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  The abnormal accumulation of amyloid-b (Ab) and neurofibrillary tangles (NFTs) containing phosphorylated 
tau proteins are the main histopathological feature of Alzheimer’s disease (AD). Synaptic damage and loss are 
earlier events than amyloid plaques and NFTs in AD progress and best correlate with cognitive deficits in AD 
patients. Soluble oligomeric Ab initiates the progression of AD and tau mediates the subsequent synaptic im-
pairments at an early stage of AD. In this review we discuss how Ab or/and tau causes synaptic dysfunction. 
Ab oligomers gather at synapses and give rise to synaptic death in a variety of ways such as regulating recep-
tors and receptor tyrosine kinases, unbalancing calcium homeostasis, and activating caspases and calcineurin. 
A large amount of hyperphosphorylated tau exists in the synapse of the AD brain. Ab-triggered synaptic def-
icits are dependent on tau. Soluble, hyperphosphorylated tau is much more correlated to cognitive decline in 
AD patients. Tau-targeted therapies have received more attention because the treatments targeting Ab failed 
in AD. Here, we also review the therapy strategies used to intervene in the very early stages of AD. Soluble hy-
perphosphorylated tau forms a complex with cell surface receptors, scaffold proteins, or intracellular signaling 
molecules to damage synaptic function. Therefore, therapeutic strategies targeting synaptic tau at the early 
stage of AD may ameliorating pathology in AD. This review aims to provide an update on the role of oligomer-
ic Ab and soluble hyperphosphorylated tau in the early pathogenesis of Alzheimer’s disease and to develop a 
new treatment strategy based on this.
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Background

Alzheimer’s disease (AD) is characterized by two hallmark path-
ological lesions in the brain: the extracellular amyloid plaques 
deposition of amyloid-b (Ab) peptides and intracellular neu-
rofibrillary tangles (NFTs) composed of hyperphosphorylated 
tau [1,2]. The internal relations between these two hallmarks and 
the cognitive dysfunction occurred in AD patients remain elu-
sive [3]. Accumulation of toxic Ab is proposed as one of the im-
portant early events in AD, but unsuccessful clinical trials based 
on Ab-targeting drugs have triggered researchers to investigate 
new therapeutic strategies targeting alternative disease mecha-
nisms [4]. Ab oligomers but not amyloid plaques target the post-
synaptic compartment of excitatory synapses with high affinity, 
changing the structure and function of synapses [5]. More and 
more research indicates that the pathology of tau correlates with 
cognitive defects in AD [6]. However, soluble forms of tau oligo-
mers but not NFTs appear to be an important factor inducing 
neuronal dysfunction and cognitive impairment [7,8]. Memory 
deficits highly correlate with synaptic decline in the hippocam-
pus of AD patient’s brains [9-11]. Synaptic loss is the first indi-
cator of AD progression, even in the earliest of stage, called mild 
cognitive impairment (MCI), and has the strongest biological 
correlation with cognitive deficits found in AD patients [12-14]. 
Mislocalization of tau to dendrites, which is an early event in 
AD pathogenesis prior to tau aggregation, is a neuropatholog-
ical feature of AD brains [15,16]. Synaptic tau correlates with 
the onset of cognitive decline in AD [17,18]. This review aims 
to provide an update on what is currently known about the role 
of Ab and tau in the early pathogenesis of Alzheimer’s disease.

Oligomeric Ab	and	Synaptic	Dysfunction

Long-term potentiation (LTP) and long-term depression (LTD), 
which are forms of activity-dependent synaptic plasticity, and 
the formation of dendritic spines are considered to underlie 
learning and memory [19]. LTP increases in synaptic strength 
depend on activating NMDA receptors by recurring synaptic ac-
tivity. In contrast, LTD reduces synaptic activity through phos-
phorylation of AMPA receptors [20].

Synaptic loss can be induced by oligomeric forms of Ab 
[1,21,22], suggesting that Ab is a driver of synaptic dysfunc-
tion in AD [23]. The senile plaques were considered to be the 
major pathogenic substance in AD, but clinical investigations 
did not reveal a strong association between extracellular am-
yloid plaque and cognitive defects [24]. During AD progress, 
Ab oligomers begin to be enriched at synapses, which is earli-
er than the formation of amyloid plaques or accumulation of 
phosphorylated tau at synapses [25,26]. Extracellular Ab ac-
cumulates around the postsynaptic compartment more abun-
dantly than at presynaptic terminals [27].

Accumulated research results indicate that Ab causes synap-
tic death, LTD and LTP via modulating excitatory receptors and 
receptor tyrosine kinases, unbalancing calcium homeostasis, 
and activating caspases and calcineurin. Ab binds to AMPA re-
ceptors and causes their internalization, leading to increased 
LTD. Ab binds to 7a-nicotinic acetylcholine receptors, leading to 
an internalization of NMDA receptors and LTD [28]. Oligomeric 
Ab stimulates NMDA receptors to upregulate calcium and re-
dox reactions, leading to synaptic dysfunction and neuronal 
loss [29]. Calcineurin, activated by Ab elevated calcium, de-
phosphorylates actin filaments to cause dendritic spine loss. 
Calcineurin activation can also reduce NMDA receptor expres-
sion on the surface and lead to greater AMPA receptor inter-
nalization. Soluble Ab dephosphorylates AMPA receptors and 
increases receptor internalization. Oligomeric Ab also binds 
with tyrosine kinases to modulate NMDA receptor trafficking 
and reduce LTP [30].

Oligomeric Ab can impair LTP while increasing LTD in a con-
centration-dependent manner. Low levels of oligomeric Ab fa-
cilitate LTP, but high levels of Ab impair it [29] by affecting 
calcium channel activity and glutamate receptor-dependent 
signaling pathways [31].

The increased NMDA activity stimulated by oligomeric Ab can 
lead to increased tau accumulation. Increased phosphorylat-
ed tau associates with, and further amplifies, the dendritic 
spine loss [32]. Age-dependent accumulations of Ab and tau 
and their interactions at synapses largely impair synaptic ac-
tivity via altering LTP and LTD levels [30].

Tau	and	Synaptic	Deficits

Tau normally exists in synapses of both healthy and AD brains, 
while there is a greater level of hyperphosphorylated tau pres-
ent in the AD synapse [33]. Soluble, hyperphosphorylated tau 
is much more closely related to synaptic dysfunction and cog-
nitive decline in AD patients compared to Ab and aggregated 
tangles of tau [34]. In vivo experiments showed the role of tau 
in synaptic plasticity. Reduction or depletion of tau blocked the 
induction of LTD but not LTP. Replacement of endogenous tau 
with human tau restored LTD. These data support the essen-
tial role of tau in a NMDAR-dependent LTD in the hippocampus 
[35]. Tau’s role in LTD depends on its phosphorylation at ser-
ine 396, which internalizes the AMPA receptor [36]. Reducing 
the phosphorylation of tau by inhibiting tau kinases rescues 
tau-dependent LTP deficits and alleviates synaptic loss in tau 
transgenic mice [37,38]. Ab may need tau to impair LTP, since 
tau-null mice showed no impairment in LTP when Ab was ap-
plied [29]. Synaptic deficits induced by Ab were closely related 
with tau, since reducing endogenous tau levels in Ab-forming 
AD mouse models prevented dysfunctions [39-42]. In contrast, 
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overexpression of human tau in amyloidosis mouse models in-
creased synaptic loss and memory impairment [40,43].

Transgenic mice with human P301S or P301L mutant tau had 
impaired LTP in the hippocampus [18,44]. Mice expressing 
human V337M mutant tau had reduced excitatory synaptic 
transmission, associated with decreased synaptic glutamate 
receptors levels in both the ventral striatum and the insular 
cortex [45]. In cortical neurons, expression of human P301L 
mutant tau resulted in mushroom spine loss [46].

Mitochondria	and	Synaptic	Degeneration

Mitochondria serves as energy supplier for synaptic functions 
such as synaptic transmission, synaptic outgrowth, and synap-
tic vesicle formation [47,48]. Ab or phosphorylated tau triggers 
damage and transportation of mitochondria to synaptic termi-
nals, which may provide low levels of ATP to synapses, lead-
ing to synaptic degeneration [30]. Mitochondrial dysfunction 
occurs early in AD progression [49]. Synapse loss is an early 
event of AD, which is attributed to soluble Ab, phosphorylated 
tau, and increased free radicals generated by mitochondria at 
synapses [30]. More abnormal mitochondria are found in syn-
apses of AD brains compared to healthy brains [50].

Synaptic	Proteins	and	Synaptic	Function

Extensive studies on synaptic proteins in a large number 
of healthy controls and AD patients reveal that postsynap-
tic and presynaptic proteins are important for synaptic func-
tion and may be related to cognitive impairments in AD [51]. 
Synaptophysin, a presynaptic protein, was decreased by around 
25% in MCI patients, which can occur before Ab plaque for-
mation. Loss of synaptophysin correlates with cognitive de-
cline and is also a marker for disease progression in AD pa-
tients [11]. The postsynaptic density-95 (PSD-95) protein is 
the most abundant scaffold proteins inside the postsynap-
tic density (PSD), a densely packed multi-protein structure for 
synaptic formation and function at the distal tip of dendritic 
spine heads [52-54]. PSD-95 is crucial for trafficking and an-
choring of synaptic glutamate receptors [55-58]. It is predict-
ed that tau, Fyn, PSD-95, and NMDARs form a protein com-
plex at the synapse [59]. Loss of PSD-95 results in decrease 
of synapses containing glutamate receptors and impairments 
in AMPAR and NMDAR transmissions [60]. It has been report-
ed that the expression of PSD-95 is aberrant in several human 
disorders, including AD [61-65]. Researchers identified post-
mortem synapse and synaptic marker loss from AD patients 
in a meta-analysis [66].

Other	Factors	Related	to	Ab and Tau in AD

Infection

The “inflammation hypothesis” [67], “cholinergic hypothe-
sis” [68], and “amyloid cascade hypothesis” [69] are three im-
portant hypotheses on the etiopathogenesis of AD. Several mi-
crobes, such as human herpesviruses, spirochetes, Chlamydia 
pneumoniae, and Borrelia burgdorferi, have been proposed as 
triggers of AD [70]. Infections may induce the generation of 
Ab in the brain [71]. The antiviral property of Ab could protect 
the brain from infection [72].

Oxidative Stress

Oxidative stress (OS) plays a critical role in AD pathogenesis 
[73,74]. Oxidative stress promotes both tau hyperphosphor-
ylation and Ab deposition and then the loss of synapses and 
neurons [75].

Prions of Ab and Tau

Prions are defined as host-encoded proteins that adopt alter-
native conformations and are self-propagating [76]. Both Ab 
and tau are found to have prion features in AD [77]. Tau pri-
ons has been shown to spread throughout the brain along 
known neuroanatomical pathways over the course of AD [78].

The	Gut	Microbiota

Activated proinflammatory cytokines by the altering of gut 
microbiota increase intestinal permeability and lead to insu-
lin resistance that is associated with AD [79]. Ab oligomers 
translocating from the gut to the brain contribute to the on-
set of AD and neuroinflammation [80]. Eubacterium rectale, 
Porphyromonas gingivalis, and Lactobacillus rhamnosus are 
important in the origination of AD [81-85].

Astroglia

Astrocytes are key components of the neurovascular unit 
(NVU) [86]. In pathological situations, astrocytes turn into re-
active astrocytes undergoing a series of morphological and 
functional alterations. Reactive astrocytes are typically found 
in the region with high Ab or tau pathology in postmortem AD 
brains [87-89]. Reactive astrocytes release cytokines, inflam-
matory factors, and reactive oxygen species (ROS), thus con-
tributing to neuroinflammatory changes in AD [90].

TREM2

Genome-wide association studies (GWAS) identified the gene 
triggering receptor expressed on myeloid cells 2 (TREM2) that 
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are associated with a high risk of AD [91]. TREM2, a microglia 
surface receptor, is especially highly expressed in microglial 
cells [92,93]. The R47H and D87N TREM2 mutation confer sig-
nificant risk of AD in humans [91,94]. Soluble TREM2 levels are 
related to levels of total tau and phospho-tau in cerebrospi-
nal fluid (CSF), but not to Ab1-42 levels in AD brains [95-98].

Synapse-Based	Therapy	in	Alzheimer’s	
Disease

Synaptic deficiency is an early sign of AD pathogenesis and is 
closely correlated with the cognitive decline in AD. Oligomeric 
Ab or soluble hyperphosphorylated tau interacts with cell sur-
face receptors, scaffold proteins, or intracellular signaling mole-
cules to destroy synaptic structure and function. Therefore, ther-
apeutic strategies targeting synaptopathy at the early stage of 
AD may ameliorate pathology in AD [99]. To date, no effective 
intervention alleviating Ab load has been developed, although 
oligomeric Ab is the main factor involved in the synaptotoxici-
ty in AD. It is more important to find Ab species-specific inter-
ventions [100]. For example, Ab*56 identified in the brains and 
CSF of people with normal cognitive function triggers a specif-
ic intracellular response to hyperphosphorylated tau through 
CaMKIIa but not GSK-3b or Cdk5. Ab*56 or its downstream 
signaling cascades may be promising targets for early-stage 
AD interventions [101]. Moreover, because APP processing is 
regulated by neuronal activity, enhancing synaptic function, 
which prevents synaptic dysfunction and reduces Ab produc-
tion, could have a dual beneficial effect in reversing AD pro-
gression [3]. Since tau is more closely associated with cogni-
tive decline than Ab in the AD brain, great efforts have been 
made to explore tau-focused therapeutic interventions [102], 
and approaches focusing on pathological tau removal have 
been developed. Antibody-mediated [103-106] or anti-sense 
oligonucleotide (ASO)-mediated tau reduction [107] success-
fully reduced synaptic dysfunction and cognitive deficits in 
AD animal models. Drugs which aim at new molecular targets 

related to dendritic and postsynaptic tau need more explora-
tion. Since the synaptotoxicity of Ab is mediated by receptor 
complexes, multiple strategies have been developed to target 
these cell surface proteins and their downstream signaling 
pathways. Extracellular regulation of the activity of these re-
ceptors makes them more accessible targets for AD treatment.

Conclusions

Synaptic defects closely associated with cognitive decline are 
considered the early events in AD pathogenesis. Based on a 
large number of studies, soluble Ab oligomers appear to be the 
primary cause of synaptic dysfunction, and synaptic tau seems 
to be the indispensable mediator in the process (Figure 1). Ab 
oligomers affect LTP, LTD, and synaptic death by acting on re-
ceptors, unbalancing calcium homeostasis, and activating cas-
pases and calcineurin. Soluble hyperphosphorylated tau im-
pairs synaptic function by interacting with scaffold proteins, 
cell surface receptors, or intracellular signaling molecules. Ab 
or phosphorylated tau also triggers synaptic degeneration via 
damaging and transportation of mitochondria.

However, further investigations are still needed to answer key 
questions: 1) Why have therapeutic strategies targeting Ab all 
failed if Ab oligomers are the initiator of AD’s early patholo-
gy? 2) Why is synaptic tau required in the synaptotoxicity at-
tributed to Ab? In the future, a combination therapy targeting 
synaptic tau and Ab together may be a potential therapeutic 
approach for AD patients at the very early stage.

Declaration	of	Figure	Authenticity

All figures submitted have been created by the authors, who 
confirm that the images are original with no duplication and 
have not been previously published in whole or in part.

Factors in
synaptotoxicity

• LTP and LTD
• Soluble oliogmeric Aβ
• Hyperphosphorylated-tau
   and tau mutation
• Synaptic proteins
• Mitochondrial dysfunction

Early events of AD

• Synaptic multiprotein
   structure destruction
• Damage and loss of
   synapses
• Cognitive de�cits
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Figure 1.  Feedback mechanisms of synaptic Ab 
and tau in the progress of Alzheimer’s 
disease. Soluble oligomeric Ab is the 
primary cause of synaptic dysfunction, 
whereas synaptic tau is the mediator 
in the progress. They locate in the 
synapse and work with receptors, 
synaptic proteins, and mitochondria 
to cause synaptic dysfunction, and 
ultimately lead to cognitive deficits. 
During the pathogenesis of AD, this 
is the early event, which occurs long 
before the formation of neurofibrillary 
tangles and senile plaques.
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