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Rheumatoid arthritis (RA) is a chronic, systemic immune-mediated inflammatory disease

that can lead to joint destruction, functional disability and substantial comorbidity due

to the involvement of multiple organs and systems. B cells have several important roles

in RA pathogenesis, namely through autoantibody production, antigen presentation, T

cell activation, cytokine release and ectopic lymphoid neogenesis. The success of B

cell depletion therapy with rituximab, a monoclonal antibody directed against CD20

expressed by B cells, has further supported B cell intervention in RA development.

Despite the efficacy of synthetic and biologic disease modifying anti-rheumatic drugs

(DMARDs) in the treatment of RA, few patients reach sustained remission and refractory

disease is a concern that needs critical evaluation and close monitoring. Janus kinase

(JAK) inhibitors or JAKi are a new class of oral medications recently approved for the

treatment of RA. JAK inhibitors suppress the activity of one or more of the JAK family

of tyrosine kinases, thus interfering with the JAK-Signal Transducer and Activator of

Transcription (STAT) signaling pathway. To date, there are five JAK inhibitors (tofacitinib,

baricitinib, upadacitinib, peficitinib and filgotinib) approved in the USA, Europe and/

or Japan for RA treatment. Evidence from the literature indicates that JAK inhibitors

interfere with B cell functions. In this review, the main results obtained in clinical trials,

pharmacokinetic, in vitro and in vivo studies concerning the effects of JAK inhibitors on

B cell immune responses in RA are summarized.
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INTRODUCTION

The success of B cell depletion therapy with rituximab in autoimmune diseases such as rheumatoid
arthritis (RA) has reinforced the important role that B cells have in the development of these
conditions (1, 2). Indeed, B cells can be responsible for autoantibody production, antigen
presentation and T cell activation and/ or cytokine and chemokine release that contribute
to disease pathogenesis (3). RA is a chronic, systemic immune-mediated disease that mainly
affects the small joints of hands and wrists and, though often ameliorated by treatment, can
lead to bone and cartilage destruction (4, 5). Treatment options in RA include non-steroid
anti-inflammatory drugs (NSAIDs), corticosteroids, synthetic and/or biologic disease modifying
anti-rheumatic drugs (DMARDs). Nevertheless, despite the progresses achieved in the last decades
in RA pharmacotherapy, few patients reach sustained remission and refractory disease remains
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a significant challenge (6–8). Janus kinase (JAK) inhibitors or
JAKi are recently approved oral medications with therapeutic
application in myeloproliferative disorders and inflammatory
diseases such as RA. JAKi function by inhibiting the activity
of one or more of the JAK family of enzymes [JAK1, JAK2,
JAK3, and tyrosine kinase 2 (TYK2)], thus interfering with
the JAK-Signal Transducer and Activator of Transcription
(STAT) signaling pathway (9, 10). There are currently five JAK
inhibitors (tofacitinib, baricitinib, upadacitinib, peficitinib, and
filgotinib) approved in the USA, Europe and/ or Japan for RA
treatment. Furthermore, an additional JAKi (decernotinib) is
under investigation for RA treatment in clinical trials (11, 12).
Although the number of studies exploring the effect of JAK
inhibitors on B cells in the context of RA is limited, evidence
from the literature indicates that JAKi also interfere with B cell
functions. In this review, we summarize themain results obtained
so far in clinical trials, pharmacokinetic, in vitro and in vivo
studies concerning the effects of JAK inhibitors on B cell immune
responses in RA.

B CELLS AND RHEUMATOID ARTHRITIS

B cells play several important roles in the development of RA
(13). B cells produce autoantibodies, such as rheumatoid factor
(RF) and anti-citrullinated protein antibodies (ACPA), which
form immune complexes that deposit in the joints and contribute
to the inflammatory process through complement and cellular
activation. Furthermore, B cells act as efficient antigen presenting
cells (APC) that activate T cells through the expression of
costimulatory molecules. B cells also secrete cytokines and/ or
chemokines that promote leukocyte infiltration in the joints and
the development of ectopic lymphoid structures, thus aggravating
angiogenesis, pannus formation and synovial hyperplasia. In
addition, the therapeutic efficacy of rituximab, an anti-CD20
monoclonal antibody that specifically depletes B cells, in RA
patients has unequivocally supported B cell targeted therapies
in RA pathogenesis (1, 2, 14). Of note, previous studies by
our group have demonstrated that untreated very early RA
patients (with <6 weeks of disease duration) have alterations
in circulating memory B cell subpopulations (15); a cytokine
profile that supports an early B cell activation (16, 17); and
changes in B cell gene expression levels relevant for B cell
maturation and differentiation (18). These data reinforce an
active role of B cells in RA pathogenesis from early disease
onset. Moreover, we have recently shown that in RA, treatment
with tumor necrosis factor (TNF)-inhibitors and the interleukin
(IL)-6 receptor (IL-6R) antagonist tocilizumab affect B cell
phenotype and IgD-CD27- memory B cells in peripheral blood
(19). Importantly, clinical relapse observed in B cell depleted
RA patients has been associated with B cell repopulation (20–
22). In fact, the results observed in RA patients following B
cell depletion therapy with rituximab suggest that alterations
in the expression of B cell activating factor (BAFF)-binding
receptors and an increase in class-switch recombination process,
particularly in memory B cell subsets, might be associated
with the re-establishment of active disease (23). Interestingly,

it has also been recently demonstrated for the first time that
the autoantibodies commonly found in RA patients, RF and
ACPA, express the inherently autoreactive 9G4 idiotope, thus
supporting an activation of autoreactive 9G4+ B cells in RA (24).
Additionally, it has been recently suggested that the pattern of
B cell distribution in synovial tissue from untreated early RA
patients can be associated to a specific pathotype classification
with cellular and molecular synovial signatures that might
help to predict disease severity, radiographic progression and
therapeutic response (25, 26).

CYTOKINES AS KEY PLAYERS IN
RHEUMATOID ARTHRITIS PATHOGENESIS

Cytokines are a large family of secreted proteins that play
important roles in the immune system, namely in cell
differentiation, maturation and signaling. Cytokines can
be produced by several types of immune cells, including
macrophages, B cells, T cells and mast cells, as well as endothelial
cells, fibroblasts and various stromal cells. Of note, cytokines
can be major drivers of autoimmunity and inflammation. In
RA, several cellular interactions and complex cytokine networks
occur that contribute to disease pathogenesis (13). In fact, it has
been demonstrated that cytokines including IL-1 beta (IL-1β), IL-
2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-15, IL-17, IL-18, IL-19, IL-20,
IL-21, IL-23, IL-32, IL-33, IL-35, TNF, interferon-alpha/gamma
(IFN-α/γ) and granulocyte-macrophage colony-stimulating
factor (GM-CSF) have important roles in RA physiopathology
as they contribute to the induction and maintenance of
inflammation (13, 27–30). The inflammatory process that
develops in RA leads to a cellular infiltration of the synovial
membrane, angiogenesis, pannus formation, swelling, and pain.
The interactions between B and T cells result in the activation
and differentiation of plasma cells, which are responsible for the
production of autoantibodies (RF, ACPA). These autoantibodies
form immune complexes that can activate complement and
stimulate cells such as monocytes by binding to their Fc-gamma
receptors (FcγR), triggering cytokine and/ or chemokine
release that cause inflammation. Indeed, activated monocytes,
neutrophils, and fibroblasts can release high levels of cytokines
such as IL-1, IL-6, and TNF, that further activate not only B and
T cells, but also chondrocytes and osteoclasts, thus contributing
to cartilage and bone destruction (13). Furthermore, cytokines
directly related with B cell activation and survival such as A
proliferation-inducing ligand (APRIL) and BAFF (31–35), which
can be produced by activated monocytes and neutrophils, have
been shown to contribute to RA development from an early
phase in disease onset (17). Moreover, increased serum levels
of BAFF have been suggested to have an important role in
B cell triggering during clinical relapse after B cell depletion
therapy (23). Previous studies developed by our group have
demonstrated that untreated very early RA (VERA) patients
(with <6 weeks of disease duration) have a cytokine pattern
in circulation that supports an early activation of not only B
cells, but also neutrophils and Th17 cells (16, 17) (Figure 1).
Indeed, we have found that VERA patients have higher serum
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levels of APRIL and BAFF when compared to other very early
arthritis (non-RA) patients, established RA and healthy controls
(17). We also observed that established RA patients have
significantly increased synovial fluid levels of APRIL, BAFF and
IL-21, a cytokine important for plasma cell differentiation (17)
(Figure 1A). Additionally, we found that VERA patients have
increased serum levels of cytokines that promote neutrophil
recruitment and activation (IL-8), Th17 cells polarization (IL-1β
and IL-6) and Th17 cells-derived cytokines (IL-17A and IL-22)
(16) (Figure 1B). Also, the elevated IL-1β, IL-6, IL-8, and IL-17A
levels observed in the synovial fluid of established RA patients
support a local role for these cytokines in synovial inflammation
and bone erosion (16) (Figures 1B,C). In fact, IL-17 has been
shown to induce osteoclastogenesis, thus contributing for bone
resorption (36, 37). Moreover, IL-6 can support the activation
and recruitment of autoreactive B cells toward RA synovium
(38, 39), leading to an exacerbation of inflammation through
autoantibody production and immune complex deposition
(40, 41) (Figure 1C). Of note, treatment of VERA patients with
corticosteroids and methotrexate (MTX), although effective in
clinical improvement had no impact on the cytokine pattern
in circulation (16, 17). Importantly, the success of biological
therapies that directly target key cytokines such as TNF
inhibitors (adalimumab, infliximab, etanercept, golimumab and
certolizumab); tocilizumab (an IL-6R antagonist) and anakinra
(an IL-1R antagonist) in RA further reinforce the relevance of
these small proteins in disease development (42–46).

JAK-STAT SIGNALING PATHWAY IN
HEALTH AND DISEASE

Cytokines act by binding to cell surface receptors and
subsequently activate intracellular signaling cascades, such as the
JAK-STAT signaling pathway. JAK-STAT signaling pathway is an
evolutionarily conserved pathway that regulates many cellular
processes including innate and adaptive immune responses,
cell proliferation, differentiation and apoptosis. Activation of
this pathway is initiated by binding of a ligand (such as
interleukins, interferons, hormones and growth factors) to
specific transmembrane receptors (cytokine receptors, G protein-
coupled receptors, receptor tyrosine kinases and homodimeric
hormone receptors) and culminates in the transcription of target
genes (9, 10, 47–49) (Figure 2). JAKs, STATs and cell-surface
receptors are the main key players of this signal-transduction
pathway. JAKs are a family of four members of tyrosine kinases
(JAK1, JAK2, JAK3, and TYK2) that selectively associate with
the intracellular domains of cell receptors (50, 51) (Figure 3).
JAK1, JAK2, and TYK2 are ubiquitously expressed, whereas
JAK3 expression is mainly restricted to hematopoietic cells
(52). Binding of a ligand to a cell surface receptor triggers
the receptor dimerization and induces the autophosphorylation
and activation of the receptor-associated JAKs. Activated JAKs
then phosphorylate critical tyrosine residues on the receptor,
which leads to recruitment of specific STATs (49, 51, 53)
(Figure 2). STATs are a family of proteins named for their
dual roles of transducing signals and promoting transcription

of specific genes. There are seven members of the STAT family
in mammals: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B,
and STAT6 (49, 54–57). After binding to the phosphorylated
tyrosine residues on the receptor, STATs are phosphorylated
by JAKs, which leads to their dissociation from the receptor.
STATs form homo- or heterodimers and translocate into the
cell nucleus via importins, where they bind to specific DNA
regions and activate the transcription of target genes (Figure 2).
STATs can be dephosphorylated by nuclear protein tyrosine
phosphatases (N-PTPs), which leads to the inactivation of STATs.
The unphosphorylated STATs associate with exportins to exit
the nucleus and return to the cytoplasm where they can be
reactivated for further rounds of gene transcription (10, 47,
49, 56). Overall, signaling via the JAK–STAT signaling pathway
is a dynamic process that involves the rapid transmission
of signal from the cell membrane to the nucleus followed
by a highly organized response and subsequent controlled
downregulation and attenuation of the initial signal (47–49, 54).
Thus, negative regulators of the JAK-STAT signaling pathway
also play an essential role. These include protein tyrosine
phosphatases (PTPs), which remove phosphate groups from
receptors, JAKs and STATs (58); protein inhibitor of activated
STAT (PIAS), that prevent the DNA-binding activity of STATs
(59, 60); and suppressor of cytokine signaling proteins (SOCS),
which form a classical negative feedback loop that switches
off the activity of JAKs (61, 62) (Figure 2). Disturbances in
JAK-STAT signaling pathway, mostly associated with mutations
(gain or loss of function) and polymorphisms in JAK and/ or
STAT genes (9, 63), have been implicated in the pathogenesis
of several diseases including inflammatory skin conditions
(psoriasis, atopic dermatitis, alopecia areata, vitiligo) (64–
71); cancers (myeloproliferative neoplasms, leukemia) (72, 73);
immunodeficiencies (severe combined immune deficiency) (74);
and autoimmune disorders such as RA (75–79); psoriatic arthritis
(80, 81); systemic lupus erythematosus (82, 83); ankylosing
spondylitis (84, 85); systemic sclerosis (86, 87); giant cell arteritis
(88); sarcoidosis (89–91) and inflammatory bowel diseases
(ulcerative colitis, Crohn’s disease) (92, 93). Therefore, targeting
JAKs and/ or STATs can be a safe and efficacious strategy for
treating these diseases (94).

JAK INHIBITORS AS NEW TREATMENT
OPTIONS IN RHEUMATOID ARTHRITIS

JAK-STAT signaling pathway has a critical role in the signal
transduction of many pivotal cytokines involved in RA
pathogenesis (12, 95, 96) as well as other inflammatory disorders
(97). Due to their central role in the immune responses and
their association with several cytokine receptors (Figure 3), the
inhibition of JAKs appeared to be a promising therapeutic
strategy in autoimmune diseases (94). JAK inhibitors (JAKi)
represent a new class of oral drugs developed in the last
decade that directly suppress the enzymatic activity of JAK
family members, blocking JAK-STAT signaling pathway (12,
96). Despite the efficacy of biological DMARD treatments that
target individual cytokines, biologics are large proteins that may
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FIGURE 1 | (Continued)
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FIGURE 1 | (Continued)
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FIGURE 1 | Cytokine profile present in peripheral blood from very early rheumatoid arthritis (VERA) patients and synovial fluid from established RA. A group of

cytokines directly related with B cell activation, differentiation and survival was quantified in serum samples from untreated very early rheumatoid arthritis (VERA)

patients with <6 weeks of disease duration when compared to healthy controls (A). In addition, serum and synovial fluid samples from established treated RA patients

were also analyzed for comparison (A). Cytokines related with neutrophil and Th17 cells activation were also quantified in serum samples from VERA patients and

healthy individuals (B). Furthermore, synovial fluid from established treated RA and osteoarthritis (OA) patients was analyzed for comparison (B). Statistical analysis of

data was performed with GraphPad Prism (GraphPad Software, San Diego, CA, USA). Lines in graphs represent median values with interquartile range.

Non-parametric Mann-Whitney test was used for comparisons between two independent groups. Differences were considered statistically significant for p < 0.05.

Data represented in Figures 1A,B were adapted from previous published studies by our group (16–18), according to the terms of the Creative Commons license

(http://creativecommons.org/licenses/by/4.0/). Figure 1C is an illustration representative of the cytokine profile present in peripheral blood from VERA patients and

synovial fluid from established RA supported by previous published studies by our group (16–18). To sum up, RA patients have a cytokine profile in peripheral blood

that favors B cells, neutrophils and Th17 cells activation since the first weeks of disease development. In a chronic phase of the disease, the cytokine pattern present

locally in the joints supports the intervention of activated monocytes, neutrophils, T and B cells and plasma cell differentiation (C). ACPA, anti-citrullinated protein

antibodies; APRIL, a proliferation-inducing ligand; BAFF, B cell activating factor; IL, interleukin; ns, non-significant; OA, osteoarthritis; RA, rheumatoid arthritis; RF,

rheumatoid factor; Th17, T helper 17; VERA, very early rheumatoid arthritis.

cause immunogenicity and require either intravenous infusion
or subcutaneous injection for dosing (98). In contrast, JAK
inhibitors are small molecules, orally administered, that can
simultaneously suppress the action of multiple cytokines. To
date, five JAK inhibitors (tofacitinib, baricitinib, upadacitinib,
peficitinib, and filgotinib) have been approved for the treatment
of RA.

Tofacitinib
Tofacitinib is an oral JAK inhibitor with selectivity for JAK1
and JAK3 and, to a lesser extent, JAK2 and TYK2. Tofacitinib
was the first JAK inhibitor approved by the United States
(US) Food and Drug Administration (FDA) (November 2012)
and European Medicines Agency (EMA) (March 2017) for
the treatment of moderate to severe active RA patients who
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FIGURE 2 | JAK-STAT signaling pathway. When a ligand (usually a cytokine) binds to its receptor in a cell, it triggers the autophosphorylation of the

receptor-associated Janus kinases (JAKs). Activated JAKs phosphorylate the intracellular tail of the receptor on critical tyrosine residues, which leads to the

recruitment and binding of signal transducer and activator of transcription (STAT) proteins. STATs are phosphorylated by JAKs, which induces their dissociation from

the receptor. STATs form homo- or heterodimers and translocate into the cell nucleus, where they bind to specific DNA regions and activate target gene expression.

Negative regulators of the JAK-STAT signaling pathway include protein tyrosine phosphatases (PTPs), which remove phosphate groups from receptors, JAKs and

STATs; protein inhibitor of activated STAT (PIAS), that prevent the DNA-binding activity of STATs; and suppressor of cytokine signaling proteins (SOCS), which inhibit

the activity of JAKs. DNA, deoxyribonucleic acid; JAK, Janus kinase; P, phosphate; PIAS, protein inhibitor of activated STAT; PTP, protein tyrosine phosphatase;

SOCS, suppressor of cytokine signaling proteins; STAT, signal transducer and activator of transcription.

had had an inadequate response or intolerance to MTX (76,
78, 99–112). Data from human clinical trial studies have
demonstrated the effectiveness of the use of tofacitinib in
RA patients not only as a monotherapy (at a dosage of
5mg twice daily), but also in combination with MTX and
the clinical responses have proven to be at least similar to
TNF antagonists (78, 103, 105, 107, 109, 112–114). Indeed,
tofacitinib has demonstrated efficacy in active RA patients by
significantly improving disease activity, physical functioning,
health-related quality of life as well as preventing bone
erosions and structural joint damage (99, 103, 114–117).
Furthermore, safety reports indicate that tofacitinib is generally
well-tolerated, has a consistent safety profile (as monotherapy
or combination therapy) and sustained efficacy in RA patients.
However, adverse events have been described in RA patients
after tofacitinib treatment with mild to moderate severity
that included nausea, anemia, lymphopenia, neutropenia, lipid
profile changes, increase in liver enzymes, cardiovascular events,

lower respiratory tract infections, herpes zoster virus (HZV)
reactivation, venous thromboembolism, and development of
malignancies (76, 78, 109, 112, 114, 118–125). Nevertheless,
the overall risk of infection (including serious infection) and
mortality rates in RA patients treated with tofacitinib is similar
to those observed in RA patients treated with biologic agents
(12, 120).

Baricitinib
Baricitinib was the second JAK inhibitor approved for clinical
use in RA (in February 2017 by the EMA and in June
2018 by the FDA). Baricitinib is an oral JAK1/JAK2 inhibitor,
with moderate activity against TYK2 and significantly less
activity against JAK3. Approved dosages (2 and 4mg once
daily) are administered to moderate to severe active RA in
adult patients who are intolerant or unresponsive to one or
more DMARDs (75, 126–132). Treatment of RA patients with
baricitinib monotherapy, or when baricitinib was combined
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FIGURE 3 | Association of Janus kinases with cytokine receptors and downstream effects of JAK-STAT signaling pathway activation. Janus kinase (JAK) family

members include JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2). Different JAK combinations with their subsequent downstream effects, each mediated by a specific

subset of cytokines are represented. EPO, erythropoietin; GH, growth hormone; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage

colony-stimulating factor; IFN, interferon; IL, interleukin; JAK, Janus kinase; NK, natural killer; Th17, T helper 17; TPO, thrombopoietin; TYK2, tyrosine kinase 2.

with conventional synthetic DMARDs (csDMARDs) such as
MTX showed efficacy and had an acceptable safety profile
in early active naïve csDMARD-treated RA patients who had
exhibited an inadequate response to conventional synthetic or
biologic DMARDs (126, 129, 131, 132). Moreover, it has been
demonstrated that baricitinib had a similar or improved efficacy
when compared to TNF antagonists such as adalimumab (129,
131–134). Of note, treatment of RA patients with baricitinib
was associated not only with clinical improvement, but also
with inhibition of radiographic joint damage (135, 136). Overall,
baricitinib is considered a safe and effective treatment in RA,
although some adverse events have been described similarly
to what has been observed in tofacitinib treated RA patients
(132, 137–139).

Upadacitinib
Upadacitinib is a JAK1-selective inhibitor approved by the
FDA (in August 2019) and EMA (in December 2019) for
the treatment of RA. Upadacitinib is indicated for the
treatment of adults with moderately to severely active RA who
fail to adequately respond to, or are intolerant to one or
more DMARDs (77, 140–146). Upadacitinib may be used as
monotherapy (15mg or 30mg once daily) or in combination
with MTX as an effective treatment for active RA patients
with an inadequate response to conventional or biological
DMARDs, with an acceptable safety profile (77, 143–147).
Furthermore, it has been demonstrated that upadacitinib was
more effective than adalimumab treatment in ameliorating
disease activity in RA patients who were concomitantly receiving
MTX and significantly prevented radiographic progression
(148). In addition, despite being a selective JAK1 inhibitor,

upadacitinib has a similar safety profile to less-selective JAKi
(139, 143, 146, 147, 149). Nevertheless, longer-term safety data
are necessary.

Peficitinib
Peficitinib is a pan-JAK inhibitor with a moderate selectivity
for JAK3. It was approved for the treatment of RA in Japan
in 2019 and Korea in 2020; and is currently being evaluated
by the US FDA to treat adult patients with moderately to
severely active RA who show inadequate response to or are
intolerant of MTX (150–158). Peficitinib has been tested in
RA either as monotherapy (150) or in combination with
MTX (151) or csDMARDs (152) and it has been shown
to significantly improve disease severity in RA patients who
have an inadequate response to conventional therapies. Of
note, it has been demonstrated that Peficitinib 50, 100, and
150mg dosages administered once daily were effective in
treating active RA patients, without a significant risk for
adverse events (159). Overall, peficitinib has an acceptable
safety and tolerability profile with similarly described adverse
events as the ones reported with other JAK inhibitors
(139, 153–155, 158, 160–162).

Filgotinib
Filgotinib is a JAK1-selective inhibitor recently approved
by EMA and in Japan (in September 2020) for the
treatment of RA (163–170). Filgotinib is indicated for the
treatment of moderate to severe active RA in adults who
have responded inadequately to, or who are intolerant
to one or more DMARDs. Filgotinib may be used
as monotherapy (100mg or 200mg once daily) or in
combination with MTX (168–170). Of note, similarly to
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FIGURE 4 | Cytokines that trigger B cell immune responses through JAK-STAT signaling pathway activation. Overview of the effects of cytokines relevant for B cells

that trigger immune responses through JAK-STAT signaling pathway activation. IFN, interferon; IL, interleukin.

upadacitinib, another selective JAK1 inhibitor, it has been
demonstrated that the risks of serious adverse events did
not differ between filgotinib and less-selective JAKi such as
tofacitinib (168–171).

In addition to these compounds, another JAK inhibitor,
decernotinib, an oral JAK3-inhibitor in Phase IIb studies (172–
175), is currently under investigation for the treatment of RA.
Overall, results from clinical trials with JAK inhibitors in RA are
encouraging (12, 125). JAKi have shown a rapid onset of action
and, in case of an adverse event, their short half-life supports
a rapid reversal of immunosuppressive effects (176–178). Of
note, JAK inhibitors proved efficacious when administered as
monotherapy and have demonstrated a comparable or superior
efficacy and safety profile to those of biologic agents (179,
180). Importantly, due to the evidence of superiority or non-
inferiority of JAK inhibitors when compared to adalimumab
emerging from randomized clinical trials (114, 134, 181), the
2020 updated EULAR therapeutic guidelines have recommended
the use of JAK inhibitors as an alternative to biologics in RA
patients refractory to cDMARDs and having poor prognostic

factors, as well as in those failing a previous synthetic or biologic
DMARD (182).

EFFECT OF JAK INHIBITORS ON B CELLS:
EVIDENCE FROM THE LITERATURE

Studies of the effects of JAK inhibitors on circulating immune
cells that play important roles in the pathogenesis of autoimmune
diseases may provide insights into immunologic mechanisms
associated with clinical outcomes. Due to differences in JAK
targeting, JAK inhibitors may also exert distinct immunologic
effects. While JAK1, JAK2, and TYK2 are ubiquitously expressed,
JAK3 expression is predominantly restricted to hematopoietic
cells (50, 183–186), having important roles in immune function
and lymphocyte development as described in both humans (74,
187) and mice (188, 189) with JAK3 deficiencies. JAK3 mediates
signaling through cytokine receptors that contain the common
gamma chain (γc) or IL-2R subunit gamma (IL-2RG) including
IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 receptors (51). Also, it has
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TABLE 1 | Overview of the impact of JAK inhibitors on B cell immune responses based on pharmacokinetic, in vitro and in vivo studies.

Description JAK inhibitor References

Increase in B cell numbers in peripheral blood Tofacitinib, Baricitinib, Filgotinib (163, 164, 204, 205, 214, 226)

Suppression of B cell activation, differentiation and class-switching Tofacitinib, Baricitinib, Filgotinib (202, 207, 215, 216, 227)

Impairment of plasmablast development and immunoglobulin secretion Tofacitinib, Baricitinib (208, 215, 216)

Inhibition of antibody production Tofacitinib, Filgotinib (200, 208–210, 227)

Inhibition of cytokine production relevant for B cell activation and survival Tofacitinib, Baricitinib, Upadacitinib,

Filgotinib

(215, 216, 218, 220, 227)

Downregulation of the antigen presenting cell function of B cells Baricitinib (217)

Reduction of T helper cell responses Baricitinib (215, 217)

Inhibition of STAT phosphorylation on B cells Tofacitinib, Baricitinib, Upadacitinib,

Filgotinib

(219)

Downregulation of B-cell chemoattractant, activation, survival and differentiation biomarkers Filgotinib (226)

Decrease in B cell lymphoid infiltrates in tissues Filgotinib (227)

been shown that JAK3 is constitutively associated with CD40, an
important B cell co-receptor whose signaling has a wide range of
effects on B cells, including cell growth, survival, differentiation,
isotype switching, rescue from apoptosis and up-regulation of
expression of B7 (CD80), Fas, ICAM-1, CD23 and lymphotoxin
(LT)-α (190, 191). In fact, JAK3 activating mutations are found in
human hematological malignancies including B-cell lymphomas
(192–194). Furthermore, observations in JAK3 knockout mice
confirmed JAK3 essential role in B cell division, immunoglobulin
gene rearrangement, differentiation and survival (195). Taken
together, these data support that the regulation of JAK3
expression and activity is important in B cell development
and function (196). Therefore, the use of JAK3 inhibitors
such as tofacitinib in autoimmune diseases such as RA might
have important consequences in B cell activation and function.
Previous studies have shown that the primary targets of
tofacitinib during pathological processes in RA are dendritic
cells, CD4+ T cells such as Th1 and Th17 and activated B
cells, leading to multi-cytokine targeting, decreased synovial
inflammation and structural joint damage (117, 197–202).
Changes in lymphocyte subsets have been documented with
tofacitinib treatment (116, 176, 200, 203, 204). Indeed, phase II
and phase III clinical trials involving patients with RA treated
with tofacitinib showed a transient increase in total lymphocytes
early in treatment, with a gradual decrease over time (204–
206). In phase II RA clinical trials, variable changes in T cells
were observed with short-term tofacitinib treatment, while B
cells and natural killer (NK) cells increased and decreased
from baseline, respectively (204, 205). Importantly, no strong
association between CD4+ T cell, CD8+ T cell, B cell, or NK
cell counts and serious infection incidence rates was observed
(204). Although the number of studies exploring the effect of
tofacitinib on B cells in the context of RA is limited, results
so far indicate that tofacitinib interferes with B cell functions.
In fact, it has been suggested that tofacitinib suppresses B cell
activation, differentiation and class-switching, but maintains B
cell regulatory function (202, 207). Moreover, tofacitinib reduces
IgG and RF circulating levels in RA patients, which correlates
with disease activity amelioration (200). Additionally, it was

shown that tofacitinib severely impaired in vitro plasmablast
development, immunoglobulin secretion and induction of B-
cell fate determining transcription factors from naïve B cells
isolated from umbilical cord blood (208). Similar, but less
pronounced results were obtained with peripheral blood B cells
isolated from healthy blood donors. Indeed, in vitro treatment
of total peripheral blood B cells with tofacitinib resulted in
reduced but not abolished plasmablast development, as well as
reduced antibody secretion (208). Furthermore, recent studies
developed in murine models of lupus have demonstrated that
although tofacitinib treatment did not change B cell numbers,
a significant reduction in anti-double stranded DNA (anti-
dsDNA) and antinuclear antibodies (ANA) was observed in
serum (209, 210). These observations pointed to the potential
inability of tofacitinib-treated patients to respond to novel
antigens, suggesting that vaccination against new antigens prior
to tofacitinib treatment should be considered (208, 211–213).
Moreover, in vitro activation of B cells isolated from tofacitinib
treated polyarthritis patients has revealed that, in the absence
of tofacitinib, B cells can be activated again and display a
normal or enhanced differentiation (208). This indicates that
the inhibitory effect of tofacitinib is terminated as soon as the
drug is removed (176, 201, 208). Besides tofacitinib, other JAK
inhibitors have been approved or are currently being tested
in clinical trials as new potential treatment options for RA
and/ or other autoimmune diseases and chronic inflammatory
conditions. Thus, new studies concerning the effects of JAK
inhibitors on innate and adaptive immune system responses are
still emerging. In fact, the diversity of cytokines that trigger B
cell immune responses through JAK-STAT signaling pathway
activation (Figure 4) suggests that other JAK inhibitors, besides
JAK3 inhibitors, might have important roles in B cell immunity
(Figure 3). Changes in lymphocyte numbers (B, T, and NK cells)
and subpopulations have been recently demonstrated in active
RA patients after treatment with baricitinib (214). An integrated
data analysis has been performed based on results from three
completed phase III trials comparing placebo with baricitinib
treatment (RA-BEAM, RA-BUILD, and RA-BEACON) and
one ongoing long-term extension study (RA-BEYOND) in
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patients with active RA. Overall, a transient increase in total
lymphocyte count was observed in RA patients after 4 weeks
of treatment with baricitinib, returning to baseline values by
week 12. Moreover, transient changes in T cells and subsets
(CD3+, CD4+, CD8+, Th1, Th17, and regulatory T cells) were
observed with baricitinib treatment, with cell counts remaining
largely within normal reference ranges (214). Additionally, it
was shown that CD19+ B cells and B cell subpopulations
(including switched memory, non-switched memory, mature
naïve, and immature transitional B cells) increased after 4
weeks of baricitinib treatment and remained above baseline or
stabilized over time (214). Importantly, baricitinib treatment
did not result in increased autoantibody (RF and ACPA) titers,
suggesting that the increase in total B cell counts is unlikely
to reflect a major expansion of RA antigen-specific B cells
(214). Nevertheless, it is possible that some of the class-switched
memory B cells, increased by baricitinib in a dose-dependent
manner, are regulatory B cells, which inhibit disease progression
(214). Of note, the detected changes in lymphocyte subsets were
largely consistent across the baricitinib phase III RA clinical
trials, which included patients with different responsiveness to
prior DMARD therapies and were not associated with increased
risk of serious infections (214). Recently, the in vitro effects
of baricitinib were evaluated on human peripheral blood cells
and it was shown that baricitinib modulates both innate and
adaptive immune responses similarly to tofacitinib (88, 197, 215).
Baricitinib suppressed the expression of costimulatory molecules
(CD80/CD86) on monocyte-derived dendritic cells and inhibited
T cell proliferation and differentiation of Th1 and Th17 cells.
Furthermore, baricitinib suppressed the differentiation of human
B cells into plasmablasts by B cell receptor and type-I interferon
(IFN) stimuli and inhibited the production of IL-6 from B cells
(215). Also, it was recently shown that baricitinib decreased BAFF
expression in RA synovial fibroblasts similarly to tofacitinib, thus
inhibiting B cell activation locally in the joints (216). The impact
of baricitinib on B cells is further supported by studies developed
in a mouse model of graft-vs.-host disease (GVHD) in which
it was demonstrated that baricitinib inhibited the activation of
allogeneic antigen presenting cells (APCs) and prevented GVHD
progression (217). It was shown that baricitinib suppressed
the expression of major histocompatibility complex (MHC)-II,
costimulatory molecules CD80/86 and PD-L1 on B220+ and
CD11c+ APCs. Moreover, baricitinib expanded regulatory T
cells and downregulated Th1 and Th2 cell responses (217).
Studies developed in RA patients and animal models of arthritis
treated with upadacitinib have reported decreased circulating
numbers of lymphocytes, neutrophils and NK cells (141, 142,
218). Nonetheless, no significant changes were detected in RF
and ACPA levels in RA patients after upadacitinib treatment
(144). Furthermore, it has been recently shown that upadacitinib
has a generally similar profile of in vitro cytokine receptor
inhibition observed in human leukocyte subpopulations when
compared to other JAK inhibitors (219). Particularly, it was
observed that upadacitinib inhibited STAT6 phosphorylation
on CD19+ B cells triggered by IL-13 stimuli similarly to
tofacitinib, baricitinib and filgotinib (219). However, a recent
in vitro pharmacology study comparing tofacitinib, baricitinib

and upadacitinib has revealed that different JAK inhibitors
modulate distinct cytokine pathways to varying degrees (220).
Notably, it was shown that upadacitinib and tofacitinib were
the most potent inhibitors of the JAK1/3-dependent cytokines
tested, including IL-4, IL-6 and IL-21, relevant for B cell
activation, plasma cell differentiation and humoral immune
responses (218, 220). In addition, studies with peficitinib have
demonstrated an inhibitory effect of this JAK inhibitor on T cell
activation using either a rat adjuvant-induced arthritis model
(221) or human peripheral blood mononuclear cells (86, 222).
Moreover, it was shown that peficitinib suppressed in vitro
monocyte chemotactic activity and the proliferation of fibroblast-
like synoviocytes from RA patients (79, 223, 224). Interestingly,
decreases in neutrophil and total lymphocyte counts were
observed after peficitinib treatment, but no significant changes
were detected on T cell subpopulations (152–155, 158, 222,
225). Nevertheless, studies on the potential effects of peficitinib
treatment on human B cells are currently lacking. Filgotinib
was recently approved by EMA for the treatment of RA and
clinical trials with this JAK1-selective inhibitor are currently
under investigation in other autoimmune diseases. Changes in
leukocyte numbers, particularly increases in B cell frequencies,
have been reported in RA patients after filgotinib treatment
(163, 164, 226). Furthermore, studies exploring the action of
this JAKi on B cells have demonstrated that filgotinib directly
inhibits human B cell differentiation and IgG production (227).
Recent reports in RA patients following treatment with filgotinib
have shown significant reductions in markers important for B
cell chemotaxis [chemokine (C-X-C motif) ligand 13, CXCL13];
activation and survival (BAFF); regulatory function (IL-10) and
germinal center and plasma cell differentiation (IL-2, IL-5, IL-
7, and IL-21) (226). Moreover, filgotinib has also been shown
to suppress the production of BAFF in human primary salivary
gland (SG) epithelial cells and SG organoids (227). Additionally,
studies developed in a mouse model of Sjögren syndrome
have shown a marked reduction in lymphocytic infiltration of
salivary glands after filgotinib treatment, which contributed to
disease amelioration (227). Decernotinib is another JAK inhibitor
currently under evaluation for the treatment of RA (173–175,
228, 229). Although lymphopenia and neutropenia have been
described in decernotinib trials (174, 175), the exact mechanisms
of action and effects of this JAKi on B cell immune responses still
need to be further clarified. Table 1 summarizes the impact of
currently approved JAK inhibitors on B cell immune responses
described in the literature. Overall, additional pharmacological
studies of JAKi exploring the effect of different cytokine pathways
and/ or JAK targeting in distinct human leukocyte populations
remain of clinical importance.

CONCLUSIONS

JAK inhibitors are a new class of oral immunosuppressive drugs
with proved efficacy in the treatment of chronic inflammatory
conditions and autoimmune diseases such as RA. B cells play
several important roles in RA pathogenesis since the first
weeks of disease development. Pharmacokinetic, in vitro and in
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vivo studies developed so far with animal models of arthritis
or other autoimmune conditions and/ or with human cells
from RA patients or other chronic inflammatory disorders
have demonstrated that JAK inhibitors (tofacitinib, baricitinib,
upadacitinib, peficitinib, filgotinib and decernotinib) can affect
B cell activation, proliferation and differentiation. Taking into
consideration these B cell effects of JAKi and the relevant role
of B cells since early RA onset it is likely that JAKi can have
a major impact on the early phase of RA. Nevertheless, further
research studies are necessary to clarify the exact mechanisms
of action of JAKi on B cells and other immune cell targets not
only in currently approved JAK inhibitors, but also in new JAKi
under investigation.
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