligomerization of the monomers. The
oligomers then attach to other midgut receptors and eventually insert irreversibly into
the membrane, forming perforations, which cause the larvae to die [3–5]. In contrast, the
second model suggests that Cry protein first binds to cadherin, which activates the signal
death pathway in the cell. The Mg2+-dependent signaling pathway indicates that, after the
binding of Cry toxin to the BT-R site, it stimulates both G protein and adenylate cyclase
(AC), promoting intracellular cyclic adenylate (cAMP) levels. In turn, the activation of
protein kinase A (PKA) destroys the stability of the cytoskeleton and ion channels, leading
to death of cell [6]. In addition, Vachon [7] revealed that activated Cry toxins could be
directly inserted into the intestinal membrane after binding to APN, ALP, or cadherin,
and oligomerization occurs on the membrane to form pre-pore oligomers, leading to the
death of insects. However, contrary to the classical model of action, relevant studies have
found that Cry1A protoxin can directly bind to cadherin, resulting in oligomerization
in the presence of intestinal protease. Unlike the activated toxin, the pre-pores formed
by the protoxin oligomers are more heat-resistant, SDS-resistant, easier to insert into
artificial vesicles, and have a stronger ability to create pores. Therefore, scholars call it a
double-acting model of Cry toxin; that is, Cry1A protoxin can directly bind to cadherin
and oligomerize without activating proteases, forming pre-pore oligomers. Subsequently,
it binds to APN or ALP and eventually inserts into the intestinal membrane, leading to
perforation of the intestinal membrane that leads to the insect’s death [8,9]. In recent years,
Guo et al. [10] conducted more studies on the MAPK signaling pathway. They found that
the MAPK signaling pathway can regulate ALP and ABCC gene expression levels in the
middle intestine, thus leading to resistance to Bt Cry1Ac toxin on P. xylostella. In subsequent
studies [11], starting with the potential role of the APN gene, they also confirmed that
differential expression of APN and other midgut genes mediated by MAPK is indeed
closely associated with resistance. Equally important, they found that the MAPK cascade
is stimulated and regulated by partial hormones, suggesting a new mechanism of hormone
involvement in Bt resistance. Further research on the three potential activation pathways of
the complex four-layer MAPK signaling module provides a good direction for the control
of the agricultural pest P. xylostella [12].

Currently, more than four Cry toxin receptors have been reported, namely aminopepti-
dase N (APN) [13–17], cadherin-like (CAD) [18–22], alkaline phosphatase (ALP) [10,23–26],
ATP-binding cassette (ABC) transporters [27–36], and others. Glycolipid [37], actin [38],
and heat shock protein [39] have also been reported as the receptors of Bt, but there are few
related reports. The main cause of insect resistance may be the change in receptor protein
structure [34] or the difference in the expression level of related genes [40] so that toxin
binding is reduced or no longer able to bind with the toxin.

RNA-Seq is a very powerful tool commonly used in the study of the molecular
mechanism in pest resistance recently [41,42]. In particular, next-generation sequencing
technology has been used by many researchers to identify genes associated with insect
resistance, including P. xylostella [43], Chilo suppressalis [44], Helicoverpa armigera [45], Os-
trinia furnacalis [46], Busseola fusca [47], and Helicoverpa zea [48]. In addition, RNA-Seq
technology makes the analysis of unknown genes and splice variants easier and more
feasible. In addition, as the cost of sequencing has fallen, RNA-Seq technology has become
more common, including in species whose genomes have not been sequenced [42].
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Many studies have been conducted to examine transcriptome of P. xylostella, such as
tissue-specific transcriptome analysis of a Bt-resistant strain [49]. Comparative studies were
also reported on transcriptomic differences between Bt-susceptible and -resistant strains,
although the focus is on different Bt toxins [43,45–47,50,51]. Moreover, transcriptome
analyses of different insecticides and resistant strains have been reported [52–55]. All
this research provides valuable candidate gene resources for studying Bt resistance in
insects. For the G88 and Cry1S10000 strains used in this research, similar studies have been
carried out in the past. Lei et al. [43] used transcriptome analysis to compare the difference
in midgut transcriptome between two resistant strains and one susceptible strain. One
resistant strain used in this study had the same source as the resistant strain used in that
study. However, the difference was that the resistant strain used in their study had been
screened for toxin Cry1Ac in each generation, while the resistant strain used in this study
remained highly resistant to Bt Cry1Ac toxin after only one screening with Cry1Ac toxin.
Later studies [33,56] on the same genes (PxABCC2 and PxABCC3) also produced different
results, so we believe that the resistance strains used in these two studies should have great
differences and that our study results provide rich candidate gene resources for studying
Bt resistance.

In this study, the transcriptomes of G88-susceptible and Cry1S1000-resistant strains
were compared by RNA-Seq. The protoxin-treated strains were also compared to elim-
inate the expression differences of gene transcription levels caused by toxin induction.
In addition, DEGs were further identified and validated by quantitative real-time PCR
(qRT-PCR) by comparing both strains [33]. The results of this study provide candidate
genes for the evolution of resistance to Bt and a reference for revealing the resistance
mechanism to Bt in P. xylostella.

2. Materials and Methods
2.1. Insect Rearing and Sample Collection

The two P. xylostella strains (G88 and Cry1Ac-R) were provided by Dr. Anthony M.
Shelton in 2016 [57]. Among them, the Cry1Ac-R strain was screened by 1000 µg/mL
Cry1Ac protoxin and was never exposed to insecticide again. Here, we used Cry1S1000
to name the Bt resistant strain, as previously reported [33]. Larvae were fed an artificial
diet at 26 ± 1 ◦C, 60 ± 5% RH (relative humidity), and 16:8 h (light:dark) photoperiod.
During the adult mating stage, 10% honey water was used for supplemental nutrition.
In this study, the resistance ratio of Cry1S1000 to Cry1Ac was >8000-fold compared to the
G88 strain. The fourth-instar larvae of both strains were dissected to obtain the midgut
tissues. In addition, 24 h before sampling, both strains were fed an artificial diet containing
a lower concentration (0.006 µg/mL, LC30 of G88 strain) of Cry1Ac protoxin to eliminate
toxin-induced changes in transcription levels and ensure that most larvae were alive before
sampling. These strains were also dissected to obtain midgut tissues.

2.2. Cry1Ac Protoxin Purification

Cry1Ac protoxin was produced by Btk strain HD73. The Bt culture was cultured in
1/2 LB (1 L:2.5 g yeast extract; 5 g tryptone; 5 g NaCl) at 230 rpm for 84 h [58,59]. Bacterial
cells were suspended in 1 M NaCl, then centrifuged and washed twice with distilled water
to prepare protoxin crystals. Then, the protoxin crystals were solubilized in the lysate
(50 mM Na2CO3; 50 mM EDTA; PH 9.5) with 5% β-mercaptoethanol. After centrifugation,
the dissolved Cry1Ac protoxin was collected from the supernatant, and then 1/7 volume
of 4 M sodium acetate (PH 4.5) was added to the precipitate. After two washes with
distilled water, the precipitated protoxin was centrifuged and resuspended in 50 mM
Na2CO3 (PH 9.5). The Bradford method was used to determine the protoxin concentra-
tion by using BSA as a standard, and the quality of soluble protoxin was analyzed by
12% SDS-PAGE [60].
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2.3. RNA Extraction, Library Construction, and Illumina Sequencing

Total RNA was extracted from the susceptible (G88) and resistant (Cry1S1000) strains,
as well as from two protoxin-treated groups, before sampling using Trizol reagent (Invitro-
gen, Carlsbad, CA, USA), according to the manual’s instructions. RNA samples were only
used if they had a 260/280 ratio from 1.9 to 2.1 and an RNA integrity number (RIN) higher
than 8. The quantity and quality of the total RNA were assessed by a Nano Drop2000
(Thermo Fisher Scientific, Waltham, MA, USA) and Agilent 2100 bioanalyzer (Agilent,
Palo Alto, CA, USA). Then, oligo (dT)-attached magnetic beads were used to purify Poly
(A) mRNA. The purified mRNAs were segmented with fragment buffer at an appropri-
ate temperature. Then, the first-strand cDNA was generated by reverse transcription
using random hexamer-primes, and the second-strand cDNA was synthesized. Afterward,
the short fragments were then connected to the sequencing adapters. After agarose gel
electrophoresis, appropriate fragments were selected as templates for PCR amplification.
Finally, Illumina HiSeqTM 2000 (BGI, Shenzhen, China) was used to sequence the library.

2.4. Bioinformatics Analysis of the Transcriptome

The raw data obtained by sequencing were called the raw reads. To obtain high-
quality, clean reads for subsequent de novo assembly (Software: SOAPnuke, Version: v1.5.2,
Parameter:-l 15-q 0.2-n 0.05), we filtered out the raw reads with low quality, contaminated
linkers, and unknown bases [61]. Clean reads were then compared to the reference genome
(P. xylostella DBM V2, http://iae.fafu.edu.cn/DBM/) (accessed date: 15 October 2021)
(Software: HISAT2, Version: v2.0.4, Parameter: –phred64 –sensitive –no-discordant –
no-mixed-I 1-X 1000), followed by new transcription prediction (Software 1:StringTie,
Version:v1.0.4, Parameter:-f 0.3-j 3-c 5-g 100-s 10,000-p 8; Software 2: Cufflinks, Version:
v2.2.1, Parameter: -p 12; Software 3: CPC, Version: v0.9-r2, Parameter: default), SNP
and Indel, and differential splicing gene detection (Software 1: Asprofile, Version: b-1.0.4,
Parameter: default; Software 2: rMATS, Version: v3.0.9, Parameter: -analysis U-t paired-a
8; software 3: Circos, Version: v0.69, Parameter: default). Next, transcripts with protein-
coding potential were added to the reference gene sequence (Software: Bowtie2, Version:
v2.2.5, Parameter: -q –phred64 –sensitive –dpad 0 –gbar 99,999,999 –mp 1,1 –np 1 –score-
min L, 0,-0.1-p 16-k 200) to form a complete reference sequence. Gene expression level was
then calculated, and the DEGs were detected according to the requirements of multiple
samples. Finally, the DEGs were further analyzed by in-depth clustering analysis and
functional enrichment analysis [62].

2.5. Gene Function Annotation and Characterization

The BLASTx search was carried out in protein databases, including KOG (eukaryotic
Orthologous Group database), Nr (non-redundant) protein database, SwissPort, and KEGG
(Kyoto Encyclopedia of Genes and Genomes protein database), to determine the functional
annotation. Furthermore, a BLASTn search was performed using the Nt database. The
InterPro annotation and GO (Gene Ontology) of unigenes were acquired using the Blast2GO
and InterProScan5 program with Nr annotation, respectively [63]. Then, GO classification
was performed to elucidate the distribution of DEG functions, including biological process,
cellular component, and molecular function [64]. According to the annotation results of
GO, KEGG, and official classification, functional classification of the differential genes was
performed, and Phyper R in R (v.3.6.1) software was used for enrichment analysis. The
p-value calculation method is as follows:

P = 1 −

m−1

∑
i=0

(
M
i

)(
N − M
n − i

)
(

N
n

) (1)

Then, the false discovery rate (FDR) correction was performed based on the p-value,
and the function with a Q-value of ≤0.05 was generally considered to be significantly

http://iae.fafu.edu.cn/DBM/
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enriched. Here, N is the number of all genes annotated by GO, n is the number of DEGs in
N, M is the number of all genes annotated with specific GO terms, and m is the number of
DEGs in M.

2.6. Differentially Expressed Gene in the Susceptible and Resistant Strains of P. xylostella

The TPM method can eliminate the influence of different gene lengths and sequenc-
ing levels on gene expression calculation, and it can make the total expression level in
different samples consistent. The TPM was calculated to represent the transcript-level
expression [65]. The DESeq2 (v1.4.5) method is based on the negative binomial distribution
principle, and differential expression analysis was performed using DESeq2 (v1.4.5) with
Q value (Adjusted p value) ≤ 0.05, while the other parameters were the default values [66].

2.7. Real-Time Quantitative PCR Analysis of Gene Expression

qPCR was used to verify transcriptome sequencing results. Firstly, total RNA was
extracted as described above from the fourth-instar larvae midguts. The genomic DNA
was then removed using DNase I, and the concentration of total RNA was measured by
NanoDrop 2000. The first-strand cDNA was synthesized from 2 ug RNA using “FastKing
gDNA Dispelling RT SuperMix” (TianGen, Beijing, China) kit, following the manufacturer’s
instructions. In addition, primer pairs (Additional file 3) were designed using Primer 5.
PCR was conducted using “Eastep qPCR Master Mix” (Promega, Shanghai, China) on
a CFX96 (BioRad, Hercules, CA, USA) sequence detection system. The qPCR mixture
included 10 µL qPCR master Mix, 0.4 µL of each primer (10 µM), 7.2 µL of RNase-free
Water, and 2 µL cDNA. The qPCR program started at 95 ◦C for 2 min, followed by a
total of 40 cycles of 95 ◦C for 15 s and 60 ◦C for 50 s. In the melting curve analysis,
an automatic dissociation step cycle was added to determine the specificity of primers.
Relative quantification of genes was performed using the 2−∆∆Ct method [67], and the
expression level was normalized to the ribosomal L32 gene (GenBank: AB180441) [68]. For
each treatment, we used three biological replicates and three technical replicates. Moreover,
one-way ANOVA with Holm–Sidak’s test (p ≤ 0.05) was used to determine whether
differences between treatments were statistically significant.

3. Results
3.1. Illumina Sequencing Analysis

Illumina high-throughput sequencing was performed on cDNA samples from midgut
tissues of G88 and Cry1S1000 strains of P. xylostella. We tested a total of 12 samples using
BGISEQ-500, and every sample produced an average of 6.35 Gb data. Upon mapping these
reads to the P. xylostella DBM V2, we obtained a mapping rate from 51.94% to 53.66% of the
compared genome and 61.56% to 65.02% of the compared genes. We defined low-quality
reads as those with a mass value of less than 15 bases that accounted for more than 20% of
the total number of bases in the reads (Table 1).

Moreover, the predicted new genes were 3641, and a total of 18,042 expressed genes
were detected including 14,474 known genes and 3568 predicted new genes. In addition,
19,415 new transcripts were detected, of which 10,525 belonged to novel isoforms, 3641 were
new protein-coding gene transcripts, and the remaining 5249 belonged to long noncoding
RNAs (Table 2 and Table S1).

3.2. Gene Ontology (GO) Classification

Gene ontology (GO) classification was used to predict possible functions for the
identified DEGs. The DEGs were assigned into 31 functional groups consisting of three
categories (molecular function, biological process, and cellular component) based on
the proposed GO function (Figure 1). Most were categorized as “binding”, “catalytic
activity”, “transporter activity”, “biological regulation”, “cellular process”, “metabolic
process”, “cellular anatomical entity”, “intracellular”, and “protein-containing complex”.
In addition, a high proportion of DEGs were classified as “localization”, “response to
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stimulus”, and “signaling” (Figure 1). Among them, the DEGs were only assigned to
“biological adhesion”, “detoxification”, “locomotion”, “pigmentation”, and “rhythmic
process” between susceptible and resistant strains (DBMA-vs-DBMC).

Table 1. Summary of the midgut transcriptome reads of P. xylostella. DBMA1, DBMA2, DBMA3:
three sample replications from the susceptible strain (G88); DBMB1, DBMB2, DBMB3: three sample
replications from the susceptible strain with toxin treatment (G88 + toxin); DBMC1, DBMC2, DBMC3:
three sample replications from the resistant strain (Cry1S1000); DBMD1, DBMD2, DBMD3: three
sample replications from the resistant strain with toxin treatment (Cry1S1000 + toxin).

Samples Raw Reads
(M)

Clean Reads
(M) Q20 (%) a Q30 (%) b Clean Reads

Ratio (%)

G88_1 (DBMA1) 65.18 61.75 97.49 90.02 94.74
G88_2 (DBMA2) 67.68 62.43 97.00 88.62 92.24
G88_3 (DBMA3) 67.68 61.70 96.58 87.38 91.16
G88 + toxin_1 (DBMB1) 65.18 60.99 96.77 87.91 93.58
G88 + toxin_2 (DBMB2) 67.68 64.15 97.30 89.57 94.78
G88 + toxin_3 (DBMB3) 67.68 63.14 96.70 87.78 93.29
Cry1S1000_1 (DBMC1) 70.19 66.30 97.00 88.61 94.47
Cry1S1000_2 (DBMC2) 67.68 63.07 96.68 87.87 93.19
Cry1S1000_3 (DBMC3) 67.68 64.06 97.38 89.74 94.65
Cry1S1000 + toxin_1
(DBMD1) 67.68 62.53 96.60 87.61 92.39

Cry1S1000 + toxin_2
(DBMD2) 70.12 66.35 97.36 89.71 94.62

Cry1S1000 + toxin_3
(DBMD3) 70.18 65.73 97.25 89.19 93.65

a Ratio of the number of bases with mass value greater than 20 to the total number of reads after filtration. b Ratio
of the number of bases with mass value greater than 30 to the total number of reads after filtration.

Table 2. Statistical summary of new transcript types.

Total Novel
Transcripts

Coding
Transcripts

Novel
Transcripts Novel Isoforms Novel Genes

19,415 14,166 5249 10,525 3641
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Figure 1. Histogram presentation of gene ontology (GO) classification between any two groups from susceptible, resistant,
and two toxin-treated strains. The GO categories shown on the X-axis are divided into three main ontologies: molec-
ular function, biological process, and cellular component. The Y-axis indicates the number of DEGs in each category.
DBMA represents G88-susceptible strain; DBMB represents G88-susceptible strain with toxin treatment; DBMC represents
Cry1S1000-resistant strain; DBMD represents Cry1S1000-resistant strain with toxin treatment. GO analysis showed that
the distribution patterns of DEG function categories in each group were basically consistent, except for “biological ad-
hesion”, “detoxification”, “locomotion”, “pigmentation”, and “rhythmic process” (red arrows), between susceptible and
resistant strains.
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3.3. Functional Classification by KEGG

A KEGG pathway analysis was performed to obtain further insights into the global
network. A total of 33 pathways were obtained between susceptible (G88) and resistant
(Cry1S1000) strains, and they were distributed to five major groups: cellular components
(789 DEGs), genetic information processing (543 DEGs), environmental information process-
ing (721 DEGs), metabolism (1731 DEGs), and organismal systems (1479 DEGs). Among
them, the majority of these DEGs were assigned to “global and overview maps” (619 DEGs),
“signal transduction” (466 DEGs), and “transport and catabolism” (359 DEGs) (Figure 2).
These KEGG annotations provide a meaningful resource for studying the functions, specific
processes, and pathways in the resistance research of P. xylostella.
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KEGG terms. Genes were classified into five branches: A—Cellular Processes; B—Environmental In-
formation Processing; C—Genetic Information Processing; D—Metabolism; E—Organismal Systems.
The red arrow indicates the pathway with more than 300 DEGs.

3.4. Differentially Expressed Genes (DEGs) in Midgut Transcripts

Before the analysis of DEGs among four groups, the PCA analysis was performed on
the midgut samples collected by transcriptome sequencing using princomp in R software
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(v.3.6.1), which showed that the three samples from each group belonged to a separate
cluster. This result suggests that the data were sufficient and reproducible (Figure S1).

Moreover, Pearson correlation analysis among samples showed that the R2 values
of biological replicates in each group were all greater than 0.98, which was much higher
than 0.92 under ideal sampling and experimental conditions. Results showed that the
similarity between the biological duplicates was very high, which met the ideal sampling
requirements for the subsequent analysis of DEGs (Figure 3).
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Figure 3. Pearson correlation coefficient heat map of gene expression between different sam-
ples. DBMA1, DBMA2, DBMA3: three biological repetitions from the susceptible strain (G88);
DBMB1, DBMB2, DBMB3: three biological repetitions from the susceptible strain with toxin treat-
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toxin treatment (Cry1S1000 + toxin).

DEGs were then analyzed among the four treatment groups by comparing the midgut
transcriptome. The results revealed 599, 3284, 4313, and 63 significant DEGs between
DBMA-DBMB, DBMA-DBMC, DBMB-DBMD, and DBMC-DBMD in the midgut transcrip-
tome of P. xylostella (Padj ≤ 0.05) (Figure S2).

Among these, 1528 genes were up-regulated, and 1756 were down-regulated between
G88 and Cry1S1000 strains. Among all the DEGs, 4 were down-regulated, 2 were up-
regulated by more than 10 times, 827 were down-regulated, and 631 were up-regulated by
2 to 10 times (Figure 4).

3.5. Differentially Expressed Genes (DEGs) Involved in Insecticide Resistance

DEGs encoding Cry toxin receptors or participating in the Cry toxin pathway were
further studied, including cadherin, aminopeptidase-N/P, alkaline phosphatase, ATP-
binding cassette transporter family, heat shock protein, and V-type proton ATPase catalytic
subunit A. Among them, only 4 DEGs for cadherin, 10 for aminopeptidase, 3 for alkaline
phosphatase, 24 for ATP binding cassette transporter, and 7 for heat shock protein between
G88 and Cry1S1000 strains were detected, all of which may be related to the resistance in
P. xylostella (Table 3 and Table S2).



Insects 2021, 12, 1091 9 of 20

Insects 2021, 12, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 3. Pearson correlation coefficient heat map of gene expression between different 
samples. DBMA1, DBMA2, DBMA3: three biological repetitions from the susceptible 
strain (G88); DBMB1, DBMB2, DBMB3: three biological repetitions from the susceptible 
strain with toxin treatment (G88 + toxin); DBMC1, DBMC2, DBMC3: three biological rep-
etitions from the resistant strain (Cry1S1000); DBMD1, DBMD2, DBMD3: three biological 
repetitions from the resistant strain with toxin treatment (Cry1S1000 + toxin). 

DEGs were then analyzed among the four treatment groups by comparing the mid-
gut transcriptome. The results revealed 599, 3284, 4313, and 63 significant DEGs between 
DBMA-DBMB, DBMA-DBMC, DBMB-DBMD, and DBMC-DBMD in the midgut tran-
scriptome of P. xylostella (Padj ≤ 0.05) (Figure S2). 

Among these, 1528 genes were up-regulated, and 1756 were down-regulated be-
tween G88 and Cry1S1000 strains. Among all the DEGs, 4 were down-regulated, 2 were 
up-regulated by more than 10 times, 827 were down-regulated, and 631 were up-regu-
lated by 2 to 10 times (Figure 4). 

 
Figure 4. The number of differentially expressed genes with different values of log2 fold-change 
between susceptible (G88, DBMA) and resistant (Cry1S1000, DBMC) strains. 
Figure 4. The number of differentially expressed genes with different values of log2 fold-change
between susceptible (G88, DBMA) and resistant (Cry1S1000, DBMC) strains.

Table 3. The number of differentially expressed genes potentially participated in Cry1Ac resistance in P. xylostella. DBMA,
DBMB, DBMC, and DBMD represent the strains of G88, G88 with toxin treatment, Cry1S1000, and Cry1S1000 with
toxin treatment.

Genes DBMA/DBMC DBMA/DBMB DBMC/DBMD

Bt resistance
Cadherin 5 0 0
Aminopeptidase N/P 14 4 0
Alkaline phosphatase 0 0 0
ABC transporter 14 3 0
Trypsin 55 22 1
Glycolipid 0 0 0
Heat-shock proteins 5 6 0
Insecticide targets and metabolic insecticide resistance
Cytochrome P450 (P450s) 24 7 3
Carboxylesterase (CarEs) 4 0 0
Glutathione S-transferase (GSTs) 4 3 1
Acetylcholinesterase 2 1 0
Nicotinic acetylcholine receptor 0 0 0
GABA receptor 0 0 0
Glutamate receptor 10 1 0
G-protein coupled receptor 3 0 0
Ryanodine receptor 1 0 0
Sodium channel 1 1 0
Chloride channel 1 0 0
Immune-related genes
Serpin protease 0 0 0
Serpin protease inhibitor 1 0 0

In this study, we examined not only DEGs that encode potential Cry toxin receptors
but also DEGs that encode detoxification enzymes, such as carboxylesterase (CarEs),
cytochrome P450 (P450s), glutathione S-transferase (GSTs), and some other genes related
to metabolic insecticide resistance and insecticide targets. There were 24 DEGs encoding
P450s, 15 of which were up-regulated, and 9 were down-regulated. In addition, 3 DEGs
encoding CarEs were up-regulated, and the other 11 DEGs were down-regulated. The
three DEGs encoding GST were all down-regulated (Table 3). Immune genes associated
with hemolymph melanization, such as serpin protease and serpin protease inhibitor, were
also detected. However, no serpin protease was found in the present study. Meanwhile,
serpin protease inhibitor-related genes were searched, in which two of them were up-
regulated and the other two were down-regulated compared with the G88-susceptible
strain (Table 3).



Insects 2021, 12, 1091 10 of 20

3.6. Validation of Differentially Expressed Genes by qRT-PCR

To eliminate the expression difference caused by toxin induction, we subtracted the
DEGs between G88 and Cry1S1000 strains and the DEGs between these two strains and
their toxin induction treatment group successively (DBMB, DBMD). Finally, we obtained a
total of 3029 differentially expressed genes (Figure 5).
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Figure 5. Venn diagram of differentially expressed genes between susceptible and resistant strains
and two toxin-treated strains 24 h before sampling. DBMA represents G88-susceptible strain; DBMB
represents G88-susceptible strain with toxin treatment; DBMC represents Cry1S1000-resistant strain;
DBMD represents Cry1S1000-resistant strain with toxin treatment.

Firstly, we excluded the new genes predicted by BGI and the DEGs for which the TPM
value was less than 10. Thus, after the exclusion step, 376 DEGs were left. Then, we carried
out subsequent analysis combined with the log2 fold-change, in which we retained the
DEGs having an absolute value of greater than 2 log2 fold-change. Thus, we obtained a
total of 16 differential candidate genes, of which 6 genes were down-regulated, and the
log2 fold-change was less than or equal to −2, while 10 genes were up-regulated and the
log2 fold-change was greater than or equal to 2 (Table 4, Figure 6).
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Table 4. Summary of the most significant 16 differentially expressed genes between susceptible and resistant strains.
DBMA-TPM represents the TPM value of G88-susceptible strain, and DBMC-TPM represents the TPM value of Cry1S1000-
resistant strain.

Gene ID DBMA-TPM DBMC-TPM Log2
(DBMC/DBMA) Annotation Up/Down

1 Px002415 92.57 15.99 −2.53 Probable multidrug resistance-associated protein lethal (2) 03659 Down
2 Px012806 217.58 39.78 −2.45 Luciferin 4-monooxygenase Down
3 Px000515 127.45 23.13 −2.46 Esterase FE4 Down
4 Px005972 82.80 16.80 −2.30 N-acetylneuraminate lyase Down
5 Px007616 9973.06 2139.83 −2.22 Trypsin CFT-1 Down
6 Px013169 314.29 77.30 −2.02 Lactase-phlorizin hydrolase Down
7 Px005361 12.89 58.54 2.18 Probable glutamine-dependent NAD(+) synthetase Up
8 Px016564 29.39 165.13 2.49 Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial Up
9 Px015078 53.31 268.45 2.33 Ecdysteroid UDP-glucosyltransferase Up
10 Px011160 96.75 630.73 2.70 Lactase-phlorizin hydrolase Up
11 Px015831 71.64 488.08 2.77 Zinc carboxypeptidase A 1 Up
12 Px004235 15.75 204.14 3.70 Putative uncharacterized protein Up

13 Px007138 17.01 125.17 2.88 Leucine-rich repeat-
containing protein C10orf11 homolog Up

14 Px009634 734.96 6072.207 3.04 Ecdysteroid-regulated
protein Up

15 Px005853 24.69 200.48 3.02
NADH dehydrogenase [ubiquinone] 1 beta

subcomplex subunit 2,
mitochondrial

Up

16 Px007598 36.14 750.73 4.38 Chymotrypsin−1 Up

To verify the expression patterns of genes, we selected 16 DEGs (including 6 down-
regulated DEGs and 10 up-regulated DEGs) for qRT-PCR. In addition, the ribosomal
L32 gene (GenBank: AB180441) was set as the candidate reference gene for qRT-PCR
normalization. The results showed that the transcriptome expression pattern was consistent
with the qRT-PCR results (Figure 7).
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4. Discussion

P. xylostella is a highly destructive vegetable pest, and its resistance has badly been
affecting the continuable use of insecticides. However, the resistance mechanism of
P. xylostella to Cry1Ac remains to be improved. In this study, transcriptome analysis
was performed on Cry1Ac-susceptible (DBMA) and -resistant (DBMC) strains and two
toxin-treated (DBMB, DBMD) strains 24 h before sampling. A total of 12 samples were ex-
amined using the BGISEQ-500 platform, and every sample produced an average of 6.35 Gb
of clean data. In addition, 3284 DEGs were detected between susceptible (DBMA) and re-
sistant (DBMC) strains, 599 DEGs between susceptible (DBMA) and its toxin-treated strain
(DBMB), and 63 DEGs between the resistant strain (DBMC) and its toxin-treated strain
(DBMD). Among them, DEGs encoding Bt Cry toxin receptors cadherin, GPI-anchored
alkaline phosphatase (ALP), glycosylphosphatidylinositol (GPI)-anchored aminopeptidase
N (APN), and ATP-binding cassette transports (ABC) were investigated in detail. Further-
more, DEGs associated with metabolic insecticide resistance and insecticide targets and
immune genes related to hemolymph melanization were also detected. Presumably, all
the significantly differentially expressed genes detected above may be associated with the
resistance to Bt toxin Cry1Ac.

Among all the DEGs, five were annotated as cadherin: four of them were up-regulated
in the resistant strain, and only one was down-regulated. In addition, no DEGs were up-
regulated in the toxin-treated susceptible (DBMB) strain compared with the G88-susceptible
strain (DBMA), which is consistent with the previous finding that the cadherin-like gene
is not associated with resistance to Bt toxin Cry1Ac in P. xylostella [69]. Baxter et al. [70]
concluded that the resistance of P. xylostella to Cry1Ac was not related to the mutation of
cadherin but through other mechanisms. This finding contradicts the correlation between
cadherin mutation and Cry1Ac resistance in Heliothis virescens and Pectinophora gossypiella.
After analyzing the genetic mapping of resistance genes already reported in other species
on P. xylostella, they also [71] found that these genes were not on the chromosome where the
Cry1Ac resistance locus was located. In addition, the bioassay results of the knockout G88
susceptible strain of P. xylostella after the mutation of cadherin showed no significant differ-
ence in resistance ratio (unpublished). Unlike other lepidopteran insects, P. xylostella itself
is complex and changeable, with many SNPs, which increases the difficulty of studying the
resistance mechanism of P. xylostella to Bt by analogy. Therefore, it remains to be further
investigated whether the orthologous genes of cadherin will play a role in resistance.

Aminopeptidase is a peptide chain end-hydrolase and is usually divided into four
categories: N (AP-N; EC3.4.11.7), A (AP-A; EC3.4.11.2), P (AP-P; EC3.4.11.9), and W (AP-W;
EC3.4.11.16) [72]. Aminopeptidase can catalyze the splitting of the amino-terminal residues
of many proteins, and it is widely present in animals and plants. Among them, APN is the
first reported receptor protein of Bt toxin. Since then, the APN of many lepidopteran insects
has been identified as a binding protein of Bt toxin, which plays an essential role in insect
resistance. Knight et al. [73] cloned the Cry1Ac toxin receptor protein gene in the midgut of
the Manduca sexta and found that the protein was encoded by APN. Similarly, Gill et al. [74]
used the same method and successfully found the receptor protein APN for the Bt toxin
on the Heliothis virescen. In addition, the toxin binding test found that APN is the Cry1Ac
toxin-binding receptor for P. xylostella [75], Lymantria dispa [76,77], Bombyx mori [78], and
Trichoplusia ni [79]. Tiewsiri and Wang [14] found that Bt Cry1Ac resistance was related to
the down-regulation of APN1 but not with the up-regulation of APN6 in cabbage loopers.
Qiu et al. [80] demonstrated that RNA interference knockdown of APN genes decreases
the susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca-expressing
transgenic rice. A recent study also found that knockdown of the APN genes decreases the
susceptibility of C. suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca [16]. In this study,
14 DEGs were annotated as aminopeptidases between susceptible and resistant strains,
among which only two were up-regulated. Twelve DEGs encoding aminopeptidases were
down-regulated compared with the G88 strain.
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Another GPI-anchored Cry receptor involved in Bt resistance is alkaline phosphatase
(ALP). In this study, we did not find any differentially expressed genes annotated as ALP.
Another important group of receptors involved in Cry1Ac resistance is the ATP-binding
cassette transporters. Many previous studies have proven that resistance to Cry1Ac is
related to ABC transports. Among them, the structural variation or expression changes of
ABCA, ABCB, ABCC, ABCG, and ABCH are all related to Bt resistance [29,31,33,34,40,81–86].
The results from Yang [34] confirmed that ABCA2 is essential for the toxicity of Cry2Ab in
T. ni, whereby mutation of ABCA2 confers resistance to Cry2Ab in the resistant T. ni strain
derived from a Bt-resistant greenhouse population. In addition, Niu et al. [81] demonstrated
that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to
the cytotoxic effects of Cry3A toxins in Western corn rootworm (WCR), Diabrotica virgifera
verifier. Tian et al. [82] found that elevated expression of PxPgp1 was observed in P. xylostella
after they were exposed to abamectin treatment. Zhou et al. [83] also found that reduced
expression of the P-glycoprotein gene PxABCB1 is linked to resistance to Bt Cry1Ac toxin
in P. xylostella (L.). Tanaka et al. [29] demonstrated Cry toxin receptor functionality for
ABCC2 and highlighted the crucial role of this protein and cadherin. Meanwhile, bioassays
of CRISPR-based mutant strains demonstrated that the deletion of PxABCC2 or PxABCC3
alone provided <4-fold tolerance to Cry1Ac, while disruption of both genes together
conferred >8000-fold resistance to Cry1Ac, suggesting the redundant or complementary
roles of PxABCC2 and PxABCC3 in P. xylostella [33]. Furthermore, RNA interference (RNAi)-
mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility
to Cry1Ac toxin. Genetic linkage analysis confirmed that down-regulation of the Pxwhite
gene is tightly linked to Cry1Ac resistance in P. xylostella. Additionally, silencing PxABCH1
by a relatively high dose of dsRNA dramatically reduced its expression and resulted in
larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella
strains [31]. In addition, Zhou et al. [83] found that P-glycoprotein gene PxABCB1 was
significantly down-regulated in two resistant strains through preliminary transcriptome
analysis. More importantly, knockdown of this gene in susceptible strain DBM1AC-S led
to a significant reduction in sensitivity. Thus, they concluded that the decrease in PxABCB1
expression was closely related to Cry1Ac resistance. Xu et al. [87] constructed a stable
PxABCC2 cell line and found that cell lines with stable PxABCC2 were significantly less
sensitive to avermectin and chlorfenapyr compared to the control group. Their study
showed that the upregulation of PxABCC2 gene was associated with insecticide resistance.
This study also provides new insights into the cross-resistance between Bt toxins and
chemical insecticides.

We also counted the number of different genes related to insecticide resistance in each
group, as shown in Table 3. In the follow-up study, we conducted a functional verification
of whether the CYP gene is involved in Bt resistance mechanism. The results provide new
information on the interaction between Bt resistance and chemical insecticides. This study
found 14 differentially expressed genes belonging to the ABC family between susceptible
and resistant strains. Among them, five were up-regulated, and nine were down-regulated.
Whether these genes are also involved in Bt resistance remains to be further studied. Our
study provides rich candidate gene resources for the study of transporter involvement in
Bt resistance.

The change of midgut protease-induced protoxin activation is one of the proposed
mechanisms associated with Bt resistance, with some controversial evidence reported previ-
ously. For example, Gong et al. [88] found dramatically decreased activities of casein lysase
and trypsin in the resistant P. xylostella strain SZ-R, due to significantly down-regulated
expression of PxTryp_SPc1. A comparable finding, significantly lowered expression of
PxTryp_CFT1 (Px007616) in the resistant P. xylostella strain CryS1000, was also identified in
this study. However, Wei et al. [89] demonstrated that the LF120 strain (resistant strain)
of H. armigera developed strong resistance to both activated toxin and protoxin, and the
use of protease inhibitors did not change the LC50 of the resistant strain to Cry1Ac pro-
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toxin. The role of midgut protease-induced protoxin activation, therefore, is well worth
further investigation.

Our results also revealed DEGs encoding heat-shock proteins. A previous study
showed that PxHsp90 assists Cry1A proteins by enhancing their binding to the receptor
and protecting Cry protoxins from gut protease degradation [39]. In this study, five DEGs
encoding heat-shock proteins were found between the susceptible and resistant strains.
Among them, one was up-regulated, and four were down-regulated. Meanwhile, genes
encoding serpin proteases and serpin protease inhibitors were involved in the immune
function to regulate hemolymph melanization. However, we only found one DEG between
G88 and Cry1S1000 strains.

Genes encoding the detoxification enzymes of carboxylesterase (CarE), cytochrome
P450 (P450), and glutathione S-transferase (GST) were also identified. Among them,
P450 family members play a significant role in the degradation of chemical insecticides.
In this study, 24 DEGs were identified as P450s, 4 were CarEs, and 4 were GSTs. A previous
study showed that RNA interference-mediated knockdown of CYP6BG1 from P. xylostella
reduced larval resistance to permethrin [90]. In addition, Chen [91] demonstrated that the
overexpression of three CYP genes, CYP6CY14, CYP6CY22, and CYP6UN1, contributed to
dinotefuran resistance in Aphis gossypii. Furthermore, knockdown of CYP4PR1 increased
the susceptibility to deltamethrin in pyrethroid-resistant insects [92]. A dual-Luciferase
Reporter assay, a yeast one-hybrid (Y1H) assay, and RNA interference confirmed that the
mutation of the PxABCG1 promoter in the resistant strain resulted in Bt being unable to
combine with the toxin, resulting in strong resistance [93]. Qin et al. [94] showed that
MAPK-activated PxJun inhibited the expression of PxABCB1, leading to the resistance of
P. xylostella to Cry1Ac. Their study is the first to identify transcription factors involved
in the transcriptional regulation of Cry receptor genes in the gut of Bt-resistant insects.
Similar results were also found in several CYP genes found in our transcriptome data.
Furthermore, preliminary sequence verification found that there were significant variations
in the promoter regions of several CYP genes between susceptible and resistant strains.
Notably, it is widely reported that the P450 gene is mainly related to insecticide resistance.
However, whether or not the P450 gene is involved in the detoxification metabolism of Bt
toxin, and what role it plays in this process, needs further validation.

To find other resistance-related genes, we analyzed the GO function and KEGG func-
tion classifications for DEGs. The analysis of the GO function classification showed that
1932 genes were assigned to molecular functions, among which “binding”, “catalytic
activity”, and “transporter activity” had the largest number. Furthermore, 1461 genes
were assigned to biological processes and 1138 genes to cellular components. Specifically,
“cellular process” and “metabolic process” categories in the biological process domain
were represented by 574 and 468 DEGs between G88 and Cry1S1000 strains, respectively.
In the cellular component domain, the top three categories were “cellular anatomical en-
tity”, “intracellular”, and “protein-containing complex”, and the combined total number
of DEGs was more than 1100. Therefore, future work should be focused on DEGs under
these categories, specifically searching genes related to Bt resistance. In our study, a large
number of genes were significantly enriched in the “hydrolase activity”, “catalytic activ-
ity”, “metabolic process”, “primary metabolic process”, and “organic substance metabolic
process”-related GO categories (Figure S3).

Meanwhile, the KEGG pathway analysis indicated that 466 DEGs were annotated as
“signal transduction” under the environmental information processing. In the metabolism
domain, 619 DEGs were annotated as “global and overview maps”, representing the largest
number of DEGs between G88 and Cry1S1000 strains in the KEGG function classification.
This result suggests that there might be many genes related to Bt resistance in this category.
In addition, DEGs annotated as “transport and catabolism”, “digestives system”, and
“endocrine system” also need further investigation in future research. KEGG category
analysis revealed a significant range of enrichment genes in “fanconi anemia pathway”-
related KEGG pathways (Figure S4).
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After continuous laboratory screening with activated Cry1Ac toxin for 20 generations,
the SZ strain that originally had only 20 times resistance to Cry1Ac reached a 1200 times
resistance level. Moreover, studies showed that resistance of the SZBT strain to Cry1Ac
was controlled by a single, autosomal, and incomplete recessive gene. This study provides
good material for studying the mechanism of Bt resistance at single loci [95]. At the same
time, it also shows that the change of resistance may be relatively simple under laboratory
selection methods. In particular, we can find Bt resistance genes with stronger specificity
through this method to analyze the mechanism of Bt resistance. The G88 susceptible strain
used in this paper has been raised for more than 110 generations in the laboratory, and
the Cry1S1000 strain has been raised for more than 90 generations. Stable indoor breeding
strains provide good experimental materials for subsequent studies, and they also provide
more possibilities for the search of Bt resistance genes.

In the previous study [43], a comparative transcriptomic analysis was conducted
between a susceptible strain (MM) and two resistant strains (GK and MK) of P. xylostella,
of which the sources of MM and MK were consistent with ours. However, Lei et al.
continuously exposed resistant strains to Bt toxin to maintain their resistance multiples.
The resistant strain (Cry1S1000) used in this study [33] was screened with Cry1Ac toxin
only once when they first arrived in our laboratory, and then it was bred and passed on
in an environment without toxin exposure until now. Due to the selective induction of Bt
toxin resistance genes, we can actually understand these two resistance genes as different
resistant lines; that is, when we compare them with a susceptible strain at the same time,
the DEGs should be different. In addition, when we verified the function of the same
gene (PxABCC2 and PxABCC3), we obtained completely different results [33,56], so it is
reasonable for us to compare two completely different resistance strains. As shown in
Table 3, we obtained a large number of CYP genes. However, in subsequent functional
verification experiments (unpublished), we found sequence differences in coding regions
and promoter regions of multiple CYP genes between susceptible and resistant strains,
which may be related to resistance differences between the two strains. Unlike the previous
studies [43], before sampling we performed a short 24 h induction process for transcriptome
sequencing using low concentrations of Bt toxin in both resistant and susceptible strains.
This process will eliminate some differences in gene transcription levels due to toxin
induction, thereby gaining more constitutive types of DEGs between both strains.

5. Conclusions

In conclusion, this study reveals many DEGs between G88-susceptible and Cry1S1000-
resistant strains. In view of our results, several factors may participate in P. xylostella
resistance to Cry1Ac toxins. The widely reported cadherin and aminopeptidase N, alkaline
phosphatase, and ATP-binding cassette transporter may be involved in Cry1Ac resistance.
Among them, we have shown 14 DEGs encoding ABC transporters between G88 and the
Cry1S1000 strains, suggesting that genes from the ABC family are more likely to play an
important role in Bt resistance. Moreover, DEGs related to detoxification metabolism may
account for P. xylostella resistance to the Cry1Ac toxins, such as P450s (24 DEGs), CarEs
(4 DEGs), and GSTs (4 DEGs). These important genetic resources, coupled with ongoing
antibody analysis resources, are more conducive to screening and obtaining genes related
to Cry1Ac resistance in P. xylostella. RNAi or CRISPR/Cas9 technologies could be used to
verify relationships between these candidate genes and Bt resistance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/insects12121091/s1, Figure S1. PCA analysis of midgut samples of P. xylostella; Figure S2. The
number of differentially expressed genes between groups; Figure S3. GO enrichment of differen-
tially expressed genes between G88 susceptible (DBMA) and Cry1S1000 resistant (DBMC) strains;
Figure S4. KEGG enrichment of differentially expressed genes between G88 susceptible (DBMA) and
Cry1S1000 resistant (DBMC) strains; Table S1. Gene ID and annotation information of the novel
transcript; Table S2. Gene ID of differentially expressed genes between groups; Table S3. Primer
sequences for qRT-PCR of 19 selected differentially expressed genes.
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