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1  | INTRODUC TION

Fertility decreases with increasing age, and natural pregnancy be-
comes difficult in most women over 40 years of age.1,2 Infertility 
care using assisted reproductive technology (ART) with control 
ovarian stimulation (COS) supports women who desire pregnancy.3,4 

COS is an exogenous FSH/hMG treatment method to collect a large 
number of mature oocytes that are used for in vitro fertilization 
(IVF).5 However, the number of collected oocytes is limited in some 
patients who receive COS treatment, and these cases are called 
“low responders” or “poor responders.” Low responders are associ-
ated with increasing age, and the ratio of low responders increases 
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Abstract
Purpose: Ovarian vascular abnormality and ovarian fibrosis are observed in the low 
responder patients and aging mice. Vascularization and fibrosis are regulated by in-
jury-repair system, such as wound. Thus, in this study, the authors tried to investigate 
the effect of the surgical treatment to ovarian surface with cutting on the functions 
of ovary in aging mouse model, gcNrg1KO.
Method: The ovarian surface of gcNrg1KO was surgically cut, and then the ovary was 
returned inside of bursa ovarica. To assess the effect of cutting on fertility, mating 
test, smear analysis, and exogenous hormonal treatment were done. Additionally, the 
histological analysis was used for observing the remodeling of ovarian stroma after 
the surgical approach.
Result: Ovarian fibrosis disappeared at 7 days after surgery. With the abrogation 
of fibrosis, the blood vessels were fluently observed around the follicles, and the 
follicular development was re-started. The responses against exogenous hormone 
were recovered at 21 days after the surgery, and estrous cycle and delivery were also 
recovered by the surgery and the fertility was maintained for 3 months.
Conclusion: This cutting method of ovarian surface becomes a good option against 
low responder patients.
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3-fold in women over 40 years old compared with the ratio in 
women under 40 years old.6 Therefore, a low responder is thought 
to be the first step of ovarian aging.7-9 In low responders, a high 
level of FSH and a low level of anti-Mullerian hormone (AMH) are 
commonly observed.9-11 AMH is produced in the granulosa cells of 
follicles from the primary stage to the antral stage, and the secre-
tion level is higher in the secondary stage and antral stage, which 
are responsible for FSH, than in the primary stage.12 Thus, the de-
creased number of developing follicles, the decreased sensitivity 
to FSH in the follicles, and/or the insufficient supply of FSH to the 
follicles are considered the causes of low responders.

In our previous study, Nrg1flox/flox; Cyp19-Cre mice (gcNrg1KO) at 
6 months of age showed similarities with low responders, such as 
the high circulating level of FSH, the low level of AMH, the abnor-
mal estrous cycle and the decreased number of ovulated oocytes, 
even after exogenous hormonal treatment. Additionally, follicular 
development was arrested in the secondary follicles.13 Follicular de-
velopment from the secondary to the antral stage is regulated by 
FSH secreted from the pituitary gland, indicating that the low sensi-
tivity to FSH of secondary follicles and/or the insufficient supply of 
FSH by the deficient circulating system but not by limited secretion 
might induce follicular arrest in the secondary stage in the ovaries 
of gcNrg1KO mice.14-16 Feng et al17 used the CLARITY approach and 
reported that the number of blood vessels was increased near the fol-
licles during the developmental period from the secondary to antral 
follicle stages. Additionally, the disruption of Vegfa and the injection 
of a VEGF inhibitor dramatically decreased the number of ovulated 
oocytes during the hormone treatment cycle in mice.17 Interestingly, 
in the ovaries of low responders, blood flow in the ovarian stroma is 
decreased,18,19 suggesting that insufficient supply of FSH by abnor-
mal vessel formation in the ovary would be one of causes induced 
follicular arrest at the secondary stage in low responders.

Angiogenesis is strongly associated with injury and is activated as 
a “repair system” of tissue after injury.20 The first step after injury is 
that the expression of Vegf is dramatically increased; second, vascular 
epithelial cells are activated, and finally, blood vessels grow. Thus, we 
hypothesized that surgical cutting of the ovary could reactivate an-
giogenesis in the ovaries of low responders. In gcNrg1KO mice, ovar-
ian stromal fibrosis was observed to have similarities with that of low 
responders.13 It is well known that fibrosis is dependent on the sur-
rounding mechano-condition of cells.21 The cellular morphology of he-
patocytes changes to that of fibrotic cells under rigid conditions where 
the cells are stretched by contact with the extracellular matrix (ECM) 
or cells to form stress fibers in the cells.22,23 The formation of stress 
fibers is linked with the accumulation of collagen in cells,24 indicating 
that cutting would relieve cells of rigid conditions, and then could re-
duce stress fibers and collagen accumulation in ovarian stromal cells.

Therefore, in this study, we tried to surgically cut the surface of 
the ovary in a model of low responders, gcNrg1KO mice, to recover 
ovarian function. Using small surgical scissors, the surface of ovaries 
was surgically cut and then returned inside the bursa ovarica. To as-
sess the effect of ovarian cutting on fertility, a mating test, smear 
analysis, and hormonal treatment were performed. Additionally, 

histological analysis was used to observe the remodeling of the ovar-
ian stroma after the surgical approach.

2  | MATERIAL S AND METHODS

2.1 | Materials

Pregnant mare serum gonadotropin (PMSG/eCG) and hCG were pur-
chased from Asuka Seiyaku. Routine chemicals and reagents were 
obtained from Sigma-Aldrich or Nakarai Chemical Co.

2.2 | Animals

Conditional depletion of Nrg1 in ovarian granulosa cells (gcNrg1KO) 
was achieved by crossing Cyp19-Cre mice25 with Nrg1 flox/flox mice.26 
The mutant mouse strains were on a C57BL/6 background.

Animals were housed in the Experimental Animal Center at 
Hiroshima University under a 14-hour light, 10-hour dark schedule 
and provided with food and water ad libitum. Animals were treated in 
accordance with the NIH Guide for the Care and Use of Laboratory 
Animals, as approved by the Animal Care and Use Committee at 
Hiroshima University (30-63, C18-20-2).

2.3 | Cutting the ovarian surface

An overview of the cutting of the ovarian surface is shown in 
Figure 1. Six-month-old gcNrg1KO female mice were anesthetized 
using somnopentyl (Kyoritsu Seiyaku) and isoflurane (Pfizer Japan), 
and then a small incision in the skin of the left back was made using 
scissors (Figure 1A). The left ovary was pulled out on the gauze using 
forceps (Figure 1B). Under the microscope, a small incision in the 
balsa was made. The surface of the ovary was cut with micro-scis-
sors three to five times being careful not to divide the ovary. A video 
of this process is shown in Video S1. The ovaries were returned in-
side the body, and the skin was sutured after the operation. Cutting 
was also performed on the other side with the same method.

Four days after surgery, the ovaries were collected in order 
to assess tissue repair. Seven days after surgery, the ovaries were 
collected for histological analysis using PSR staining and for im-
munological analysis using IHC. Using the other gcNrg1KO female 
mice after cutting the ovarian surface, the estrous cycle was ana-
lyzed 7 days after surgery, and then a mating test or superovulation 
treatment was performed.

2.4 | Morphological analysis using hematoxylin and 
picrosirius red staining

The ovaries were fixed in 4% (w/v) paraformaldehyde/PBS 
overnight, dehydrated in 70% (v/v) ethanol, and embedded in 
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paraffin. Paraffin-embedded ovarian sections taken at intervals 
of 30 μm were mounted on slides. Routine hematoxylin and pic-
rosirius red staining were performed for histological examina-
tion by light microscopy. Digital images were captured using a 
Keyence BZ-9000 microscope (Keyence Co.). The collagen-pos-
itive area was measured using 3 images per section with BZ-II 
application software.

2.5 | Immunohistochemistry

The ovaries were fixed in 4% (w/v) paraformaldehyde/PBS over-
night, dehydrated in 70% (v/v) ethanol, and embedded in paraffin. 
The paraffin-embedded fixed sections (4 μm) were deparaffi-
nized in xylene washes and quenched with 3% hydrogen per-
oxide in methanol. The sections were incubated with 20% (v/v) 
nonimmune goat serum/PBS to block nonspecific sites, followed 
by incubation with primary antibodies overnight at 4°C (1:100 
of anti-FOXO1 antibody (catalog #2880; Cell Signaling) or 1:100 
of anti-CD31 antibody (catalog #ab28364; Abcam). The positive 

signals were visualized using a VECTASTAINE Life ABC rabbit IgG 
kit (Vector Laboratories) according to the manufacturer's recom-
mendations. Digital images were captured using a Keyence BZ-
9000 microscope.

2.6 | Vaginal smear analysis

Vaginal smear analyses were carried out according to Rascop et al.27 
Smears were obtained daily between 09:00 and 10:00 am The fire-
polished, shortened tip of a Pasteur pipet was placed at the vagina.

2.7 | Mating test

The mating experiment was conducted using three female mice in 
each group, (Nrg1 flox/flox [WT], Nrg1flox/flox;Cyp19a1-Cre [gcNrg1KO] 
and gcNrg1KO, after ovarian cutting [cutting]). Adult WT male mice 
were placed in each cage for 3 months, and the number of pups in 
each litter and the days of pregnancy were recorded.

F I G U R E  1   Overview of the cutting 
method of the ovary. Six-month-old 
gcNrg1KO female mice were anesthetized, 
and then a small incision in the skin of the 
left back was made using scissors (A). The 
left ovary with the oviduct and uterus was 
pulled out onto gauze using forceps (B). 
Under the microscope, a small incision in 
the balsa was made. The surface of the 
ovary was cut with micro-scissors 3 to 5 
times being careful not to divide the ovary
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2.8 | The collection of ovulated cumulus-oocyte 
complexes (COCs) and in vitro fertilization

Twenty-one days after surgery, the mice were injected intraperitoneally 
(ip) with 4 IU of eCG (Asuka Seiyaku) to stimulate preovulatory follicle 
development, followed by 5 IU of hCG (Asuka Seiyaku) 48 hours later 
to stimulate ovulation. In vitro fertilization was analyzed as described 
previously.28 COCs that were collected from the oviduct 16 hours after 
hCG administration were placed in 50 μL of human tubal fluid (HTF) me-
dium. Spermatozoa were collected from the cauda epididymis of each 
mouse genotype into 500 μL of HTF medium. After 60 minutes of incu-
bation to induce sperm capacitation, the spermatozoa were introduced 
into the fertilization medium at a final concentration of 1000 sperma-
tozoa/μL. Twelve hours after insemination, all gametes were further 
cultured for an additional day in the developing medium (KSOM + AA; 
Millipore) to check for development to the blastocyst stage.

2.9 | Statistics

Statistical analyses of the data from three or four replicates for 
comparison were carried out by either Student's t test or one-way 

ANOVA followed by Student's t test (Statview; Abacus Concepts, 
Inc).

3  | RESULTS

3.1 | Ovarian shape recovers 4 days after cutting

The pictures of the ovary after cutting are shown in Figure 2A. The 
ovaries were returned inside the body. Four days after the operation, 
the ovary was repaired, and some blood vessels were observed on 
the ovarian surface (Figure 2B).

3.2 | Cutting of the ovarian surface abrogates 
ovarian fibrosis and induces vascular formation 
near the follicles

Picrosirius red (PSR) staining was performed using the ovaries 
of wild-type (WT), gcNrg1KO, and gcNrg1KO mice after cut-
ting the ovarian surface. In the WT ovaries, multiple layers of 
secondary follicles, antral follicles, and the corpus luteum were 

F I G U R E  2   Ovary is repaired 4 d after 
cutting the ovarian surface. A, Image of 
the ovary before/after cutting. B, Image of 
the ovary 4 d after cutting
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observed. Additionally, thin layers of collagen were localized on 
the ovarian surface epithelium (OSE), the basal membrane of fol-
licles, and the ovarian stromal area. In the ovaries of gcNrg1KO 
mice, few follicles and corpus luteum were observed, and the 
cytoplasmic-rich cells stained by PSR were occupied in the ovar-
ian stromal area. Layers of collagen were observed in the OSE 
and stromal area similar to in WT ovaries; however, the layers 
were thickened compared with those of WT ovaries. Seven days 
after surgery, both follicles and the corpus luteum were fluently 
observed, and the cytoplasmic-rich cells stained by PSR disap-
peared from the ovarian stroma (Figure 3A). To assess fibrosis 
in the ovary, the PSR-positive area was measured in the ovary. 
The fibrotic area was significantly increased in gcNrg1KO ova-
ries compared with WT ovaries (44.3 ± 5.8% vs 10.3 ± 2.3%). 
By cutting the ovarian surface, the area was dramatically de-
creased to <20%, and the percent was significantly lower than 
that in gcNrg1KO ovaries (Figure 3B). With the decline in the 
fibrotic area in the ovarian stroma, blood vessels (arrows) were 
observed near the follicles after cutting, although blood vessels 
were rarely observed in the ovary before cutting (Figure 3C).

3.3 | Cutting the ovarian surface enables ovulation 
using exogenous hormonal treatment in the model of 
low responders

Immunohistochemical analysis was performed using an anti-FOXO1 
antibody, as FOXO1 is a marker of proliferating granulosa cells dur-
ing the follicular development process. In the WT ovaries, several 
FOXO1-positive follicles were observed, and the follicles were 
multilayer secondary follicles or antral follicles. However, FOXO1-
positive follicles were rarely observed in the gcNrg1KO ovaries. 
Seven days after surgery, FOXO1-positive follicles had increased, 
similar to in WT ovaries (Figure 4A). To check the responsibility 
against exogenous hormonal treatment, superovulation treatment 
using eCG and hCG was performed, the number of ovulated oocytes 
was counted, and then the oocytes were used for IVF. The results 
showed that 18.5 ± 3.1 oocytes were ovulated in WT ovaries; how-
ever, the number was significantly decreased in gcNrg1KO ovaries 
(2.0 ± 0.8). Twenty-one days after surgery, the number was signifi-
cantly increased compared with that without cutting (KO vs cutting: 
2.0 ± 0.8 vs 8.0 ± 2.7; Figure 4B). Additionally, the fertilization ratio 

F I G U R E  3   Ovarian fibrosis is 
abrogated by cutting the ovarian surface. 
A, PSR staining of the ovary in 6-month-
old wild-type (WT), gcNrg1KO (KO), 
and gcNrg1KO mice with cutting of the 
ovarian surface (cutting). Ovaries were 
collected 7 d after surgery and fixed using 
4% paraformaldehyde. After embedding, 
6-μm sections were mounted on the slide. 
The slide was used for PSR staining. A 
deep purple signal indicated collagen. 
Scale bar indicates 200 μm. B, Percentage 
of fibrotic area in 6-month-old wild-type 
(WT), gcNrg1KO (KO), and gcNrg1KO 
mice with cutting of the ovarian surface 
(cutting). The fibrotic area was measured 
using three images per section by BZ-II 
application software. Asterisks (*) indicate 
significant differences compared with 
WT (P < .05). C, Immunohistochemistry 
of CD31, a marker of vascular endothelial 
cells, in the ovaries in gcNrg1KO (KO) and 
gcNrg1KO mice with cutting of the ovarian 
surface (cutting). Black arrows indicate 
blood vessels. Scale bar indicates 100 μm
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was also significantly increased by cutting the ovarian surface (KO vs 
cutting: 19.4 ± 10.0% vs 66.9 ± 2.6%; Figure 4C). The developmental 
competence was slightly increased; however, significant differences 
were not observed (Figure 4D).

3.4 | Cutting the ovarian surface restores fertility 
in the model of low responders

To understand the effect of cutting the ovarian surface on natu-
ral fertility, smear analysis was performed for 14 days from day 7 
after surgery. In WT mice, proestrus, estrus, metestrus, and diestrus 
stages were observed, and an estrous cycle was 4-5 days. However, 
in gcNrg1KO mice, weak estrus, which had the characteristics of both 
estrus and metestrus, was observed, and the estrous cycle stopped 
at the weak estrus stage (Figure 5A). The length of the estrous cycle 
was significantly longer than that in WT mice (Figure 5B). Seven days 
after surgery, although weak estrus was observed on a few days, 
the length of an estrous cycle was significantly shorter than that of 
gcNrg1KO mice (Figure 5A,B). These mice were mated with mature 
male mice for 3 months, and 32 pups were delivered by WT female 

mice. In gcNrg1KO mice, the total number of pups was significantly 
lower than that in WT mice (approximately five pups); however, after 
cutting, the number recovered to 20 pups (Figure 5C). The number 
of pups per delivery was significantly lower in gcNrg1KO mice than 
in WT mice. The number was not changed in gcNrg1KO mice with 
and without cutting (Figure 5D).

4  | DISCUSSION

Fibrosis is observed in the low-functioning ovaries of aged women.29 
A similar phenomenon has also been reported in mice30 and pri-
mates31 with increasing age. Additionally, in our previous study, 
ovarian fibrosis was accelerated in gcNrg1KO female mice with a 
low number of ovulated oocytes after exogenous hormonal treat-
ment and with a decreased number of pups per delivery in the mat-
ing test.13 Therefore, ovarian fibrosis is associated with low fertility 
not only in aged women/females but also in low responders. In this 
study, the surgical treatment of ovaries with cutting recovered the 
responsibility against exogenous hormonal treatment with the abro-
gation of ovarian fibrosis.

F I G U R E  4   Responsibility against exogenous hormonal treatment is recovered by cutting the ovarian surface. A, Immunohistochemistry 
of FOXO1, a marker of follicular growth, in the ovaries of 6-month-old wild-type (WT), gcNrg1KO (KO), and gcNrg1KO mice with cutting 
(cutting). The paraffin-embedded sections were deparaffinized and used for immunohistochemical analysis using an anti-FOXO1 antibody. 
Scale bar indicates 300 μm. B-D, Ovulation number (B), the percent of fertilization (C), and the percent of development (D) after exogenous 
hormonal treatment using eCG and hCG 21 d after surgery. Sixteen hours after hCG injection, ovulated COCs were collected from the 
oviduct. COCs were inseminated with sperm in mHTF medium for 6 h, and then the oocytes were transferred to KSOM medium. The 
number of ovulated oocytes and 2-cells was counted the next morning, and then the oocytes were cultured in KSOM medium for 5 d. The 
number of blastocysts was counted at 5 d
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It is well known that angiogenesis is less frequently observed in 
fibrotic tissue, such as liver, renal and lung tissues.32,33 In this study, 
there were few blood vessels around the follicles in fibrotic ovaries; 
however, several blood vessels were observed around the follicles 
after ovarian cutting. Additionally, with an increasing number of 
blood vessels, ovarian fibrosis was abrogated. Generally, wounds 
enhance the inflammatory response at the injury point to recruit 
macrophages, which upregulate collagen expression for healing.34 
However, the artificial wound did not induce fibrosis via the inflam-
matory response in the aged ovary. Similar to our cutting method, 
Kawamura et al35 reported that ovarian fragmentation induced the 
proliferation of granulosa cells in secondary follicles. In particular, 
ovarian fragmentation increased actin polymerization in the ovary. 
Actin remodeling, which is well known as the mechano-reaction 
of cells, suppresses the activity of Hippo signaling.36 In the ovary, 
Hippo signaling is also disrupted by actin polymerization with ovar-
ian fragmentation, and then the proliferation of granulosa cells is 
induced.35 In idiopathic pulmonary fibrosis, Hippo signaling is the in-
ducer of fibrosis because the activation of Hippo signaling enhances 
the secretion of collagen.37 Zhao et al38 reported that the inactiva-
tion of Hippo signaling by melatonin decreased collagen expression, 
and idiopathic pulmonary fibrosis was recovered by this treatment. 

Additionally, Hippo signaling is associated with vascular epithelial 
cells, and vascular endothelial growth factor (VEGF) induces angio-
genesis via inactivation of Hippo signaling.39 Thus, in our method, 
cutting the ovarian surface might induce depolymerization of actin 
to suppress Hippo signaling in ovarian stromal tissues, which might 
change the cell characteristics from fibrotic tissue to normal ovarian 
stroma. The cutting of the ovarian surface induces ovarian remodel-
ing via mechano-signaling to recover the functions of aged ovaries.

The relationship between the rigid condition surrounding folli-
cles and follicular development has been analyzed using a follicular 
culture system of either alginate-extracellular matrix gels, polyacryl-
amide gels, or fibrin-alginate matrices. When 0.25%-3% alginate gels 
were used for follicular culture,40,41 the high stiffness condition of 
more than 1.5% alginate gels arrested follicular development at the 
secondary stage.40 Additionally, both follicular diameter and the ex-
pression of genes involved in follicular development were highest 
in follicles cultured using 0.25% alginate gels.41 Moreover, Shikanov 
et al (2009) used fibrin-alginate gels with 5, 50, and 500 IU/mL of 
thrombin for follicular culture, in which the rigid condition was de-
creased with the concentration of thrombin. In their culture condi-
tions, follicular survivability was the highest in the culture conditions 
using the gels with 50 IU/mL of thrombin.42 Therefore, the rigid 

F I G U R E  5   Cutting the ovarian surface 
restores fertility in the model of low 
responders. A, Estrous cycle of 6-mo-
old wild-type (WT), gcNrg1KO (KO), 
and gcNrg1KO mice with cutting of the 
ovarian surface (cutting) for 14 d. Seven 
days after surgery, smear analysis was 
performed for 14 d. B, The length of an 
estrous cycle. The days from diestrus to 
the next diestrus were calculated from the 
data smear analysis. Asterisks (*) indicate 
significant differences compared with WT 
(P < .05). C, D, The total number of pups 
for 3 months (C) and the number of pups 
per delivery (D) of 6-month-old wild-type 
(WT), gcNrg1KO (KO), and gcNrg1KO 
mice with cutting (cutting). Females were 
mated with adult male mice 14 d after 
surgery for 3 mo. The number of pups was 
measured. Asterisks (*) indicate significant 
differences compared with WT (P < .05)



422  |     UMEHARA Et Al.

condition around the follicle directly affects follicular development. 
In this study, our cutting method eliminated ovarian fibrosis in the 
ovarian stroma of the aging model. Collagen accumulated in the cy-
toplasm of fibrotic cells, where actin was polymerized in the ovarian 
stroma, indicating that ovarian hardening might be resolved by the 
cutting of the ovarian surface with the abrogation of ovarian fibrosis. 
Therefore, the modification of ovarian rigid conditions around folli-
cles by ovarian cutting induces the re-initiation of follicular develop-
ment from the secondary stage.

FOXO (forkhead box O) is a well-known transcriptional factor 
expressed in numerous types of cells.43 In the ovary, Foxo1/3 dou-
ble-knockout mice in granulosa cells from the secondary to the an-
tral stage showed infertility.44 Burns (2003) reported that FOXO1 
was highly expressed in the granulosa cells of growing follicles from 
the secondary stage to the antral stage.45 Additionally, FOXO1 in-
duced by FSH suppresses the premature luteinization of granulosa 
cells,46 indicating that FOXO1 is a marker of growing follicles where 
granulosa cells are activated by FSH. Therefore, the increasing num-
ber of FOXO1-positive follicles indicates that ovarian cutting in-
creases the number of growing follicles. Additionally, because the 
gene expression of Fshr was not difference between WT and our 
aging model (Figure S1), it was indicated that follicular growth was 
recovered by the improved supply of FSH but not the increased sen-
sitivity to FSH after the ovarian cutting. In fact, with the increased 
number of FOXO1-positive follicles, the responsibility against exog-
enous hormonal treatment, the estrous cycle, and natural fertility 
was recovered by ovarian cutting in gcNrg1KO mice. Thus, cutting 
of the ovarian surface is a positive tool to recover the ovarian func-
tions of low responders, although the method is an invasive surgical 
procedure.

Ovarian fibrosis is also observed in polycystic ovarian syndrome 
(PCOS).47,48 One radical treatment is laparoscopic ovarian drilling 
(LOD) for PCOS patients.49 In the original LOD method, using an 
insulated unipolar needle electrode, three to eight punctures (each 
with a diameter of 3 mm and a depth of 2-4 mm) are performed 
in the ovary by laparoscopy.49 Several papers showed that LOD 
recovered the ovulation rate and the pregnancy rate of PCOS pa-
tients.50,51 Some studies have reported that the blood flow in the 
ovary or the production of steroid hormones derived from stromal 
cells is changed52,53; however, the mechanisms by which ovarian 
functions are improved remain unclear. The localization of fibro-
sis is different between aged ovaries and PCOS ovaries; fibrosis is 
observed inside aged ovaries, while in PCOS ovaries, fibrosis is ob-
served near the ovarian surface.54 Therefore, one possibility is that 
for aged ovaries in low responders, sectioning is required on the 
deep side to reach the ovarian stroma, but for PCOS, stimulation is 
sufficient near the surface area in the ovary to remove the fibrosis 
surrounding follicles.

In conclusion, cutting of the ovarian surface induced tissue re-
modeling, angiogenesis, and flexibility in fibrotic ovarian stroma. 
With these modifications, follicular development was re-initiated 
to FSH-responsible stages, and then the responsibility against ex-
ogenous hormonal treatment was recovered. Therefore, this cutting 

method of the ovarian surface may be a good option against patients 
who are low responders.
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