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Abstract
Surrogate-based optimization of distillation columns using an iterative Kriging approach is investigated. Focus is on 
deterministic global optimization to avoid suboptimal local minima. The determination of optimal setups and operating 
conditions for ideal and non-ideal distillation columns, leading to mixed-integer nonlinear programming problems, serve 
as case studies. It is found that the optimization using the adapted Kriging approach yields similar results compared to 
the direct global optimization of the original problem in the ideal case, while it leads to a huge improvement compared 
to a multistart local optimization approach in the non-ideal case.
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1  Introduction

Rigorous optimization of distillation columns is of major 
interest in the chemical process industry due to its high 
economical impact. Due to the presence of discrete and 
continuous decision variables this leads to mixed-integer 
nonlinear programs (MINLP). Standard local optimization 
or stochastic optimization approaches can not guarantee 
that the optimum found by the optimizer is the global one. 
Alternatively, deterministic global optimization based on 
convex relaxations within a branch and bound framework 
has become an interesting approach for solving such prob-
lems, e.g., see the recent textbook by Locatelli and Schoen 
[6] for an introduction. However, computation times for 
distillation columns using standard model formulations 
from first principles are often extremely large [1, 7, 8].

To overcome this problem, different solution 
approaches were recently proposed. Quirante et al. [11] 
suggested to use surrogate models based on Kriging inter-
polation for optimization of distillation columns to reduce 
computational complexity. Main emphasis was on local 
optimization but it was also suggested to use Kriging mod-
els to reduce computational complexity in deterministic 

global optimization. Nallasivam et al. [8] presented an 
algorithm for calculating minimum energy requirements 
for thermally coupled distillation column configurations. 
The algorithm is based on a shortcut model which is only 
valid for ideal mixtures under minimum reflux conditions. 
An alternative approach for any reflux based on rigorous 
tray to tray models was proposed by Ballerstein et al. [1]. 
It applies to binary ideal mixtures. Illustration was demon-
strated for a hybrid distillation crystallization process for 
isomer separation. The approach is based on monotonic-
ity of the concentration variables in a binary distillation, 
which can be used to systematically reduce the search 
space. More recently this strategy could be extended in 
Mertens et al. [7] to ideal multicomponent distillation pro-
cesses using a model reformulation strategy, which results 
in monotonicity of some aggregated concentration vari-
ables. However, an extension to non-ideal mixtures is in 
general not possible as will be argued in the present paper. 
Therefore, global optimization using Kriging models as 
proposed by Quirante et al. [11] is further investigated in 
some detail in this paper and compared to the previous 
approaches by Mertens et al. [7].
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The outline of the paper is as follows: The general concept 
of Kriging interpolation is briefly explained in Sect. 2. Sec-
tion 3 deals with ideal multicomponent distillation, which 
admits a rigorous global optimization using the reformula-
tion by Mertens et al. [7]. It is shown that very similar results 
could be obtained with the Kriging approach using iterative 
refinement. Afterwards a highly non-ideal azeotropic mix-
ture is considered in Sect. 4. Since rigorous global optimiza-
tion is currently not possible with standard global optimiza-
tion software within reasonable time, global optimization 
with the Kriging approach is compared with local optimi-
zation and thereby demonstrating the power of the global 
Kriging approach for highly non-ideal mixtures.

2 � Kriging models

Kriging models can be used to approximate complex mathe-
matical models of real world processes. During the last years 
they gained increasingly more interest from engineers from 
different fields, such as chemical engineering, e.g. see [2] and 
[11]. The accuracy of Kriging models, as well as their com-
plexity, depends on the number of reference points used for 
their generation. In this section the basic idea of an ordinary 
Kriging model is briefly sketched. The presentation mainly 
follows [2].

Given a vector-valued function f ∶ ℝ
m
→ ℝ

d and a finite 
number of reference points x̄k ∈ ℝ

m , k = 1,… ,N , a Kriging 
interpolation is a vector-valued function f̂ ∶ ℝ

m
→ ℝ

d with 
f̂ (x) ∶= q(x) + Z(x) . Here, q ∶ ℝ

m
→ ℝ

d is a vector-valued 
function consisting of polynomials, and Z ∶ ℝ

m
→ ℝ

d is a 
vector-valued function used to describe the deviation of 
f̂ (x) from q(x) . In ordinary Kriging models, as considered 
in this work, function q(x) is chosen to be a vector � ∈ ℝ

d 
of suitable constants. Although this restriction seems to be 
rather strong, it does not affect the accuracy of the resulting 
surrogate model significantly for smooth functions, because 
most of the information is contained in Z(x) as noted by 
Papalambros and Wilde [9]. Function Z(x) is assumed to be 
a weighted sum of the deviations at all reference points with 
certain weights depending on x that are defined by a weight 
function w ∶ ℝ

m
→ ℝ

N , i.e.

This leads to the following representation for f̂ .

Z(x) =

N∑
k=1

wk(x) ⋅
(
f (x̄k) − 𝝃

)
.

f̂
⊤

(x) = 𝝃⊤ + w⊤(x)

⎛
⎜⎜⎜⎜⎝

f⊤(x̄1) − 𝝃⊤

f⊤(x̄2) − 𝝃⊤

⋮

f⊤(x̄N) − 𝝃⊤

⎞
⎟⎟⎟⎟⎠
.

It is further postulated that vector f̂ (x) is identical to vector 
f (x) for each reference point, i.e.

In order to ensure the conditions in Eq. (1), it is requested 
that the weight function evaluated at the kth reference 
point coincides with the kth unit vector �k ∈ ℝ

N , i.e.

A parametrized function c ∶ ℝ
m ×ℝ

m
→ ℝ and a matrix R 

are further used to calculate the weights w(x) as follows.

Due to (2), matrix R needs to be

Note that function c and the reference points must be cho-
sen such that matrix R is invertible. In the literature, various 
strategies for finding a suitable function c and appropriate 
reference points are available, e.g. see [5].

In case of f  being a Gaussian process, minimizing 
the variance of the estimation error f̂ (x) − f (x) leads to 
function values c(x1, x2) being the covariance between 
the points x1 and x2 . When interpolating a deterministic 
function (as considered here), any function c(x1, x2) may 
be feasible and the best choice is non-trivial. The choice 
of the function determines how the model fits the data. 
Therefore, it usually contains parameters that have to be 
optimized in order to generate a surrogate model with a 
good fit. The most commonly used function is an exponen-
tial function of the following form [2]

For x1 = x2 , value c(x1, x2) equals one, while it tends to 
zero when the distance between the points x1 and x2 
increases. For every component i, parameter �i defines 
the speed of this tendency and parameter pi denotes the 
smoothness of c. In summary, Z(x) is calculated as

with constant matrix F given by

(1)f̂ (x̄k) = f (x̄k), for all k ∈ {1,… ,N}.

(2)w(x̄k) = �k , for all k ∈ {1,… ,N}.

w⊤(x) =
(
c(x , x̄1),… , c(x , x̄N)

)
R

(3)R =

⎛⎜⎜⎝

c(x̄1, x̄1) … c(x̄1, x̄N)

⋮ ⋱ ⋮

c(x̄N , x̄1) … c(x̄N , x̄N)

⎞⎟⎟⎠

−1

.

c(x1, x2) = exp

�
−

m�
i=1

�i‖x1
i
− x2

i
‖pi

�
.

Z⊤(x) =
(
c(x , x̄1),… , c(x , x̄N)

)
⋅ F,

F = R ⋅

⎛
⎜⎜⎜⎜⎝

f⊤(x̄1) − 𝝃⊤

f⊤(x̄2) − 𝝃⊤

⋮

f⊤(x̄N) − 𝝃⊤

⎞
⎟⎟⎟⎟⎠
.
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Thus, there are some unknown parameters that have to be 
calculated, namely � , �i and pi . Following [11], values of the 
parameters are obtained by maximizing the logarithmic 
likelihood function

with

In this work the MATLAB function “fmincon” is used for the 
identification of the parameters, i.e. for the fitting of the 
Kriging models. Pseudo code describing the fitting proce-
dure is shown in Algorithm 1.

As the choice of the reference points may greatly 
influence the accuracy, it is important to use a space fill-
ing approach instead of using randomly generated data 
points. Otherwise clustering in unimportant regions of the 
model may occur and can result in a surrogate model of 
poor quality. In this work, a Halton sequence [4] is used 
to cover the space evenly. Figure 1 shows an illustrative 
example of the difference between a Halton sequence, 
depicted as red dots, and a random number sequence, 
depicted as blue dots, with 100 samples each. While the 
red dots cover the space evenly, clustering in the blue dots 
occurs, e.g. in the upper right corner. The integer variables 
are enumerated through the sampling procedure.

After a first Kriging model is generated, it is optimized 
using the deterministic global optimization software 
BARON [12]. Following [2], a second, refined Kriging 
model is constructed by restricting the sampling region 

log (L) = − N∕2
�
log

�
𝜎
2
�
+ log (2𝜋)

�
− 1∕2 log (‖R‖)
− 1∕

�
2𝜎2

�
(Y(x̄) − 1𝝃)⊤R−1(Y(x̄) − 1𝝃),

𝝃 =
�
1
⊤R−1

1
�−1�

1
⊤R−1Y(x̄)

�
,

𝜎
2 = 1∕N(Y(x̄) − 1𝝃)⊤R−1(Y(x̄) − 1𝝃),

Y(x̄) =

⎛
⎜⎜⎝

f 1(x̄
1) … f d(x̄

1)

⋮ ⋱ ⋮

f 1(x̄
N) … f d(x̄

N)

⎞
⎟⎟⎠
.

to a certain neighborhood around the found solution 
of the first Kriging model. The second Kriging model is 
likely to be more precise in the region of interest. It may 
happen that one of the variables in the solution of the 
second Kriging model attains its value at the boundary 
of its respective domain. In this case, a further Kriging 

model is generated using a neighborhood around the 
optimal solution of the second Kriging model as sam-
pling region. Note that the latter neighborhood also cov-
ers regions that are not contained in the neighborhood 
around the optimal solution of the first Kriging model.

This refinement approach is related to trust region 
methods that are used as a numerical solving strategy to 
compute locally optimal solutions for non-linear optimi-
zation problems. Trust region methods are based on an 
iterative procedure in that an approximation model of 
the original problem is solved in each step. In each itera-
tion the corresponding approximation model is restricted 
to a certain sub-region usually containing the solution of 
the previous iteration. The size of the sub-regions may 
depend on the assumed model quality estimated with 
information from previous steps. We refer to the work [13] 
for a recent survey on trust region methods.

Fig. 1   Difference between Halton sequence (red dots) and random 
number sequence (blue dots) with 100 samples each
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All Kriging models constructed through our computa-
tions are implemented as MINLPs and solved using the 
GAMS 24.6.1 framework with the deterministic global 
optimization software BARON 15.9.22., Cplex 12.6.3 is used 
as LP/MIP subsolver and CONOPT 3.17A is utilized as NLP 
subsolver. The calculations are carried out on a Linux PC 
with 3.40 GHz Intel Core i7-6700 CPU and 16 GB memory.

3 � Ideal distillation

As a first case study an ideal four-component distilla-
tion column with variable number of stages and a vari-
able feed stage is chosen. A sketch of such a distillation 
column is depicted in Fig. 2. The distillation process aims 
to separate the two more volatile components from the 
two less volatile components under given purity require-
ments, while minimizing the total annualized cost (TAC) of 

the process. The mathematical model description as well 
as the numerical test instances are taken from Mertens 
et al. [7]. Despite the fact that the vapor-liquid-equilibrium 
(VLE) of the column is modeled as ideal, i.e. with constant 
relative volatilities, finding a global optimum of the cor-
responding MINLPs is rather challenging using standard 
model formulations. It was, however, demonstrated in 
Mertens et al. [7] that a model reformulation in combina-
tion with tailor-made optimization techniques can reduce 
the computational effort considerably. Thus, globally opti-
mal solutions for different test instances are available and 
can be used as references to investigate the accuracy of 
the surrogate based approach presented in this work.

The case study deals with three different mixtures that 
are separated with three different product specifications 
each. This leads to a total number of nine test instances. 
The mixtures are labeled by numbers 1, 2 and 3 where the 
difficulty of the separation task increases from mixture 1–3. 
The product specifications are given by the purity require-
ments on the distillate, i.e. on the mixture consisting of 
the two more volatile components, and on the bottom 
product, i.e. the mixture consisting of the two less volatile 
components. Different product specifications are labeled 
by letters a, b and c, and become more restrictive for the 
separation task from a to c. The concrete parameter setting 
defining each test instance is provided in Mertens et al. [7].

Note that feasible solutions to the considered MINLPs 
represent feasible distillation column designs of the cor-
responding separation tasks. A characterization of each 
such designs is given by the length lr of the rectifying sec-
tion, i.e. the part above the feed stage (see Fig. 2), by the 
length ls of the stripping section, i.e. the part below the 
feed stage, by the distillate flow rate D in mol/s and by the 
vapor flow rate V in mol/s. For the known optimal solu-
tions to our test instances, these characteristic properties 
are summarized in Table 1. The computation times needed 
to carry out the optimization using a SCIP optimization 
framework are given in column “time” in seconds.

Algorithm 1 described in Sect. 2 is applied to a model 
of the distillation column implemented in MATLAB, where 
the input variables x ∈ S are V ∈ [0.85, 3] , D ∈ [0.8, 1] and 
lr , ls ∈ [1, 24] and the desired output variables Y(x) are the 
concentrations of the product mixtures at the top and 
the bottom of the column. The resulting Kriging models 
are implemented and optimized in GAMS/BARON. The 
objective function is taken from Mertens et al.  [7] and 
the purity requirements are implemented as inequality 
constraints. The results obtained for all test cases can be 
found in Table 2. The results for the cases labeled with sub-
script 1 refer to the results obtained with the first Kriging 
model, generated with 696 sampling points. Results for 
the cases labeled with subscript 2 are obtained by the sec-
ond Kriging models generated with the iterative sampling 

Fig. 2   Distillation column scheme with variable number of stages 
in the upper and lower part of the column and variable feed loca-
tion. The number of stages is lr + ls + 1 , the feed location is at stage 
ls + 1
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approach presented in Sect. 2, using 1156 sampling points. 
The new sampling region for the degrees of freedom lies 
within a 25% range of the found optimum for the continu-
ous variables, V and D, and ± 2 around the optimum of the 
integer variables, ls and lr . It can be seen that the iterative 
Kriging optimization approach is able to calculate a solu-
tion lying in the neighborhood of an actual global opti-
mum. However, it is important to note that the iterative 
Kriging approach may lead to solutions that are not close 
to a global optimal one. This may be due to a possibly high 
inaccuracy of the first Kriging model that may yield initial 
solutions that are already far away from a global optimum. 
If the first Kriging model is then refined around a solution 
of poor quality, it may not be possible to arrive at an actual 

global optimum as it is no longer captured by the refined 
sampling region of the subsequent Kriging model.

Note that in most cases the first solutions obtained do 
not meet the constraints due to the inaccuracy of the first 
Kriging model. However, after the refinement of the sam-
pling region the constraints are met by the found optimal 
solutions.

Strict comparison of computation times of the differ-
ent approaches is not possible due to different hardware 
and optimization software configurations. However, it was 
observed that the reference model typically could not be 
solved within 10 h, whereas the reformulated model with 
some tailor made bound tightening strategies was most 
of the time solved in less than an hour. For the detailed 

Table 1   Computational results 
from reference calculations [7] 
with a feed flow of 1.8 mol/s

Case TAC​ D V ls lr Time

1a 23566 0.9 0.9408 3 1 134
1b 33597 0.9 1.2796 4 3 2097
1c 41177 0.9 1.4034 6 6 1211
2a 25419 0.9 0.99 4 1 349
2b 37109 0.9 1.3519 5 4 939
2c 46727 0.9 1.5416 7 7 2512
3a 27993 0.9 1.0719 4 2 386
3b 42633 0.9 1.499 6 5 3541
3c 55629 0.9 1.7518 9 8 9746

Table 2   Computational results 
using surrogate model. Values 
with a subscript higher than 
1 are calculated using an 
adaptive sampling technique

The percentage difference of the results w.r.t. the known globally optimal solutions is given in brackets

Case TAC​ D V ls lr Time

1a
krig

1
23466 0.9045 0.9045 3 2 244

1a
krig

2
24318 ( + 3.19%) 0.9001 ( + 0.01%) 0.9424 ( + 0.17%) 3 2 (+1) 16

1b
krig

1
37002 0.8992 1.3104 6 4 2053

1b
krig

2
34563 ( + 2.88%) 0.8998 ( − 0.02%) 1.2831 ( + 0.27%) 4 4 (+1) 105

1c
krig

1
59179 0.8977 2.0610 5 8 4885

1c
krig

2
44362 ( + 7.73%) 0.9006 ( + 0.07%) 1.5281 ( + 8.89%) 5 ( − 1) 7 (+1) 179

2a
krig

1
27280 0.9787 0.9787 5 3 278

2a
krig

2
26216 ( + 3.14%) 0.9005 ( + 0.06%) 0.9942 ( +0.42%) 4 2 (+1) 38

2b
krig

1
38383 0.8963 1.3296 6 5 703

2b
krig

2
37992 ( +2.38%) 0.8998 ( − 0.02%) 1.3505 ( − 0.10%) 5 5 ( + 1) 122

2c
krig

1
58178 0.9024 2.022 7 6 6202

2c
krig

2
50639 ( + 8.38%) 0.9000 1.731 ( + 12.29%) 5 ( − 2) 8 ( + 1) 104

3a
krig

1
30142 0.8979 1.0642 5 4 312

3a
krig

2
28785 ( +2.83%) 0.9012 ( + 0.13%) 1.1067 ( + 3.25%) 4 2 182

3b
krig

1
44871 0.8988 1.5884 7 4 1151

3b
krig

2
43769 ( + 2.66%) 0.9003 ( + 0.03%) 1.5445 ( + 3.04%) 6 5 107

3c
krig

1
59683 0.9011 1.9854 8 7 2122

3c
krig

2
56986 ( + 2.44%) 0.9001 ( + 0.01%) 1.7220 ( − 1.70%) 10 (+1) 9 (+1) 200
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statistics we refer to Mertens et al. [7]. The computation 
times needed for the optimization using the Kriging 
approach presented with standard software (BARON) is 
given in Table 2 in the column “time” in seconds. Addi-
tional time is needed for the sampling (around 45 s) and 
the fitting of the Kriging model (around 680 s). The com-
putation times of both approaches lie in the same order 
of magnitude.

4 � Non‑ideal distillation

In the previous section focus was on separation of ideal 
mixtures with constant relative volatilities. Next, a highly 
non-ideal azeotropic mixture with variable volatilities is 
considered.

From Sect. 3 it is clear that the global optimization of 
the reformulated model is preferable to the optimization 
of the Kriging model, because the global optimality of 
the result obtained with the Kriging approach can not be 
guaranteed. However, global optimization of the rigor-
ous model is computationally even much more expensive 
compared to the previous example. Further, a monotonic 
reformulation x̂i(z) of the molar fractions xi(z) like in the 
previous ideal case is also not possible anymore, as will be 
shown in the following.

Take the transformed states x̂i as functions of the molar 
fractions xi

and their derivatives with respect to the spatial coordinate 
z

for the proof.

(4)x̂1 = x1,

(5)x̂2 = x1 + x2,

(6)x̂3 = 1,

(7)
𝜕x̂1

𝜕z
=

𝜕x1

𝜕z
≥ 0,

(8)
𝜕x̂2

𝜕z
=

𝜕(x1 + x2)

𝜕z

(9)=
�(x1 + 1 − x3 − x1)

�z

(10)= −
�x3

�z
≥ 0,

(11)
𝜕x̂3

𝜕z
= 0,

The assumption of positive derivatives in (7) and (10) 
always holds for the distillation of ideal mixtures, but it 
cannot be guaranteed for non-ideal mixtures because of 
the occuring azeotropes.

One example for such a mixture is the distillation of 
Toluene, Methanol and Methylbutyrate [3], which is inves-
tigated here. It is easy to see from the residue curve map, 
representing the column profiles at total reboil and reflux, 
depicted in Fig. 3, that the above condition that the col-
umn profiles have to be monotonic for at least two of the 
components is not met.

To model non-ideal phase behavior, several activity 
coefficient models, such as UNIQUAC and Wilson [10], 
may be used. In the present case study a Wilson approach 
is chosen. The column is assumed to be operated at a 
constant pressure of 1.013 hPa, the feed rate f is set to 
1.8 mol/s and the feed composition mole fraction xFeed 
is [0.2806, 0.6566, 0.0628], where the first entry refers to 
Toluene, the second entry to Methanol and the third entry 
to Methylbutyrate. The aim of the optimization is to find 
optimal operating conditions such that at least 80 % of 
component Toluene contained in the initial feed flow rate 
is gained at the bottom of the column with a purity of at 
least 95 %. This gives rise to the two constraints 

 where B is the bottom flow rate in mol/s. The same 
objective function as in the previous example is used. 
The degrees of freedom are the distillate flow rate 
D ∈ [1.1, 1.7] mol/s, the vapor flow rate V ∈ [2, 13] mol/s, 
as well as the number of stages lr + ls + 1 and the feed loca-
tion ls + 1 with lr , ls ∈ [1, 24].

Since global optimization with the rigorous model or its 
reformulation like in the ideal case is not possible within 

(12a)xT,Bott ≥ 0.95,

(12b)xT,Bott ⋅ B ≥ 0.8 ⋅ f ⋅ xToluene,Feed = 0.4041,

Fig. 3   Residue curve map of the mixture Methanol (M)–Methylbu-
tyrate (MB)–Toluene (T). Arrows indicate the phase behavior for 
increasing temperature, i.e. from the top to the bottom of the col-
umn
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reasonable time anymore, local optimization is applied as 
a reference. For this, the local multi-start heuristic provided 
by BARON is applied with 5000 starting points. The results 
are displayed in the second row of Table 3 labeled with 
“Local”.

The Kriging models have been fitted using 1190 sam-
pling points. A cross validation of the first Kriging model 
(case “Surrogate1 ” in Table 3) was done with 100 points 
and is depicted in Fig. 4 as magenta dots. The first Kriging 
model is rather inaccurate, especially in the occuring dis-
continuity of xT,Bott , that is roughly contained in the inter-
val (0.72, 0.85). This is due to the large sampling region 
and due to the complexity of the problem. As a result, 
the operating conditions obtained in the first optimiza-
tion are violating the constraints with xT,Bott = 0.9034 and 
xT,Bott ⋅ B = 0.3820 mol/s.

Since the operating conditions found during the ref-
erence optimization “Local” are far away from the opti-
mal operating conditions for “Surrogate1 ”, the sampling 
region for the adaptive Kriging approach is chosen to 
be larger than in the ideal case, with ± 3 for the integer 
variables, ± 25% for D and +3 for V. After sampling around 
the obtained optimum and generating the second Kriging 
model (“Surrogate2 ” in Table 3) a second cross validation 
with 100 points was done. The results are shown in Fig. 4 as 
black dots. The second Kriging model is much more accu-
rate and is able to model the discontinuity quite well. It 

turns out, that the new optimum obtained for Surrogate2 
satisfies the desired conditions stated in Eqs. (12).

Note that the values for lr and ls given by the computed 
optimal solution of the second Kriging model lie on the 
boundary of their respective sampling region. Hence, a 
third Kriging model (Surrogate3 ) is generated around 
this optimum with lr , ls ± 3 , D within a 25 % range and 
V ∈ [2, 4] . In the third optimization the objective value 
could be lowered further. Comparing the result of the local 
optimization with the iterative global optimization of the 
Kriging models, the objective value is finally lowered by 
29.86%.

The purity of Toluene achieved with the operating 
conditions of “Surrogate3 ” is higher than the required 
specification of 95%. To decrease the objective function 
value further, a local search using the obtained operating 
conditions as initial conditions is done in MATLAB using 
the high-fidelity reference model and thereby reducing 
the purity to 95%. The results of that optimization can be 
found in Table 3 (see row “LocalM1”).

Based on the solution “LocalM1 ” and combining expert 
knowledge with further local optimization iterations 
the solution that is shown in row “LocalM2 ” of Table 3 can 
be obtained, which is the best local optimum we found 
through our computations. However, the improvement 
achieved by applying “LocalM2 ” compared to the use of 
“Surrogate3 ” is minor with respect to the improvement 
that is achieved by applying “Surrogate3 ” compared to 
the use of “Local”.

The computation times for each optimization are given 
in seconds in the column “time” of Table 3.

5 � Conclusion

In this work, two case studies concerning the distillation of 
multi-component mixtures have been conducted, where 
global optimization techniques have been applied to sur-
rogate models of the distillation columns investigated.

It was shown that the reformulation developed earlier 
by the authors is not always applicable in the case of a 
distillation of a mixture with non-ideal VLE, rendering the 

Table 3   Computational results 
for non-ideal distillation. Cases 
with numbered a subscript 
higher than 1 are calculated 
using adaptive sampling 
techniques, cases labeled with 
M are calculated using MATLAB

Case TAC​ D V ls lr Time

Local 134,373 1.3747 4.2063 4 18 8873
Surrogate1 71,759 1.3772 2 8 17 3527
Surrogate2 103,355 1.3747 2.7036 11 20 446
Surrogate3 94,255 1.3747 2.4403 13 18 362
LocalM1 93,189 1.3747 2.4095 13 18
LocalM2 86,604 1.3747 2.3380 17 11

Fig. 4   Cross validation of non-ideal distillation column in terms 
of xT ,Bott , the mole fraction of Toluene in the Bottom product. The 
magenta dots show the results for the first Kriging model, the black 
dots show the results for the second Kriging model
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problems unsolvable within a reasonable amount of time 
for standard deterministic global optimization software. In 
these cases, the iterative global optimization of surrogate 
models is a good alternative, which yields better optima 
than ordinary local solver and in some cases comes close 
to the global optimum. It can, however, not be guaranteed 
that the solution obtained by the optimization of these 
surrogate models is the actual global optimum or lies in a 
close neighborhood of it.

Further work will be concerned with more advanced 
adaptive sampling methods and algorithms for the gen-
eration of global models.
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