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Abstract

Motivation: In silico drug–target interaction (DTI) prediction is important for drug discovery and drug repurposing.
Approaches to predict DTIs can proceed indirectly, top-down, using phenotypic effects of drugs to identify potential
drug targets, or they can be direct, bottom-up and use molecular information to directly predict binding affinities.
Both approaches can be combined with information about interaction networks.

Results: We developed DTI-Voodoo as a computational method that combines molecular features and ontology-
encoded phenotypic effects of drugs with protein–protein interaction networks, and uses a graph convolutional neur-
al network to predict DTIs. We demonstrate that drug effect features can exploit information in the interaction net-
work whereas molecular features do not. DTI-Voodoo is designed to predict candidate drugs for a given protein; we
use this formulation to show that common DTI datasets contain intrinsic biases with major effects on performance
evaluation and comparison of DTI prediction methods. Using a modified evaluation scheme, we demonstrate that
DTI-Voodoo improves significantly over state of the art DTI prediction methods.

Availability and implementation: DTI-Voodoo source code and data necessary to reproduce results are freely avail-
able at https://github.com/THinnerichs/DTI-VOODOO.

Contact: tilman.hinnerichs@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying drug–target interactions (DTIs) is a crucial step in drug
discovery; finding novel DTIs for approved drugs can be used for
drug repurposing, either by finding new drugs for a known target or
finding a drug for a novel target involved in a disease process.
Inferring the interactions between drugs and their targets can help to
analyze and identify potential desired or adverse drug effects as well
as desirable therapeutic effects. While in vitro DTI prediction is time
consuming, computational in silico DTI predictors can screen for
millions of interactions within a short time. Determining DTIs com-
putationally can therefore help to mitigate the costs and risks of
drug development.

Computational methods are widely applied to predict DTIs and
many computational methods have been developed. These methods
can be broadly classified into ‘top-down’ and ‘bottom-up’
approaches. Top-down approaches start from observable character-
istics resulting from a DTI, such as side-effects or the diseases treated
by a drug, and infer likely molecular mechanisms (i.e. the

interaction) using these observations. Bottom-up approaches start
from molecular features such as molecular structure or fingerprints
associated with drug and protein, and predict interactions from this
information.

Both bottom-up and top-down approaches to DTI prediction
bear some advantages and limitations. Generally, bottom-up meth-
ods face the challenge to predict whether a chemical structure binds
to a protein given their molecular properties; whether two entities
interact depends not only on the molecular structure of the entities
(where binding sites and molecular forces need to be determined for
accurate prediction) but also properties such as in which celltypes
and anatomical structures a protein is expressed. Top-down methods
use information about physiological effects of drugs for DTI predic-
tion, such as side-effect similarity (Campillos et al., 2008), that is
largely complementary to knowledge gained from molecular proper-
ties. While methods that rely on molecular information are directly
predicting whether two molecules could interact, top-down methods
base on more indirect means and infer a DTI from observable effects
resulting from the interaction.
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Both approaches may be used in conjunction with network infer-
ence (Chen et al., 2016). Biological networks used for DTI predic-
tion include protein–protein interaction networks (Feng et al., 2017;
Lee and Nam, 2018) and networks including several other types of
biological relations, including similarity between represented entities
(Ding et al., 2014; Gottlieb et al., 2011). Network-based DTI predic-
tion methods use the guilt-by-association principle (Oliver, 2000)
and assume that a protein is a likely target for a drug if many of the
protein’s neighbors in the interaction network are targets of the drug
(Gillis and Pavlidis, 2012). Network-based methods have been
applied successfully to DTI prediction. However, if DTIs are taken
as direct physical interactions between a drug and protein, it remains
an unresolved question whether the network-based guilt-by-associ-
ation hypothesis is true, or whether an interaction of a drug and pro-
tein dysregulates several of the protein’s interaction partners, and
therefore resulting in effects that are not direct interactions but only
downstream consequences of an interaction.

Progress in machine learning using graph neural networks can
allow us to test this hypothesis and combine both bottom-up and
top-down features with a network in a single machine learning
model. In particular, Graph Convolutional Networks (Kipf and
Welling, 2016) and their variants operate on different types of ker-
nels (Bianchi et al., 2019; Defferrard et al., 2016), including atten-
tion mechanisms (Veli�ckovi�c et al., 2017), and different forms of
exploring node neighborhoods (Hamilton et al., 2017; Klicpera
et al., 2018) can combine different types of features and graph-based
information. They have previously been applied for a number of
tasks, including prediction of protein functions (Zitnik and
Leskovec, 2017), cancer drug response (Liu et al., 2020) and drug–
target affinity prediction (Nguyen et al., 2020).

Potential biases resulting from the underlying datasets
(Pahikkala et al., 2015) which may affect model evaluation and
comparison pose a challenge for DTI prediction. Firstly, novel drugs
are often developed by altering non-functional components of a
drug, leading to two and more very similar drugs designed to target
the same proteins (Overington et al., 2006). This can result in a bias
when it leads to hidden duplicates or highly similar compounds that
are distributed among training and evaluation dataset, resulting in a
better (measured) predictive performance than it would be expected
when the model is applied to identify drugs that target a protein for
which no drugs yet exist. Secondly, some proteins (which we call
hub proteins) have significantly more known interactions with drugs
than others. In the STITCH database, 5% of the proteins have 40%
of the interactions, and similar distributions are present in other
datasets (Wishart et al., 2007, 2017); preferentially predicting these
proteins may increase predictive performance while not reflecting
the actual performance when applied to a new protein (i.e. a protein
for which no interactions are known). These differences in the num-
ber of drugs targeting certain proteins may be the result of study bias
where more ‘valuable’ proteins have more drugs designed to target
them due to their involvement in more common diseases (or diseases
for which drugs can be more profitably marketed). This might affect
common evaluation schemes where it is possible to exploit these
biases within DTI prediction (Wang and Kurgan, 2019). van
Laarhoven and Marchiori (2014) showed that several bias can be
exploited on the dataset of Yamanishi et al. (2008).

We developed DTI-Voodoo as a method for predicting DTIs. We
use an ontology-based machine learning method (Chen et al., 2021)
to encode phenotypic consequences of DTIs and deep learning meth-
ods to encode molecular features. We combine both using a protein
interaction network which we exploit with the aid of a graph neural
network. We use this model to test whether molecular or phenotype
features benefit from the network information and find that only
phenotype features localize on the graph whereas molecular features
do not. We further evaluate and compare DTI-Voodoo against sev-
eral DTI prediction methods and demonstrate a substantial improve-
ment of DTI-Voodoo over the state of the art in predicting drugs
that target a protein. We also identify and characterize several biases

in both training and evaluating DTI prediction methods, and make
recommendations on how to avoid them. DTI-Voodoo is available
as Free Software at https://github.com/THinnerichs/DTI-VOODOO.

2 Materials and methods

2.1 Problem description
DTI-Voodoo aims to solve the following problem: for a given drug and
a given protein we want to determine whether those interact or not.
We do not differentiate between types of interaction such as activation
and inhibition, and do not predict the strength of the interaction. We
treat all drug–protein pairs without a known interaction as negatives
and therefore formulate the problem as a binary classification task.

2.2 Datasets
We obtain a dataset consisting of 12 884 human proteins with 340
627 links from STRING (Szklarczyk et al., 2014). For the DTIs, we
use 229 870 links from the STITCH database (Szklarczyk et al.,
2016). As both STRING and STITCH provide confidence scores for
each association, we filtered them as advised by a threshold of 700,
therefore retaining only high-confidence interactions.

We utilize the PhenomeNET ontology (Hoehndorf et al., 2011),
an ontology integrating ontologies such as the Human Phenotype
Ontology (Köhler et al., 2018), Gene Ontology (Ashburner et al.,
2000; Carbon et al., 2020), Mammalian Phenotype Ontology (Smith
and Eppig, 2009) and several others. We obtained side effects and
their links to drugs from SIDER (Kuhn et al., 2016); SIDER contains
side effects encoded using identifiers from the MedDRA database
(Mozzicato, 2009). We mapped side effects to the PhenomeNET
ontology using the Phenomebrowser.net, which provides a SPARQL
query endpoint for the mentioned resources. The overall structure is
shown in Supplementary Figure S1.

For comparative evaluation, we use the gold standard dataset
introduced by Yamanishi et al. (2008) consisting of 1923 interac-
tions between 708 drugs and 1512 proteins, and the BioSnap dataset
(Zitnik et al., 2018) which consists of 5017 drug nodes, 2324 gene
nodes and 15 138 edges.

We only use proteins in our analysis that have at least one link in
STRING or one association in PhenomeNET, and drugs with at least
one side effect. Therefore, the intersection between these resources
yields 1428 drugs and 7368 human proteins with 32 212 interac-
tions for STITCH, 1837 interactions between 680 drugs and 1458
proteins for Yamanishi, and 6498 links between 949 drugs and 2221
proteins for BioSnap dataset. We provide links to and methods for
obtaining and processing the necessary data in our Github
repository.

2.3 Model
Our model combines ‘top-down’ and ‘bottom-up’ information for
drug–target identification. We consider an approach to be ‘top-
down’ when observable characteristics of either a drug (such as a
drug effect) or protein (such as a protein function, or phenotypes
resulting from a loss of function) are used to provide information
about a molecular mechanisms; we consider an approach ‘bottom-
up’ when structural or other molecular information is used to deter-
mine a mechanism. In order to build a method that incorporates
both top-down and bottom-up features, we first create a model for
each type of feature separately. As features for the bottom-up model,
we use features derived from molecular structures of drugs from the
SmilesTransformer (Honda et al., 2019) and molecular features for
proteins from DeepGOPlus (Kulmanov and Hoehndorf, 2020).
SmilesTransformer is an autoencoder trained over the SMILES
strings, and therefore captures (some aspects of) the molecular or-
ganization of each drug in an unsupervised manner. DeepGOPlus
provides features derived from protein amino acid sequences which
are useful to predict protein function.
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As phenotypes and functions are encoded through ontologies, we
use DL2Vec (Chen et al., 2021) to obtain ontology-based representa-
tions for use as top-down features. DL2vec constructs a graph by
introducing nodes for each ontology class and edges for ontology
axioms, followed by random walks starting from each node in the
graph. These walks are encoded using a Word2vec (Mikolov et al.,
2013) model. Therefore, DL2Vec generates representations that en-
able to encode drug effects or protein functions while preserving
their semantic neighborhood within that graph.

2.3.1 Half-twin neural networks and feature transformation

As we want to learn from the similarity of drug side effects and pro-
tein phenotypes, we use a deep half-twin neural network with a con-
trastive loss using cosine similarity. A half-twin neural network aims
to learn a similarity between two embeddings of variable but same
dimension. As the original feature space may have varying dimen-
sionality, we first process them using a fully connected neural net-
work layer which takes as input an embedding and outputs a
representation of a particular size, i.e. we use this layer as a trainable
feature transformation and apply it to reduce the representation size
of the embeddings for drugs and proteins separately. An example
structure for both types of features can be found in Supplementary
Figure S2. The use of this trainable feature transformation layer ena-
bles flexible experimentation as both ontology and molecular feature
for both drugs and proteins are reduced to the same dimensionality
for varying sizes of inputs; this allows for a high amount of modular-
ity across different experimental setups by adding different kinds of
features into the model. Additionally, the generated features may be
used for other tasks. We follow the results of DL2vec (Chen et al.,
2021) and use r :¼ LeakyReLU as activation function which leads
to improved performance compared to other activation functions.

2.3.2 Graph convolutional layers

We include these molecular and ontology-based sub-models within a
graph neural network (GNN) (Kipf and Welling, 2016). The graph
underlying the GNN is based on the protein–protein interaction
(PPI) graph. The PPI dataset is represented by a graph G ¼ ðV;EÞ,
where each protein is represented by a vertex v 2 V, and each edge
e 2 E � V � V represents an interaction between two proteins.
Additionally, we introduce a mapping x : V ! R

d projecting each
vertex v to its node feature xv :¼ xðvÞ, where d denotes the dimen-
sionality of the node features.

A graph convolutional layer (Kipf and Welling, 2016) consists of
a learnable weight matrix followed by an aggregation step, formal-
ized bY

X0 ¼ D̂
�1=2

ÂD̂
�1=2

XH (1)

where for a given graph G ¼ ðV;EÞ; Â ¼ Aþ I denotes the adja-
cency matrix with added self-loops for each vertex, D is described
by D̂ii ¼

P
j¼0 Âij, a diagonal matrix displaying the degree of each

node, and H denotes the learnable weight matrix. Added self-loops
enforce that each node representation is directly dependent on its
own preceding one. The number of graph convolutional layers
stacked equals the radius of relevant nodes for each vertex within
the graph.

The update rule for each node is given by a message passing
scheme formalized bY

x0i ¼ H
XN

j

1ffiffiffiffiffiffiffiffiffi
d̂jd̂i

q xj (2)

where both d̂ i; d̂ j are dependent on the edge weights eij of the graph.
With simple, single-valued edge weights such as eij ¼ 1 8ði; jÞ 2 E,
all d̂ i reduce to di, i.e. the degree of each vertex i. We denote this
type of graph convolutional neural layers with GCNCONV.

While in this initial formulation of a GCNConv the node-wise
update step is defined by the sum over all neighboring node represen-
tations, we can alter this formulation to other message passing
schemes. We can rearrange the order of activation function r,

aggregation AGG and linear neural layer MLP with this formulation
as proposed by Li et al. (2020):

x0i ¼MLP
�

xi þ AGG
�
frðxj þ ejiÞ þ � : j 2 NðiÞg

��
(3)

where we only consider r 2 fReLU;LeakyReLUg. We denote this
generalized layer type as GENCONV following the notation of
PyTorch Geometric (Fey and Lenssen, 2019). While the reordering is
mainly important for numerical stability, this alteration also
addresses the vanishing gradient problem for deeper convolutional
networks (Li et al., 2020). Additionally, we can also generalize the
aggregation function to allow different weighting functions such as
learnable SoftMax or Power for the incoming signals for each vertex,
substituting the averaging step in GCNCONV. Hence, while
GCNCONV suffers from both vanishing gradients and signal fading
for large scale and highly connected graphs, each propagation step
in GENCONV emphasizes signals with values close to 0 and 1. The
same convolutional filter and weight matrix are applied to and
learned for all nodes simultaneously. We further employ another
mechanism to avoid redundancy and fading signals in stacked graph
convolutional networks, using residual connections and a normaliza-
tion scheme (Li et al., 2019, 2020) as shown in Supplementary
Figure S3. The residual blocks are reusable and can be stacked mul-
tiple times.

2.3.3 Combined prediction model

Combining half-twin and graph convolutional neural networks, we
map all protein representations to their respective node features, ini-
tializing the graph convolutional update steps. The resulting repre-
sentations are used for a similarity prediction. When combining
ontology and molecular features with or without the graph model,
we concatenate both protein features and both drugs features, before
plugging them into the graph model for the similarity computation.
An overview of the model architecture, combining both feature
types, is shown in Supplementary Figure S4. Here the original repre-
sentations are transformed by a dense layer and then used as input
of a stack (with height 3) of residual graph convolutional blocks.

2.3.4 Hyperparameter tuning

As the number of drug–targets are sparse with respect to the amount
of both drugs and proteins considered, the training, validation and
testing datasets are imbalanced. As there are only 22, 336 links in
the considered STITCH subset, the ratiO

w :¼ drugs � proteins

dtilinks
� 360; (4)

consequently needs suitable compensation in the computed loss
function and appropriate metrics for the evaluation.

Therefore, we weight all positive drug–protein pair samples with
this ratio by introducing the following loss function with respect to
binary cross-entropy:

lðx; yÞ ¼ �w½y � log xþ ð1� yÞ � logð1� xÞ� (5)

for a given prediction x and target y, and positive weight w defined
by Equation (4). We average this loss among all drug–protein pairs
in the training set, leading to a stable environment for the Adam op-
timization algorithm (Kingma and Ba, 2015). We implemented a 5-
fold cross validation split among the proteins. Furthermore, we used
early stopping in the training process.

To find the best hyperparameter configuration for the proposed
model, we performed a grid search to find the most expressive and
non-redundant representation. We pretrained the bottom-up and the
top-down model separately and aimed at best performing models
with respect to our evaluation metrics. We optimized embedding
sizes, depth of the neural network, optimizer, learning rate and layer
types using an extensive, manual grid search. Starting from shallow
feature transformations with an embedding size of 10, we scaled the
network up to residual structures with up to 10 hidden layers leading
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to embeddings of size 4000, testing different network widths and
learning rates for each configuration.

2.4 Evaluation and metrics
2.4.1 Splitting schemes

As DTI prediction is dependent on both drugs and proteins, there
are multiple ways of determining training, validation and testing sets
of pairs to evaluate each model. For cross-validation, we can per-
form the split over DTI pairs, over drugs and over proteins, respect-
ively; when splitting over drugs or proteins, the entities (drugs or
proteins) are separated and all their associations included in the split.
Only when splitting by protein or drug are unseen entities guaran-
teed to be shown to the model in the validation and testing phase.
The models resulting from the different splitting schemes may have
different expressiveness and exploit different information in DTI
prediction, as different information is known in the training and test-
ing phase.

2.4.2 Metrics

To assess each model, we compute a variety of common metrics for
binary classification. As the datasets are highly imbalanced, we use
the area under the receiver operating characteristic curve (AUROC)
on training, validation and testing split.

We calculate the AUROC by computing true positive rate at vari-
ous false positive rate thresholds and use trapezoidal approximations
to estimate the area under the curve. We refer to this measure as
MacroAUC.

We also calculate the MicroAUC score. For given lists D and P
of drugs and proteins, respectively, and a set of known interactions
Int :¼ fðdi;piÞg, MicroAUC is calculated as the average per entity
AUROC score. For example, the protein-centric score can be for-
malized as: given labels l : D� P! f0; 1g and predictions
y : D� P! ½0;1�, we definE

MicroAUC0pðl; yÞ :¼ mean
p2P

�
fAUROCðfðlðdi; pÞ; yðdi;pÞÞjdi 2 DgÞg

�

In some cases, the MicroAUC score may not be defined as in
some datasets some proteins or drugs have no interactions, leading
to an infeasible TPR ¼ 0 for all thresholds and an undefined
AUROC score for that entity. As this is quite common for DTI data-
sets, we do not omit but impute the MicroAUC interpolating linearly
for those entities using the accuracy for this subset:

MicroAUCpðl; yÞ :¼ MicroAUC0pðl; yÞ if
P

di2D lðdi; pÞ 6¼ 0
Accuracyðl; yÞ otherwise

�

Drugs and proteins can be interchanged in this formulation. We
refer to the different measures as protein-centric microAUC
(MicroAUCp) and a drug-centric microAUC (MicroAUCd). We fur-
ther compare MicroAUCp with imputation and MicroAUC0p without
imputing undefined MicroAUC values (but omitting them) in
Supplementary Table S1.

Further, we choose the AUROC over other measures such as the
area under precision recall curve (AUPRC) as primary metric to
compare different methods; AUPRC is sensitive to data imbalances
(Jeni et al., 2013) and therefore more challenging to apply to com-
paring different DTI prediction methods.

3 Results

3.1 DTI-Voodoo: computational model to identify drugs

that target a protein
We developed DTI-Voodoo as a computational model to predict
DTIs. Specifically, given a protein, DTI-Voodoo will identify and
rank drugs that likely target this protein. DTI-Voodoo combines two
types of features: structural information for drugs and proteins that
can be used to determine if the drug and protein physically interact,
and information about phenotypic effects of drugs and changes in
protein function that may ‘localize’ on an interaction network (i.e.

neighboring nodes will share some of these features or are phenotyp-
ically similar). As structural features, DTI-Voodoo uses structural
representations of drugs from the SMILES transformer (Honda
et al., 2019) and representations of protein amino acid sequences
from DeepGOPlus (Kulmanov and Hoehndorf, 2020). DTI-Voodoo
learns representations of drug effects and protein functions using the
ontology-based machine learning method DL2Vec (Chen et al.,
2021) and ontology-based annotations of drugs and proteins.

We construct a graph with proteins as nodes and protein-protein
interactions as edges, mapping the protein features to each target as
node features. DTI-Voodoo then propagates information among the
PPI network utilizing graph convolutional steps, calculates the simi-
larity of drug and protein representations, and predicts whether
there is an interaction. The full workflow scheme is depicted in
Figure 1.

We evaluate our model’s ability to identify DTIs using different
approaches and datasets. First, we perform a cross-validation over
proteins and validate our results. A cross-validation over proteins
aims to evaluate how the model performs when tasked to identify
drugs that may target a ‘novel’ protein, i.e. one not seen during train-
ing, or a protein for which a drug that targets it should be predicted.

We trained, validated and finally tested all considered models on
the STITCH dataset using a 5-fold cross-validation over a protein
split; we then selected the best-performing models (with respect to
MicroAUCp, see Section 2.4.2), and retrain them from scratch in a
5-fold protein-split cross-validation on the Yamanishi benchmark
dataset to avoid validation overfitting and yield more realistic testing
results. To evaluate the influence of the different features separately,
and to determine whether they ‘localize’ on the PPI graph (and there-
fore can be exploited successfully by the graph neural networks), we
train and evaluate models with different types of features, and with
and without inclusion of the PPI graph, separately. We comparing
the molecular (MolPred) and phenotype-based (OntoPred) predic-
tion model, and a combination of both where we concatenate both
types of features. Table 1 shows the results of these experiments.

We find that the model using ontology-based features
(OntoPred) is showing better performance on STITCH compared to
using only molecular features. We also observe that only the model

Fig. 1. Full DTI prediction model based on the pretrained learnable feature transfor-

mations for either molecular structure or ontology based features. The transformed

protein representations are added to each corresponded protein as node features for

the graph convolutional steps
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using ontology-based features results in increased performance when
incorporating the PPI graph. This increase can be observed with dif-
ferent graph neural network architectures and configurations
(Supplementary Table S2). While the GCNConv and GENConv
architecture already shows some minor improvement, the use of
ResGraphConv results in larger performance improvements.
ResGraphConv blocks add a large amount of additional learnable
parameters to the network, leading to more expressive power. To
test whether the observed improvement is due to the number of
learnable parameters added or the result of better exploiting the in-
formation about PPIs, we experiment with a graph model in which
all graph convolutional neural layers in the residual blocks are
removed, resulting in a model with similar parameters but without
the ability to use graph-based information. This pruned network,
with no information on the protein–protein interactions, reached
very similar results to the original OntoPred model and showed no
improvement (Supplementary Table S2). Hereby, DTI-Voodoo
improves significantly (P<10-4, one-sided t-test) over OntoPred for
STITCH (MacroAUC: t¼6.9, MicroAUCp: t¼5.6) and significantly
with respect to MicroAUCp (P<10-2) for Yamanishi dataset
(MacroAUC: t¼1.2, MicroAUCp: t¼2.4)

The improvements when including the graph are only provided
by the GENConv graph convolution scheme which includes the
ResGraphConv blocks; GCNConv and other graph convolutional
methods fail to achieve any gain in comparison to the plain
OntoPred performance even when combined with the residual
blocks. The discrepancy between GENConv and other graph convo-
lutional methods may be the result of numerical instability and fad-
ing signals (Li et al., 2020).

Our results demonstrate that the inclusion of graph information
can increase performance when ontology-based features are used but
not when molecular features are used alone. This observation allows
us to conclude that information about protein functions localizes on
the graph whereas molecular features do not.

We further investigate the performance on the specific inter-
action types inhibition and activation that are available within the
STITCH database. The results are summarized in Supplementary
Table S3; we find no difference between the performance on specific
interaction types and the complete dataset where we do not separate
types of interaction.

3.2 Protein-centric evaluation
The goal of DTI-Voodoo is to find candidate drugs that target a spe-
cific protein; however, so far, we do not evaluate this application
but rather how DTI-Voodoo would perform in finding plausible
DTIs among all possible interactions (since we use the MacroAUC
as our main evaluation measure). This evaluation does not corres-
pond to the application of DTI-Voodoo in finding drugs that target
a specific protein. To provide a better estimate on how DTI-Voodoo
performs for individual protein targets, we use micro-averages be-
tween proteins and compute the MicroAUC (see Section 2.4.2); to
determine MicroAUC, we average the performance (true and false
positive rates) per protein instead of across all drug–protein pairs;
the resulting measure can therefore better estimate how DTI-

Voodoo performs when tasked with finding a drug that targets a spe-
cific protein.

Furthermore, we hypothesize that it may be possible for a ma-
chine learning model to exploit biases in DTI data to achieve rela-
tively high prediction performance without obtaining a biologically
meaningful signal. For example, hub proteins may have a large num-
ber of interactions, or certain drugs interact with many proteins, and
preferentially predicting these interactions may increase predictive
performance even in the absence of any biological features. To test
this hypothesis, we design a ‘naı̈ve’ baseline model that predicts the
same list of proteins for each drug based only on the number of
known DTIs for a protein. Specifically, given lists D and P of drugs
and proteins and a set of known interactions I :¼ fðdi;piÞg, we con-
struct an interaction matrix Mint 2 f0;1gjDj�jPj witH

Mij ¼
1 if ðdi;pjÞ 2 I
0 otherwise

�

describing for all drug–protein pairs whether there is a known inter-
action or not. We now rank all proteins pj 2 P descending by their
number of drug interactors by summing over the columns of Mij and
ranking these sums:

f : P! N with f : pj 7!
XjDj
i¼1

Mij

Our ‘naı̈ve’ predictor Pk predicts all drugs to interact with the
top k targets with respect to the introduced ranking:

Pk : D� P! f0;1g with Pk : di;pj 7!
1 if pj 2 TopkðPÞ
0 otherwise

�

with the only hyperparameter k.
The prediction Pk is not dependent on the drug di and will predict

the same ranked list of drugs for all proteins; consequently, this
naı̈ve predictor does not rely on any biological features and will not
predict any novel information about interactions between drugs and
proteins; the naı̈ve predictor only exploits imbalances in the evalu-
ation set to make predictions that may perform well. The way in
which we formulated the naı̈ve predictor, it is not applicable for a
protein split cross-validation as the number of interactions for each
protein in the validation set is unknown.

We apply this naive predictor on both the STITCH and
Yamanishi datasets, using the full datasets as well as a 5-fold cross-
validation over drugs and over drug–protein pairs to compare the
prediction results directly to DTI-Voodoo. For each fold, we grad-
ually increase k to determine the best performance for each fold.
Using the full dataset, drug–target split and drug split, we obtain the
following MacroAUC results: for the STITCH database, we obtain a
performance of 0.76 on the whole dataset, 0.70 for the drug–target
pairs and 0.73 in case of the drug splitting scheme; on the Yamanishi
dataset, we obtain MacroAUC scores of 0.88, 0.84 and 0.85, for the
total dataset, drug–target pair and drug split, respectively. The naı̈ve
predictor shows higher performance on the Yamanishi dataset than
on STITCH, and a substantial gain in comparison to an expected

Table 1. Results for DTI-Voodoo on the STITCH and Yamanishi datasets evaluated with 5-fold cross-validation

(a) STITCH results (b) Yamanishi results

DTI-Voodoo

results

PPI graph PPI graph

Without With Without With

Macro AUC Micro AUCp Macro AUC Micro AUCp Macro AUC Micro AUC Macro AUC Micro AUCp

MolPred 0.69 0.65 0.69 0.67 0.66 0.67 0.66 0.64

OntoPred 0.88 0.87 0.92 0.93 0.80 0.79 0.83 0.82

DTI-Voodoo 0.89 0.90 0.93 0.94 0.83 0.82 0.84 0.84

Note: We call the model using only molecular features MolPred and the model using only ontology-based features OntoPred. DTI-Voodoo combines both types

of features.
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random predictor on both datasets. In the following, we utilize this
naivı̈e predictor as baseline to compare its performance to state of
the art models and DTI-Voodoo.

For comparison with the state of the art methods, we chose the
best performing methods for DTI prediction that were previously
evaluated on the Yamanishi benchmark dataset. These methods in-
clude DTIGEMSþ (Thafar et al., 2020) and DTI-CDF (Chu et al.,
2021) which have showed superior results in comparison to numer-
ous works. Furthermore, we added DTINet (Luo et al., 2017) as
method for comparison which has been used to develop a number of
methods such as NeoDTI (Wan et al., 2019) with similar
methodology.

We evaluate all models on their recommended splitting scheme
choice, hyperparameters and folds in cross-validation, measuring
their respective AUROC. We further evaluate each model by per-
forming a protein-wise cross-validation determining the MacroAUC
and MicroAUCp. For this evaluation, we allow sub-sampling of neg-
atives for the training process but not for the validation and testing
phase as real world applications of these models would have to deal
with possibly imbalanced data.

The results of our experiments are summarized in Table 2; we
calculated the performance of all compared methods over their ori-
ginal splitting scheme and over a protein split. We find that there is a
large difference in performance when evaluating over a drug–target
pair split compared to a protein split, with generally higher perform-
ance achieved when using the drug–target pair split. Second, when
evaluating the same methods over a protein split, we find a substan-
tial performance difference in comparison to the splitting scheme
used in the original evaluation of each method. DTI-CDF was ori-
ginally evaluated on all three splitting schemes underlining this point
(Chu et al., 2021). While DTI-Voodoo provides comparable per-
formance to the naı̈ve predictor and DTI-CDF in terms of
MacroAUC, it yields considerably better results with respect to
MicroAUCp. We also find that methods that are trained using a pro-
tein split generally result in higher MicroAUCp than methods trained
using a drug–target pair split, indicating that they may generalize
better to unseen protein targets whereas methods trained on a drug–
target split potentially exploit hidden biases and therefore generalize
less well.

As the difference in performance with different splitting schemes
is quite large, we further evaluated additional DTI and drug–target
affinity prediction methods that were trained and evaluated on other
datasets. Following the results of MolTrans (Huang et al., 2021), we
reevaluated DeepDTI (Wen et al., 2017), DeepDTA (Öztürk et al.,
2018), DeepConv-DTI (Lee et al., 2019) and MolTrans itself on the
BioSnap dataset (Zitnik et al., 2018) and compared it to our ‘naı̈ve’
predictor as well as DTI-Voodoo (see Table 3). MolTrans was eval-
uated over the drug–target pair and the protein split; we were able to
reproduce the MolTrans results (Table 3), showing a substantial dif-
ference based on the splitting scheme. We additionally computed the
MicroAUCp score for all considered methods, leading to similar
results as observed on the Yaminishi dataset. We test whether DTI-
Voodoo performs better than the methods we compare against or
whether the observed values for MicroAUCp and MacroAUC fall
within expected variant; we use a one-tailed T-test with Bonferroni
correction for this test.

Considering Macro AUCs, DTI-Voodoo improves significantly
(P < 10�4, one-sided t-test) over MolTrans (t¼ 36.6), DeepDTI

(t¼40.5), DeepDTA (t¼ 36.6), and DeepConv-DTI (t¼40.5) on
the BioSnap dataset, and significantly (P < 10�4, one-sided t-test)
over DTINet (t¼20.8) and DTIGEMSþ (t¼18.0) on the
Yamanishi dataset; DTI-CDF performs better than DTI-Voodoo
(P ¼ 0:1; t ¼ 1:3, one-sided t-test). We further perform another one-
tailed t-test to compare MicroAUCp performance. We find that DTI-
Voodoo improves significantly (P < 10�4) over
MolTrans(t¼21.2), DeepDTI (t¼31.0), DeepDTA (t¼33.4) and
DeepConv-DTI (t¼ 23.7) on the BioSnap dataset, and over DTINet
(t¼29.6), DTIGEMSþ (t¼28.0) and DTI-CDF (t¼9.5) on the
Yamanishi dataset.

In all our experiments, DTI-Voodoo improves over all other
methods with respect to MicroAUCp, demonstrating that DTI-
Voodoo can identify drugs that target a specific protein more accur-
ately than other methods. Some methods achieve a higher
MacroAUC than DTI-Voodoo, in particular when evaluated using a
drug–target pair splitting scheme; our results with the ‘naı̈ve’ predic-
tion method show that it may be possible that models trained on a
drug–target split utilize certain biases in the dataset without neces-
sarily producing novel biological insights.

4 Discussion

4.1 ‘Bottom-up’ and ‘top-down’ prediction of DTIs
There are many computational methods to predict DTIs. They can
broadly be grouped in two types; the first, which we refer to as ‘bot-
tom-up’ approaches, start from molecular information about a drug
and protein and predict an interaction based on their molecular
properties; the second, which we refer to as ‘top-down’ approaches,
start from observable characteristics of an organism and infer DTIs
as the putative molecular mechanisms that explain these
observations.

Another view on these two approaches is as direct and indirect
ways to predict DTIs. On one hand, molecular information can be
used to directly determine whether two molecules (such as a drug
and protein) have the ability to interact, whereas information about
phenotypic consequences of a drug (drug effects) or disruption of a
protein function can be used to indirectly suggest candidate DTIs.
Molecular features will be specific to a drug–target pair and we
would not expect this information to propagate through a protein–
protein interaction network; the main information about DTIs that
could be obtained from interactions between proteins is information
about binding sites between proteins that may also be used by a drug
molecule (i.e. information that protein P1 binds to protein P2 reveals
information about the molecular structures of both P1 and P2). On
the other hand, phenotypic consequences of changes in protein func-
tion, or drug effects, are often a result of aberrant pathway or net-
work activity and involve more than one protein; consequently, we
expect these features to benefit more from including information
about protein–protein interactions. Moreover, as the protein–pro-
tein interaction relation is not transitive (protein P1 interacting with
P2, and P2 relating with P3 does not imply P1 interacting with P3),
we mainly transfer information to the direct neighborhood of each
protein within the PPI graph. Our results (Table 1) confirm the first
hypothesis and demonstrate that molecular features do not benefit
from including the interaction network whereas the indirect, top-

Table 2. Comparison of DTI-Voodoo with state of the art DTI prediction methods on the Yamanishi dataset; we evaluated the original and

the protein-based split in a cross-validation

Approach Original Original scheme Protein split

Splitting scheme Macro AUC Macro AUC Micro AUCp

Naive predictor Drugs 0.85 – –

DTINet DP pairs 0.91 0.74 0.67

DTIGEMSþ DP pairs 0.93 0.72 0.68

DTI-CDF Proteins 0.85 0.85 0.79

DTI-Voodoo Proteins 0.84 0.84 0.84
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down features benefit from the propagation over the interaction net-
work. While the graph we chose is based on interactions between
proteins and our results hold true for such a graph, other types of
entities and interactions can also be chosen, in particular similarity
networks (Gottlieb et al., 2011); in such networks, information be-
tween nodes may be transmitted differently than in DTI-Voodoo.

There are other types of indirect features that could be added to
our model. A common feature that may be added are drug indica-
tions which are predictive of DTIs (Gottlieb et al., 2011). However,
we do not include them in our model as including drug indications
would allow our model to make many trivial predictions based only
on remembering which targets are often used for which indication;
including network information would likely benefit predictions
based on drug indications because different drugs may target the
same pathway through different mechanisms.

Combining bottom-up and top-down approaches in a single
model can follow different strategies. Interaction networks are used
widely to determine indirect effects of molecular changes and predict
DTIs (Shahreza et al., 2017). Our work relies on graph neural net-
works as a way to combine qualitative information about interac-
tions with additional features (molecular interaction, phenotypic
and functional features); even if only some of these features benefit
from the information the graph provides, graph neural networks will
allow further extension of our model with additional features in the
future.

To the best of our knowledge, DTI-Voodoo is the first DTI pre-
diction model that propagates ontology-based features of protein
interaction networks; while a similar approach of combining ontol-
ogy embeddings with interaction networks has previously been used
for analyzing gene expression (Trebacz et al., 2020), DTI-Voodoo
extends this method to DTI prediction. Further, DTI-Voodoo is
novel in that it explicitly integrates ‘bottom-up’ and ‘top-down’ fea-
tures using a graph representation of interactions between proteins;
while there are other DTI prediction methods that combine these
features (Gottlieb et al., 2011), DTI-Voodoo exploits the ability to
integrate heterogeneous features using graphs and the ability to util-
ize this graph in machine learning through the use of graph neural
networks.

4.2 The challenge of evaluating DTI predictions
One major component of our experiments was to determine how the
information that is available to a machine learning model during
training affects the performance of the model. Similarly to previous
work (Chu et al., 2021; Huang et al., 2021; Lee et al., 2019), we
find significant differences in predictive performance across different
splitting schemes.

The most common scheme for DTI prediction is the split over
drug–target pairs (Wang and Kurgan, 2019) where it may happen
that most drugs and targets that are including in the model’s valid-
ation and testing phase have also been included in the training phase
(as part of other drug–target pairs). This scheme is prone to a num-
ber of biases. If the number of interactions for a drug or protein are
imbalanced, i.e. some drugs or proteins have many more interactions
than others, these will be seen more often during training and they
will likely also have more interactions in the testing and validation

sets; because some entities have more interactions, i.e. they are more
likely to interact, any model that preferentially predicts these as
interaction partners will improve its predictive performance. While
this accurately captures the distribution, predicting based on biases
in the number of interaction partners is not desirable when applying
the model to novel entities. We have demonstrated that even the
newly proposed ‘naı̈ve’ classifier that makes predictions only by
exploiting the imbalanced number of interaction partners can
achieve performance close to state of the art methods (when measur-
ing Macro AUC). When training a machine learning model on such
imbalanced data, it will eventually overfit to this imbalance.
Splitting by entity (protein or drug) can reduce the impact of these
spurious correlations but not reduce it entirely, because similar enti-
ties will still exhibit similar interaction patterns. In our experiments,
we observed the impact of splitting training and evaluation sets by
protein as a decrease in overall performance (Macro AUC), provid-
ing some evidence that models trained using this splitting scheme are
less sensitive to overfitting to this type of bias.

The way in which training and evaluation data is generated is
related to how the model is evaluated. An evaluation based on
Macro AUC evaluated the application scenario where a set of drugs
and proteins are given, and out of all possible pairs, the more likely
interactions need to be identified. However, this does not correspond
to most scenarios for drug repurposing where a drug that targets a
specific protein (e.g. a protein involved in a disease) needs to be iden-
tified. We introduce an evaluation measure based on micro-averages
per protein (Micro AUCp) to evaluate this scenario, and we often
find substantial differences in predictive performance when evaluat-
ing with Macro AUC and Micro AUCp; generally, models that are
trained using a split over drug–target pairs perform worse in Micro
AUCp than models that use a protein-based split, further providing
evidence that a drug–target split results in overfitting to dataset
biases.

Finally, a potential source of differences in model performance is
how negatives are identified and treated during evaluation (and
training). There are few large sets of validated negative DTIs; conse-
quently, many models (including DTI-Voodoo) use all unknown
interactions as negatives. As there are many more negative than posi-
tive interactions, negatives are then sub-sampled during training
resulting in a training set that is balanced between positives and neg-
atives (or a certain ratio is preserved). While this is a reasonable
strategy to deal with imbalanced data, it may be problematic when
the same sub-sampling is applied on the model’s evaluation set be-
cause it over-simplifies the evaluation process. The performance dif-
ferences is not usually visible when using ROC curves but results in
unrealistically high precision and therefore high area under a
precision-recall curve.

Several of the biases we identify in evaluating DTI prediction
methods have been observed previously. The performance difference
based on how training and evaluation data is split (by interaction
pair, by drug or by protein) has been demonstrated before using the
MacroAUC measure (Huang et al., 2021; Pahikkala et al., 2015; van
Laarhoven and Marchiori, 2014); we further extend on these results
by introducing performance measures based on micro averages
(Micro AUCp and Micro AUCd) to further illustrate how prediction
performance changes when evaluation data is imbalanced. We have

Table 3. Comparison of DTI-Voodoo with state of the art DTI prediction methods on the BioSnap dataset; we evaluated the original and the

protein-based split in a cross-validation

Approach Original Original scheme Protein split

Splitting scheme Macro AUC Macro AUC Micro AUCp

Naive predictor DP pairs 0.79 – –

DeepDTI Drugs 0.88 0.76 0.70

DeepDTA DP pairs 0.88 0.77 0.69

DeepConv-DTI DP pairs 0.88 0.76 0.73

MolTrans DP pairs 0.90 0.77 0.74

DTI-Voodoo Proteins 0.85 0.85 0.82
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further extended on prior results by introducing a ‘naı̈ve’ classifier
that explicitly exploits one data bias to make predictions, illustrating
that this bias has a significant impact on DTI methods. The bias we
identify with the ‘naı̈ve’ classifier is similar to a previous bias found
in gene networks when using methods that rely on the guilt-by-
association principle (Gillis and Pavlidis, 2012) but which has, to
our knowledge, not been demonstrated in the context of DTI
prediction.

In summary, DTI prediction is not a single computational
problem in bioinformatics but a set of related problems. Let P be
a set of proteins P and D a set of drugs; one task can be to identify
arbitrary pairs (p, d) with p 2 P and d 2 D that interact, another
to identify a set of interacting drugs for each p 2 P, and yet an-
other to identify a set of proteins for each drug d 2 D. The first
task may be useful when no particular drug or protein is consid-
ered; the second task when searching for a drug that targets a spe-
cific (disease-associated) protein; and the third when aiming to
find new applications for a given drug. The first task would best
be evaluated using a Macro AUC, the second and third using a
Micro AUCp and Micro AUCd.

4.3 Pharmacological novelty
As the target-based predictive power of DTI-Voodoo improves sig-
nificantly over other methods, we utilized our model to predict novel
drug classes for protein families. We therefore collected the 2nd level
ATC (Anatomical Therapeutic Chemical) groups for each drug and
all InterPro (Blum et al., 2020) top-level families for each protein.
Utilizing the STITCH interactions, we followed a protein split with-
in each InterPro family by predicting over all available drugs. We
eventually normalized the number of novel interactions per group by
the amount of drugs within the respective ATC group. A heatmap
showing the results of this analysis can be found in Supplementary
Figure S5. DTI-Voodoo predicts novel candidate DTIs for a broad
range of ATC categories as well as protein families.

For example, ATC group A07 (Antidiarrheals) has relatively few
approved drugs in total (Supplementary Fig. S6), but DTI-Voodoo
predicts several candidate targets from proteins with a PHD-type
zinc finger domain (IPR001965). For example, the drug mesalazine,
used to treat inflammatory bowel disease but with an apoptosis-
inducing and chemopreventative effect in colon cancer (Bus et al.,
1999; Ishikawa et al., 2021); DTI-Voodoo predicts mesalazine to
interact with five proteins with PHD-type zinc finger domain:
BRPF1, TRIM33, BAZ1A, RSF1 and DPF2. Overexpression of
RSF1 is associated with poor prognosis in colorectal cancer, and
knock-down of RSF1 leads to decrease of cell proliferation (Liu
et al., 2012), indicating that, in addition to its antiinflammatory
effects, mesalazine may act through inhibition of RSF1 in its chemo-
preventative effects on colon cancer. We make all predictions includ-
ing the ATC class of the drug and the Interpro family of the
predicted target available on our website to allow further explor-
ation of DTI-Voodoo’s prediction results.

5 Conclusions

We developed DTI-Voodoo as a machine learning model that com-
bines molecular features and functional information with an inter-
action network using graph neural networks to predict drugs that
may target specific proteins. In this task, DTI-Voodoo improves over
several state of the art methods. We demonstrated that functional
and phenotypic information localizes on the interaction network
whereas molecular information does not. Moreover, we showed that
DTI prediction datasets have some inherent biases that affect the
performance of models. This led us to conclude that DTI prediction
is not a single computational problem but a set of multiple problems.
Experimental evaluation of DTI prediction methods must be careful-
ly designed to reflect the problem the model aims to solve, and the
interpretation of performance results should be aligned with the spe-
cific problem.
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