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Stochastically modulated inter-pulse
intervals to increase the efficiency of
functional electrical stimulation cycling
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Abstract

Introduction: Functional electrical stimulation cycling has various health benefits, but the mechanical power output and

efficiency are very low compared to volitional muscle activation. Stimulation with variable frequency showed significantly

higher power output values in experiments with a knee dynamometer. The aim of the present work was to compare

stochastic modulation of inter-pulse interval to constant inter-pulse interval stimulation during functional electrical

stimulation cycling.

Methods: Seventeen able-bodied subjects participated (n¼ 17). Quadriceps and hamstring muscle groups were stimu-

lated with two activation patterns: P1-constant frequency, P2-stochastic inter-pulse interval. Power output was measured

on functional electrical stimulation ergometer.

Results: Overall, mean power output with the stochastically modulated pattern P2 was lower than with P1

(12.57� 3.74 W vs. 11.44� 3.81 W, P1 vs. P2, p¼ 0.022), but no significant differences during the first 30 s and the

last 30 s were observed.

Conclusions: This study showed that stimulation strategies that use randomized modulation of inter-pulse intervals can

negatively affect power output generation during functional electrical stimulation cycling. To minimise voluntary con-

tractions, power measurement and assessment should be focused on the periods where only the quadriceps are

stimulated.
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Introduction

With functional electrical stimulation (FES), paralysed
skeletal muscles can be activated by applying low-level
electrical stimulus. FES is successfully used in various
applications like grasping, standing, foot drop and also
for cycling. Functional electrical stimulation of the
paralysed leg muscles to achieve cycling motion is
effective for cardiopulmonary1 and musculoskeletal2–4

conditioning after spinal cord injury. These health
benefits are dependent on limitations of this technol-
ogy: mechanical power output and efficiency are very
low5–9 and endurance is limited due to early onset of
muscle fatigue.10 Stimulation and physiological param-
eters play a crucial role in addressing these limitations.

Modulation of stimulation parameters (pulse ampli-
tude, pulse width and frequency), as well as electrode

positioning, affects the muscle response to stimulation.
Contemporary stimulation patterns (initial doublet or
triplet trains, doublet trains, and variable-frequency
trains) have been studied11–14 in order to increase the
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efficiency of neuromuscular stimulation by increasing
the force generated and offsetting muscle fatigue.

Various studies were conducted to investigate the
performance of different muscle activation strategies
applied to single muscle group during knee extension
on a non-isometric dynamometer. Variable-frequency
trains increased force production in non-fatigued and
fatigued muscle, compared to constant-frequency
trains.15 Other studies16–18 examined the effects of sto-
chastic modulation of inter-pulse interval, which is
equivalent to stochastically modulating the pulse fre-
quency.17 It was reported that the time span in which
a leg could be extended against gravity by stimulating
the quadriceps was significantly increased when the
inter-pulse interval (IPI) was varied (compared to con-
stant frequency stimulation), but random modulation
of other parameters (amplitude and pulse width) did
not appear to have a significant influence on the fatigue
rate and the force response of isometric contractions of
the quadriceps.18 In a previous study with a knee exten-
sion ergometer,19 it was concluded that stimulation
strategies that use randomized modulation of IPIs can
improve the ability of functional electrical stimulation
applications to perform repetitive non-isometric con-
tractions with significantly higher power output in
short-term tasks. It was hypothesised19 that alternative
stimulation strategies like variable frequency stimula-
tion trains and development of optimal stimulation
protocols for muscle reconditioning may bring better
FES-cycling performance and more effective FES-
cycle training.

EMG responses during voluntary muscle contrac-
tions show that trains of action potentials are asyn-
chronous in time and some stochastic modulation of
the spacing between the action potentials exists.20

FES, in contrast, usually employs synchronous stimu-
lation and causes the muscle fibres to contract simul-
taneously.21–23 Hence, the idea of stochastically
modulating the IPI deserves more attention. The aim

of this work was to compare stochastic modulation of
the IPI to constant IPI stimulation during stationary
FES cycling with respect to mechanical power output
and fatiguability.

Methods

Short-term performance of two activation patterns (P1:
Constant frequency, 35 Hz; P2: stimulation pattern
with stochastically-varied IPI) was compared using
repeated, randomised application of different trains
during a single experimental session. In order to elim-
inate the possible confounding effects of stimulation
timing and possible unwanted co-contraction of other
muscle groups, stimulation trains were applied repeti-
tively to quadriceps and hamstrings only.

Subjects

Twenty-one able-bodied male subjects were recruited
(age 23–36 years). Subjects were required to abstain
from intense physical activity involving the lower
limbs during the 24 h prior to each test. All of the sub-
jects were instructed to remain as passive as possible to
reduce voluntary muscle activity during experiments.
Four subjects were not included in the data analysis
because no observable response could be elicited from
the stimulated muscle groups because very low max-
imum tolerated pulse-width values were set during
familiarization phase. Thus, data were analysed for an
equivalent of 17 subjects (n¼ 17) during 34 sessions.
The study was approved by the Ethics Committee of
the Canton of Bern, Switzerland (KEK-Nr. 128/14). All
participants gave written informed consent.

Experimental setup

A recumbent tricycle (ICE Trike, ICE Ltd, UK) was
modified and equipped with sensors/actuators to

Figure 1. FES cycling test bed with motor assist. FES: functional electrical stimulation.
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perform as a stationary FES test bed (Figure 1). The
connecting chain was removed from the pedal sprocket
and rear wheel, and the pedals were connected instead
to a brushless motor drive system (EC45, Maxon
Motor AG, Switzerland) in order to ensure constant-
cadence cycling independent of applied muscle forces.
Subjects were seated on the trike with legs attached to
the pedals using custom-made ankle orthoses. A power
measurement device (SRAM S975 GXP 170mm,
Schoberer Rad Messtechnik GmbH, Germany) was
used to cross-calibrate the shaft torque sensor (X-Cell
RT, Alfred Thun Co. KG, Germany) and the motor
current values that were used to sense the generated
torque. Cross-calibration of the sensors was done by
attaching constant weights to the pedal. As a result,
power output measurement was possible with an accur-
acy of 10mW.

A PC-controlled stimulator was used (Rehastim,
Hasomed GmbH) which delivers biphasic current-con-
trolled rectangular pulses through surface electrodes
(Axelgaard, Pals Platinum, USA). Sensor data were
fed into a data acquisition card (PCI-6221, National
Instruments, USA) at 1 kHz sampling rate. Device con-
trol and data acquisition were implemented with
Matlab/Simulink and the Real-Time Workshop
(Mathworks, USA). A graphical user interface was
also implemented to set the desired values of stimula-
tion parameters, trains and angles.

Experimental protocol

For each subject, the experiment consisted of two ses-
sions on two different days. The quadriceps and ham-
string muscle groups of both legs were stimulated for a
total of 6min: 3min with a constant frequency pattern
denoted as P1 and 3min with a stochastically varied IPI
denoted as pattern P2; there were short periods of non-

stimulated motion before, between and after the stimu-
lation phases (Figure 2). The study design was counter-
balanced by randomizing the order of presentation of
P1 and P2, i.e. P1 then P2 vs. P2 then P1. Cadence was
set to 50 r/min for each session.

The maximum stimulation pulse width was found
for each subject before the first formal measurement
session in a familiarization phase by gradually increas-
ing the pulse width until the pain threshold and the
maximally tolerated pain were reached. Then, 80% of
this pulse width was used for the individual’s pulse
width during the experiments (70–145 ms, mean:
95.3 ms). For each stimulation pattern (P1 and P2),
pulse amplitude was kept constant at 50 mA for the
quadriceps and 40 mA for the hamstrings. The quadri-
ceps were stimulated with two channels where the elec-
trodes were placed on the vastus lateralis muscle motor
point (MPvl) and vastus medialis motor point (MPvm)
to improve the effectiveness of stimulation.24 Only one
channel was used to stimulate the hamstrings. Muscle
motor points for the quadriceps were detected with a
stimulation pen (Motor Point Pen, Compex,
Switzerland).

Each experiment started with a rest phase (2min)
where actuator system moved the pedals and the sub-
ject’s legs at a constant angular velocity without any
stimulation. After the rest phase, stimulation started
with P1 or P2. If the subject was stimulated first with
P1 during the first session, the second session was
started with P2. It has been stated that even 10min of
rest is insufficient,17 but in order to examine the recov-
ery effect compared with voluntary activation in a
short-term protocol, a 3-min rest time was administered
between each activation pattern.25 For P2, the inter-
pulse interval was stochastically modulated by setting
the stimulation frequency as a normal distribution,
f � Nð �f ¼ 35Hz, �f ¼ 15Hz). Here, �f is the mean

Figure 2. Test protocol and stimulation angles for the left leg. The order of presentation of P1 and P2 was randomly selected for

each leg.
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frequency and �f the standard deviation. For P1, a con-
stant frequency of 35Hz was used.

Data evaluation

Power output (P) was assessed as the product of angu-
lar velocity and torque during stimulated cycling. The
mean power output in the first (PF30) and last (PL30)
30 s as well as total mean power (Pm) of each phase was
evaluated. Differences between mean values of these
outcomes between P1 and P2 were examined using
paired, two-sided t-tests (data normality was checked
using a Kolmogorov–Smirnov test). The significance
level was set to a¼ 0.05. Mean differences (MD) and
95% confidence intervals were also calculated.

Fatigue4 was measured for power output values for
each stimulation pattern and is shown as the percentage
power output loss: Ploss ¼ 100%� PF30 � PL30ð Þ=PF30 of
each stimulation phase. All statistical analyses were car-
ried out using the Matlab Statistics and Machine
Learning Toolbox (Mathworks Inc., USA).

Results

There was significantly higher total mean power output
with the constant frequency pattern P1 compared
to stochastically modulated frequency pattern P2

(Pm¼ 12.57� 3.74W vs. 11.44� 3.81W, P1 vs. P2,
p¼ 0.022). There was no significant difference between
the patterns during the first 30 s (PF30¼ 18.20� 4.95W
vs. 17.76� 5.31W, p¼ 0.74) and the last 30 s
(PL30¼ 9.73� 2.99 W vs. 9.34� 3.64 W, p¼ 0.44).
There was no significant difference between the patterns
with regard to fatiguability (Ploss¼ 45.0� 16.5 % vs.
44.8� 25.1 %, P1 vs. P2, p¼ 0.96). These results are
summarised in Table 1 and Figure 3.

Discussion

The aim of this work was to compare power output and
fatigue properties of stochastically modulated IPI to
constant IPI stimulation during stationary FES cycling.

The efficiency of FES cycling is much lower com-
pared to normal cycling, and the efficiency is dependent
upon the parameters of muscle stimulation.26 Crude
control of muscle groups is one of the main factors
responsible for the low power output achieved with
FES.8 In this study, power output during the first and
last 30 s of stimulation showed no differences between
the two patterns compared. But constant frequency
stimulation showed significantly higher overall power
output compared to stochastically modulated IPI.
This result was unexpected, since previous measure-
ments with the same protocol on a knee dynamometer

Figure 3. Power output samples for P1 and P2, sample differences (D¼ P2–P1), mean difference (MD) and 95% confidence intervals.

(a) First 30 s, PF30. (b) Last 30 s, PL30. (c) Overall, Pm. The red horizontal bars are mean values.

Table 1. Primary outcomes for paired comparisons and p-values for comparison of means.

Mean (SD) MD (95% CI)
p

P1 P2 P2–P1

PF30 [W] 18.20 (4.95) 17.76 (5.31) �0.44 (�2.22, 1.58) 0.74

PL30 [W] 9.73 (2.99) 9.34 (3.64) �0.39 (�1.32, 0.59) 0.44

Pm [W] 12.57 (3.74) 11.44 (3.81) �1.13 (�2.07,�0.19) 0.022

Ploss [%] 45.0% (16.5) 44.8% (25.1) �0.20 (�7.1, 6.7) 0.96

Note: n¼ 17.

MD: mean difference; SD: standard deviation; CI: confidence interval.
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demonstrated higher power output for randomized
IPI.19 Compared to the dynamometer, where only
knee-extensors were stimulated (i.e. quadriceps), the
hamstrings were also stimulated on the FES-cycling
ergometer system. This more complex motion makes
it more difficult to stimulate accurately. Activation
angles and multiple stimulated muscle groups could
have affected the present observations. Electrode place-
ment for the quadriceps was carried out by motor point
detection, but for the hamstrings, the electrodes were
placed by trial and error as motor point detection for
hamstrings is not possible with a motor point pen. As
the surface electrode positions are crucial for effective
muscular stimulation, the overall power output values
might have been negatively impacted by ineffective
stimulation of the hamstrings.

Although the mean power output for constant-fre-
quency stimulation was significantly higher than for
stochastic modulation (p¼ 0.022), the absolute power
difference is quite small. Whether or not any differences
should be considered clinically or practically, as
opposed to statistically, significant depends very much
on the application scenario: very small power differ-
ences are not likely to be important during stationary
cycle ergometer, but could provide functional advan-
tage during mobile cycling.

The results showed no overall effect on fatiguability
(Ploss) when stimulation frequency was randomly modu-
lated. Further investigation should be carried out using
progressive randomized modulation of IPIs (40Hz<
f< 60Hz and 20Hz< f< 30Hz). Significantly lower
rates of muscle fatigue observed in a previous study16

could have been the result of recruiting more muscle
fibres at higher frequencies (f> 50Hz). Although previ-
ous studies indicate that repeatable results have been
achieved using at least 10-min rest time,17,27–29 in the
experiments reported here, a 3-min rest time did not
show any layover effect. This could be due to the
short-term (2� 3min) stimulation protocol andmultiple
channel stimulation strategy for the quadriceps.

These observations motivate further examination of
different randomization strategies for maximum mech-
anical advantage in an ergometer system which pre-
vents voluntary contractions as well as possible: in
contrast to constant-frequency stimulation, where
motor units of different type are recruited in a non-
selective, spatially fixed, and temporally synchronous
manner,30 stochastic modulation of IPI is more akin
to natural stimulation which has varying discharge pat-
terns employing non-synchronous, selective recruitment
and which exploits high-frequency bursts and the catch-
like property.31

One limitation of this study is that the measurements
were conducted with able-bodied subjects. Although
the stimulation was at a tolerable intensity, voluntary

contractions cannot be discounted and may have
affected the outcomes. In a previous study using a
knee dynamometer, voluntary contractions are mini-
mized as only one muscle group (quadriceps) was sti-
mulated and the performance was measured during
only the knee extension phase. The FES-cycling ergom-
eter system is more susceptible to voluntary contrac-
tions as one more muscle group (hamstrings) is
stimulated for pedalling. In addition to these factors,
voluntary contractions in a familiar movement (cycling)
can be higher than during knee extension.

Conclusion

This study showed that stimulation strategies that use
randomized modulation of IPIs can negatively affect
power output generation during FES cycling. To min-
imise voluntary contractions, power measurement and
assessment should be focused on the periods where only
the quadriceps are stimulated to better observe the
effect of pattern modulation in functional electrical
stimulation applications which perform repetitive,
non-isometric contractions in short-term tasks.
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