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Abstract: Immunomonitoring is the study of an individual’s immune responses over the course
of vaccination or infection. In the infectious context, exploring the innate and adaptive immune
responses will help to investigate their contribution to viral control or toxicity. After vaccination,
immunomonitoring of the correlate(s) and surrogate(s) of protection is a major asset for measuring
vaccine immune efficacy. Conventional immunomonitoring methods include antibody-based tech-
nologies that are easy to use. However, promising sensitive high-throughput technologies allowed
the emergence of holistic approaches. This raises the question of data integration methods and
tools. These approaches allow us to increase our knowledge on immune mechanisms as well as the
identification of key effectors of the immune response. However, the depiction of relevant findings
requires a well-rounded consideration beforehand about the hypotheses, conception, organization
and objectives of the immunomonitoring. Therefore, well-standardized and comprehensive stud-
ies fuel insight to design more efficient, rationale-based vaccines and therapeutics to fight against
infectious diseases. Hence, we will illustrate this review with examples of the immunomonitoring
approaches used during vaccination and the COVID-19 pandemic.
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1. Introduction

Outbreaks of emergent infectious diseases, such as Ebola, Zika or coronavirus disease
2019 (COVID-19), are major healthcare issues with psychological, economical and demo-
graphic consequences for human societies. The handling of these numerous and recurring
infectious threats, also including Human Immunodeficiency Virus (HIV), tuberculosis and
malaria, illustrates that we still lack the knowledge, coordination and preparation to face
those ordeals [1]. As a prestigious inheritance from forerunners such as Edward Jenner
and Louis Pasteur, vaccination has, for a long time, proven to be an unrivaled weapon to
protect populations against these threats [2]. Vaccination contributes to control infectious
agents spreading among the population and provides individual and collective protection.
Indeed, the success of mass immunization eradicated smallpox in 1980, a dreadful disease
with a mortality rate of up to 50% and frequently bringing serious physical sequels in the
survivors [3]. Vaccination also contributed to dramatically circumvent rabies, poliomyelitis,
measles, mumps and rubella [4]. Other diseases induced by telluric bacteria such as tetanus
became extremely rare, with mostly sporadic cases in the elderly with decreased immunity
due to the lack of a vaccination booster [5]. Vaccination mimics natural infection, which
will drive the organism to elicit a suitable memory immune response against the targeted
pathogen, protecting against further infection. Consequently, immune surveillance after
vaccination is necessary to assess vaccine efficacy. More generally, to suitably develop
vaccines and discover insights about protective countermeasures, there is a need to track
immune responses which contribute to protection or control of infections and translate
them for vaccine development [6].
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In vaccine development, one major challenge is to assess the relevant correlate(s) of
protection (Figure 1) [7] consisting of biological markers that are directly associated with pro-
tection of the vaccinated individuals against the disease [8]. The complexity and heterogeneity
of the immune response can hinder the identification and validation of these correlates. It
is therefore essential to track modulations of the immune system through a process called
immune monitoring (immunomonitoring). Immunomonitoring consists of a set of methods
and assays allowing to measure or predict immune parameters from molecular to cellular
level, but also to picture the nature and status of immune responses after infection or vaccina-
tion. The evaluation of correlates of protection mostly relies on humoral immune response
induction through antigen-specific antibody titer and function measurements. Enzyme-linked
immunosorbent assay (ELISA), neutralization, hemagglutination inhibition (HI; influenza)
or opsonization assays (pneumococcus) are the most widely used methods to evaluate these
humoral responses. Furthermore, antigen-specific CD4+ and CD8+ T immune response by
enzyme-linked immunospot (ELISpot) or flow cytometry can be of major importance due to
their complementarity with humoral responses [8]. The recent emergence of immune effector
screening through complex approaches including multiparametric cell phenotyping (mass
or spectral cytometry), transcriptomic, metabolomic, microbiome and proteomic analyses
should lead to the discovery of new immune signatures associated with protection. These
omics strategies generate large datasets which require powerful informatic and statistic tools.
Machine learning would allow us to depict an overview of the immune response and provide
insights about the major effectors of the immune response by systems biology-derived ap-
proaches [9]. This consists of a holistic approach aiming to characterize the immune response
in its entirety, which opposes the mechanistic approaches dissecting a restricting amount of
parameters [10]. Systems biology has led to a major change in how research is performed
in many laboratories using these high-throughput and high-bandwidth methods, leading
to the discovery of new relationships and participants in immunology, and generating new
hypotheses about mechanistic processes [10]. Altogether, proper immunomonitoring should
provide (1) insights about the protective parameters of the immune system and potential
correlates of protection, (2) knowledge leverage of the mechanism of immunity after vaccina-
tion/infection, (3) insight into the persistence of immune memory and (4) the identification of
early biomarkers predictive of immune efficacy for protection.

Figure 1. Immunomonitoring techniques for vaccination. Immunomonitoring of innate and adaptive
immune responses is based on a collection of biological samples, either freshly collected or cry-
oconserved, which have been ob-tained after infection or vaccination. Various immunomonitoring
approaches are summarized, from easy-to use methods such as ELISA or ELISpot, to more complex
methods such as CyTOF, spectral cytometry or RNA-seq that depict more precise fea-tures of the
immune responses. However, these methods require skill in informatics and statistics.
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In this review, we discuss the available methods for tracking and identifying immune pa-
rameters that are involved in protection and the related predictors of immune responsiveness.

2. Identification and Measurement of Correlates and Surrogates of Protection

In the context of most natural infections, an efficient response would lead to the
resolution of the disease with clearance of the infectious agents. In some cases, such as
tuberculosis, immune responses can contribute to a reduction of symptoms in the absence
of pathogen clearance [11]. In the context of vaccination, an efficient response would be
protective against the infection (sterilizing protection) or at least prevent clinical severity.

Measurements of the correlates of protection are essential to evaluate vaccine efficacy,
but their definition is still debated. According to Stanley A. Plotkin, correlates of protection
have been defined as “an immune function responsible for and statistically interrelated
with protection” [8]. He also specifies different degrees of correlates: an absolute correlate
corresponds to “a specific level of response highly correlated with protection”, meaning
that a quantitative threshold has been defined; a relative correlate corresponds to “a level
of response variably correlated with protection”. Surrogates are defined as “an immune
response that substitutes for the true immunologic correlate of protection, which may be
unknown or not easily measurable”.

Identification of the correlates of protection is mostly based on immune response mea-
surement, associated with the proportion of infection in the population compared with the
control group [12]. Essential information can also be obtained from human challenge studies
and from animal challenge models—with the caution that the mechanism of protection
can differ between species. Similarly, rates of infection following passive specific antibody
administration or according to mother-to-child antibody decline give information about
the level of protective antibodies required for an infectious disease [13]. The correlates of
protection might be relevant to subgroup individuals according to age, immune status
(immunodepression, chronic disease . . . ), genetic and environmental factors. For exam-
ple, following influenza vaccination, the frequency and magnitude of the hemagglutinin
inhibition (HI) titers remain lower in subjects over 65 years old than in younger adults [14].
However, influenza vaccination in the elderly still reduces the number of severe cases [15].
Thus, it is necessary to evaluate, in more detail, the immune parameters which contribute to
protecting against influenza illness.

The most widely used correlate of protection is pathogen-specific antibodies produced
after immunization. They strongly contribute to prevent further infection in many ways such
as blocking pathogen entry into cells, immune complex formation, complement activation,
opsonization enhancement, or complement- and antibody-dependent cellular cytotoxicity
(Figure 1) [16–18]. These correlates are found to be well identified for the most encapsulated
bacteria (Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis) [19–21] or
for toxin-producing bacteria, such as Corynebacterium diphtheriae and Clostridium tetani [22,23].
In the latter case, it is straightforward to see that functional antibodies directed against
toxins—at the origin of the physiopathology—would be directly related to protection.

However, the identification of protective immune markers can be more complicated.
For instance, antibodies against Bordetella pertussis toxin, fimbriae agglutinogens and per-
tactin are all involved without being fully responsible for protection, leading to difficulties
in finding a consensus to properly assess a vaccine’s efficacy [7,24]. In the case of seasonal
influenza, since Hobson et al. in 1972 [25] performed a viral challenge using live attenuated
viruses to define protective antibody titers, this humoral immune response has remained
the only parameter evaluated and standardized. HI measurement has been successfully
used as a correlate of protection. Indeed, a 1:40 titer is currently considered as an immuno-
logic correlate corresponding to a 50% reduction in the risk of developing influenza illness
in adults [25,26]. Concomitant with the humoral response, the T cell responses appear
to play a crucial role in protection against disease induced by subsequent infection with
heterologous strains. Indeed, McMichael et al. demonstrated, in an attenuated influenza
virus human challenge study, that CD8+ T cell responses were strongly participating in
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virus clearance, even in the absence of cross-reactive antibodies [27]. As a result, taking
-mediated immunity into account cell in addition to antibodies is generally necessary to
reach very high associations with protection [8].

In other contexts such as Mycobacterium tuberculosis, the lack of reliable correlates of
protection remains a major impediment to vaccine development [28]. Indeed, this intracel-
lular pathogen requires the mobilization of cellular responses. Interferon (IFN)γ-producing
CD4+ T cells, cytotoxic T lymphocytes (CTL), and macrophages contribute together to the
protective response, leading to granuloma formation [28,29]. In HIV infection, the lack
of properly identified correlates of protection, despite intensive research effort, greatly
complicates vaccine development. Indeed, it requires us to track neutralizing antibodies
targeting diverse epitopes, and also to consider CD4+ T and CD8+ T cell responses [30]. For
Plasmodium falciparum, inconsistent results for defining a universal correlate of protection led
recent studies to stratify populations, taking age or malaria exposure into account [31]. For
many diseases, we do not know which arms of the immune system are responsible for con-
ferring protection, e.g., humoral versus cellular immunity, or whether systemic or mucosal
immunity should be induced for sterilizing protection. Parameters for the maintenance of
protective immunity over the years have also yet to be elucidated.

The emergence of the new SARS-CoV-2-induced coronavirus disease 2019 (COVID-19)
outbreak illustrates the importance of identifying correlates of protection for rapid vaccine
development. Indeed, this disease has rapidly emerged as one of the most important infec-
tious insults of the modern era due to its extremely fast worldwide spread and severity. In
March 2021, almost 120 million cases and more than 2.6 million deaths have been announced
(from https://covid19.who.int/ website, accessed on 8 March 2021). Humoral response
studies in SARS-CoV-2-infected patients rapidly revealed that infection successfully in-
duces robust responses with detectable IgG, IgM and IgA antibodies (Table 1). Furthermore,
anti-SARS-CoV-2 spike protein antibodies—more specifically against the receptor binding
domain (RBD) region—are able to block virus entry into ACE-2 and CD147- expressing
cells in vitro, demonstrating their neutralizing activity [32]. The neutralizing activity of
SARS-CoV-2-induced antibodies was also demonstrated in vivo thanks to improvement in
the condition of severely ill COVID-19 patients that received passive transfer of specific an-
tibodies from recovered patients [33]. These data suggest that anti-SARS-CoV-2 antibodies
directed against the RBD of the spike protein could be a relevant correlate of protection.
These results were therefore essential for the SARS-CoV-2 vaccination field and revealed
that vaccines designed to induce antibodies against the SARS-CoV-2 spike protein could be
protective. According to this information, most of the SARS-CoV-2 vaccines available or
under clinical trial evaluation are based on the viral surface spike protein and aim to provide
sterilizing protection [34]. Despite the urgent need for a SARS-CoV-2 vaccine, lessons from
the past arose about a potential harmful vaccine-induced immune response. Indeed, the
vaccination field can count several examples where vaccines elicited increased infection or
more severe disease in vaccinees compared with individuals in the control group [35]. This
phenomenon, called immune enhancement, was observed with the HIV vaccine candidate
based on human adenovirus 5 vector from the STEP study and led to the emergency arrest
of the trial [36]. Immune enhancement, leading to more severe diseases in vaccinated or
infected people, was also observed with dengue virus, respiratory syncytial virus (RSV) and
severe acute respiratory syndrome (SARS) induced by SARS-CoV. One mechanism leading
to this unwanted vaccine-induced immune response is antibody-dependent enhancement
(ADE), which facilitates the infection of cells through uptake via macrophages [35]. ADE
was indeed confirmed in some cases of secondary infection with dengue virus. Besides,
some vaccines eliciting a Th2-type response might promote allergic inflammation and poorly
functional antibody response, which can eventually lead to immune complexes formation
and complement activation, resulting in immunopathology. This mechanism was suspected
to increase disease severity in infants vaccinated with a RSV vaccine candidate [37]. In
the case of SARS-CoV-2, the concern about ADE or a harmful Th2-type response was a
matter of interest during vaccine development. However, the extensive characterization

https://covid19.who.int/
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of the SARS-CoV-2 adaptive immune response revealed neither evidence of ADE nor a
Th2-oriented response in COVID-19 patients. Finally, the results of the first clinical trials
show protective results and are reassuring concerning the safety of vaccine-induced immune
responses in vaccinees. Otherwise, the very promising results of the Phase III clinical trials
involving RNA-based vaccines demonstrated up to 95% protection, highlighting a major
relationship between the anti-spike humoral response and protection (Table 2) [38]. These
results tend to be confirmed in Phase IV mass vaccination programs [39]. However, the
question regarding the maintenance of this level of protection in the long term needs to be
addressed in the future.

Table 1. Overview of the immunomonitoring approaches used in SARS-CoV-2 infection.

References Patient Cohort Findings Immunitoring Techniques

Hadjaj et al. [40]

18 Healthy Donors
15 Mild

17 Severe
18 Critical

Type I IFN impairment Exacerbated
inflammatory response

Mass Cytometry
mRNA Expression Analysis

Multiplex Cytokine Detection

Combadiere et al. [41] 38 Critical Myelemia with overabundance of
CD123+ and LOX-1+ neutrophils

Flow Cytometry
Ultra-sensitive Digital

Immunoassay (Quanterix)

Weiskopf et al. [42] 10 Severe/Critical Immunomodulation of T-cell
responses depending on severity

Flow Cytometry
ELISA

Multiplex Cytokine Detection

Laing et al. [43] 55 Health Donors
56 Severe/Critical

CXCL10, IL-10, IL-6; B and T, and
monocyte subset signatures related

with severity

Flow Cytometry
mRNA Expression Analysis

Multiplex Cytokine

Wen et al. [44] 10 Recovering COVID-19
Patients

SARS-CoV2-specific
IGHV3-23-IGHJ4 pairing

TNFSF13, IL-18, IL-2, and IL-4
genes may benefit from COVID-19

recovery

TCR and BCR Sequencing
Single-Cell RNA-Seq

Silvin et al. [45]

72 Healthy Donors
27 Mild

16 Moderate
43 Severe

Non-classical monocytes and
calprotectin-producing immature

neutrophils increase in severe cases

Spectral Cytometry
Mass Cytometry
Flow Cytometry

Single-Cell RNA-Seq
Multiplex Cytokine Detection

IFN, interferon; ELISA, enzyme-linked immunosorbent assay; TCR, T cell receptor; BCR, B cell receptor.

Table 2. Overview of the immunomonitoring approaches used in SARS-CoV-2 vaccine clinical trials.

References
Clinical Trial ID

Phase
Patient Cohort Vaccine Immunitoring Techniques

Jackon et al. [46]
NCT04283461

Phase I
45 healthy adults

Age: 18–55

Moderna vaccine
RNA-based vaccine

mRNA-1273 → Spike
Dose escalation (25 µg, 100 µg, 250 µg)

Homologous prime boost

ELISA
Neutralization assay
ICS—flow cytometry

Keech et al. [47]
NCT04368988

Phase I–II
132 healthy adults

Age: 18–59

Novavax vaccine
Protein-based vaccine

NVX-CoV2373 → Spike
with/without Matrix-M1 adjuvant dose

escalation (5–25 ug)
Homologous prime boost

ELISA microneutralization assay
ICS—flow cytometry
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Table 2. Cont.

References
Clinical Trial ID

Phase
Patient Cohort Vaccine Immunitoring Techniques

Logunov et al. [48]
NCT04436471
NCT04437875

Phase I–II
120 healthy adults

Age 18–60

Sputnik V vaccine
Viral vector-based vaccine
rAd26 and rAd5 → spike
Heterologous prime boost

Prime rAd26-S
Boost rAd5

ELISA
Neutralization assay
Proliferation assay

Mulligan et al. [49]
NCT04368728

Phase I–II
45 healthy adults

Age 18–55

Pfizer-BioNTech vaccine
RNA-based vaccine
BNT162b1→ Lipid

nanoparticle-formulated
nucleoside-modified mRNA vaccine

Trimerized SARS-CoV-2 RBD
Dose escalation: 10 µg–30 µg–100 µg

Homologous prime boost

IgG binding assay
Neutralization assay

Folegatti et al. [50]
NCT04324606

Phase I–II
1077 adults
Age: 18-55

Astrazeneca vaccine
Viral vector-based vaccine

ChAdOx1 nCoV-19 → spike
Homologous prime boost

ELISA
Neutralization assay

ELISpot

Zhang et al. [51]
NCT04352608

Phase I
143 healthy adults

Phase II
600 healthy adults

Age: 18–59

Sinovac vaccine
Inactivated virus-based vaccine

CoronaVac → inactivated SARS-CoV-2
Dose escalation

ELISA
Microcytophathogenic effect assay

ELISpot

ELISA, enzyme-linked immunosorbent assay; ELISpot, enzyme-linked immunospot; ICS, intracellular cytokine staining.

3. Immunomonitoring of Correlates and Surrogates of Protection

Two major arms of immunity are currently measured during vaccination and after
infection, defined as innate and adaptive immunity. These two arms closely interact together
to modulate the immune response, leading to variable degrees of protection against an
infectious disease [52,53]. The early innate immune response occurs from hours to days after
infection or vaccination, and differs according to antigen recognition and vaccine preparation
(antigen design, adjuvant, vector . . . ). Non-self components (pathogens, vaccines) are sensed
by local cells through pattern recognition receptors (PRR) such as the Toll-like receptor (TLR),
the Nod-like receptor (NLR), retinoic acid-inducible gene (RIG)-1-like helicase, the scavenger
receptor or the mannose receptor [54]. The activation of these receptors results in the induction
of an inflammatory signal (like cytokines and chemokines) that triggers recruitment of various
immune cells such as dendritic cells, monocytes, neutrophils and natural killer cells to the site
of infection/vaccination. These cells, more particularly, antigen-presenting cells, contribute to
the antigen capture and transport in secondary lymphoid organs to induce the different T and
B effector cells of adaptive immunity. Naïve CD4+ and CD8+ T cells recognize the presented
antigen and go through clonal expansion and differentiation. CD4+T cells differentiate
into T follicular helpers (Tfh), regulatory T cells (Treg) or other effectors (Th1, Th2, Th17)
specializing in cytokine production. Depending on their differentiation, these cells support
CD8 T cell activation and differentiation into CTL and B cell activation, or participate in
the regulation of the adaptive response through inhibitory signals. The differentiation state
of T cells is characterized by a specific phenotype that can be tracked. One of the most
classical combination markers used to define T cell differentiation is the surface expression of
CD45RA, CD45RO and CCR7. For example, naïve cells can be defined as CD45RA+CD45RO-
CCR7+ while effector memory cells are defined as CD45RA-CD45RO+ and CCR7- and central
memory cells are defined as CD45RA- CR45RO+ CCR7+ [55].
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B cells, which are the source of antibodies, contribute importantly to the protection
against infection provided by vaccines. These cells recognize antigens through their B
cell receptor (BCR). Once activated, B cells can undergo immunoglobulin (Ig) class switch
recombination and become antibody-secreting plasma cells. Therefore, mature B cells
express IgM and IgD, while class-switched B cells express IgA (essential for mucosal
protection), IgE or IgG. To further gain in specificity, B cells can, in their germinal center
and in a Tfh cell-dependent manner, go through hypersomatic mutation. The activation
state of B cells can also be tracked according to their phenotype (plasma cells express
CD38, CD138, CD27 and a low level of CD20; memory B cells express CD27 but lack
plasma cell marker expression) [56].

Immunomonitoring of innate and adaptive events therefore appear essential to finely
characterize immune responses leading to protection and vaccine efficacy. Therefore, the
accurate measurement of variations in the human immune system requires precise and
standardized assays to distinguish true biological changes from technical artefacts [57].
Moreover, the vaccine type, dose and adjuvants can affect the immunomonitoring strategy
by inducing different immune response profiles and kinetics [58,59]. For instance, live
attenuated vaccines mimic natural infection, generally yielding a broad and long-lasting
immune response. At the opposite end, inactivated and subunit vaccines are often less
immunogenic at equivalent doses [60,61]. Indeed, some vaccines are designed to induce
a pathogen-specific antibody response due to their efficacy to fight diphtheria, tetanus,
polio or, more recently, SARS-CoV-2. The parameters leading to a protective humoral
response (level of antibodies, neutralizing activity . . . ) need to be taken into account in the
choice of the immunomonitoring methods (ELISA, neutralizing assay) [53]. Additionally,
some vaccines, usually based on viral vector or nucleic acids (DNA [62], RNA [63]), for
example, are specifically designed to induce cellular immunity [64]. In this case, control of
the pathogen load at low levels and the reduction of transmission risk are aimed rather than
sterilizing immunity. This type of response appeared particularly interesting in the HIV
vaccination field when the induction of sterilizing immunity through antibodies remained
a challenge. Immunomonitoring of a cellular-specific response is therefore required and is
usually performed through ELISpot or flow cytometry.

In addition, the emergence a rationally-based vaccine in the near future [65] would
lead to better knowledge of the immune effector triggered. As a result, some immunomon-
itoring methods also need to be adapted accordingly.

3.1. Pathogen-Specific Easy-to-Use Assays

Well-known antibody-based techniques such as ELISA or ELISpot have been used for
decades, especially in the vaccine development field. Based on highly specific and validated
antibodies, these methods are a powerful tool for solubilized protein detection and quan-
tification from a large range of samples, with the required quantity of sample per assay
usually being small. These methods have the advantages of being simple to perform and
easy to analyze [66,67]. Nowadays, efforts have been made to improve the sensitivity of
these technologies—such as digital ELISA—or increase the number of analytes evaluated [68].
Alternatively, assessing the correlates of protection or surrogate markers often relies on func-
tional assays, particularly neutralizing antibody measurement such as the Plaque Reduction
Neutralization Test or, more recently, the fluorescence-based neutralization assay [69]. In this
context, exploration of other pathogen-specific antibody functions can also be relevant such as
HI activity, opsonophagocytic activity [70] or complement fixation properties [71]. Carrying
out more extensive studies associated with pathogen-specific antibodies and assessing the
affinity, targeted epitopes, Ig isotypes and subclasses may also allow us to better picture their
mechanism of action. Despite these methods being well standardized and considered as refer-
ences for immune response evaluation, they often are plagued by their lack of reproducibility.
Inconsistency could be also due to sample handling, the reagents used, protocol modifications,
inter-operator bias or device settings. To circumvent reproducibility problems, more and more
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effort has to be made in order to improve protocol standardization. For example, automates
or premade tubes containing reagents have been developed to limit inter-operator bias [72].

3.2. Immune Cell Phenotypic and Functional Analysis

In the past decade, flow cytometry has emerged as a valuable tool for phenotypic
and functional analysis of immune cells from whole blood, peripheral blood mononuclear
cells (PBMCs), and tissue samples (lung, bronchoalveolar lavage, spleen, skin, liver . . . ).
Flow cytometry analysis would allow an overview of cell dynamics and activation state
phenotypes. Multiple markers and strategies are currently available [73,74] to discriminate
the differentiation and activation states of CD8+ and CD4+T cells through the use of markers
such as CCR7, CD45RA, CD25, CD95 or CD27. Flow cytometry is also routinely used to as-
sess pathogen-specific T cell responses through intracellular cytokine staining (ICS), usually
measuring interleukin (IL)-2, IFNγ, tumor necrosis factor (TNF)α or IL17. The evaluation
of T cells response through cytokine-independent assays [75] has also been successfully
used to evaluate the T cell response after vaccination in a range of studies [76–78]. These T
cell receptor (TCR)-dependent activation-induced marker (AIM) assays that measure the
expression of a combination of activation markers (CD69, OX40, CD137 . . . ) at the T cell
surface have permitted a fast and precise evaluation of the frequency of T cell response in
the context of the SARS-CoV-2 pandemic [79].

Similar strategies also allow us to accurately characterize B cell subsets, including
immature, naïve, class-switch recombined and plasmocytes, using cell surface markers
such as HLADR, CD19, CD20, IgD, IgM, IgG, CD25, CD138, CD27 and CD38 [80,81]. To
sum up, this technology has the advantage of simultaneously characterizing multiple
intracellular and/or extracellular markers per cells, at the expense of expertise in panel
design and the analysis of such data. The flexibility of this system has made it extremely
widely exploited, but data obtain remain complex to harmonize in multicentric studies [82].
Additionally, the number of simultaneously usable markers remains limited.

To circumvent this limitation, recent technological breakthroughs have led to the
emergence of high-multiparametric cytometry, allowing the simultaneous evaluation of
an ever-growing amount of markers per cell (up to 50 markers to date). High-dimensional
time-of-flight mass cytometry (CyTOF) consists of a combination of flow cytometry and
mass spectrometry, where antibodies are conjugated to rare heavy metal isotopes instead
of fluorochrome. After cell staining, the sample is ionized on a plasma torch and the
time of flight of these rare isotopes allow the reconstitution of individual cell marker’s
expression. This technology also has the advantage of an important spill-over reduction in
comparison with flow cytometry. Cell population characterization by CyTOF is nowadays
more and more widespread and allows an accuracy level in immune response dissection
that was not reached with conventional flow cytometry [83]. Alternatively, spectral flow
cytometry is the evolution of conventional flow cytometry. However, the system of
signal detection does not rely on photomultiplier tubes, which collect a fraction of the
fluorophore emission spectrum, but rather on the collection, analysis and recognition
of the full emission spectrum, used as a reference in multicolor applications [84]. This
technology allows the simultaneous use of fluorophores with very close emission spectra
such as allophycocyanin (APC) and Alexa Fluor 647. These improvements have led to
more resolutive results than regular flow cytometry [85]. Such new technologies allow an
in-depth characterization of the cell phenotype, function and activation state, which is
particularly interesting in the context of vaccine or infectious disease monitoring. These
highly multiparametric methods require bioinformatic expertise, allowing unsupervised
analysis [86], with the advantage of automatically defining cell subsets that might been not
highlighted with conventional supervised analysis, in addition to getting rid of operator-
driven analysis bias. This may lead to the identification of novel cell populations that
could be associated with an effective vaccine response [87,88].
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4. High-Throughput Immunomonitoring Techniques

Important technological innovations have been made in the past years in flow cytome-
try and other systems devoted to tracking immune responses such as multiple cytokine
measurement devices [89]. However, these technologies, taken individually, are not self-
sufficient to recapitulate the immune system’s complexity.

Concomitantly with development of next-generation sequencing (NGS) platforms,
high-throughput devices have also become more and more sensitive and affordable [90],
and allow an indiscriminate analysis of thousands to millions of parameters such as
gene sequences, transcripts, metabolites, proteins, lipids or polysaccharides. These very
sensitive technologies could contribute to the identification of potential surrogate markers
of immunogenicity or protection after vaccination and disease outcome after infection.

More particularly, the revolution of single-cell RNA sequencing (scRNA-seq) technolo-
gies has led to a better understanding of the diversity and development of immune cells by
multiple gene expression analysis. In 2009, the first study using sequencing at the unicellular
level allowed the characterization of cells at the early stage of development [91]. Over past
few years, scRNA-seq technologies have developed from a handful of individual cells to
hundreds of thousands in a single experiment with sensitivity and accuracy despite a very
small amount of biologic material [92]. The principle of scRNA-seq consists of isolating cells
and performing RNA reverse transcription followed by cDNA amplification and library
preparation before NGS. Single-cell isolation was achieved through the development of
flow-cell sorting and microfluidic technologies (for example Fluidigm C1 limited for up
800 cells per chip and a homogeneous cell size, or microdroplet-based fluidics like the
Chromium system from 10X Genomics that could screen thousands to millions of barcoded
cells in microdroplets). During the last decade, a lot of multimodal single-cell measure-
ments were developed to associate the transcriptomics, repertoire, epigenomics, proteomics
and genomics of immune single-cells [93]. NGS also allowed us to simplify TCR and BCR
repertoire evaluation through the Rep-Seq technique [94]. For instance, BCR profiling led to
a better understanding of an alternative to an isotypic switch in the B cell (locus suicide re-
combination), resulting in the deletion of a constant region that could restrain the activation
of mature B cells [95]. Technologies depicting the Ig repertoire and evaluating the redun-
dancy of clonal sequences have been found to be valuable in multiorgan diseases [96] but
also in vaccination [97]. All these technologies are a real opportunity to characterize small
cell populations and gene pathway implications, and to decipher the immune response in
infectious disease and vaccines [98].

5. Systems Biology

New immunomonitoring techniques have paved the way for the current systems
biology era. Opposite to dissecting isolated immune mechanisms or functions, systems
biology aims to take advantage of multiparametric datasets to provide new insights about
the general behavior of the immune system. It has become an essential feature of identifying
predictive innate biomarkers.

Indeed, components of the adaptive response that are widely used as correlates of
protection to assess vaccine efficacy require days to weeks to be acquired. In the context
of a pandemic, as the world is facing now with SARS-CoV-2, the population needs to be
urgently protected through vaccination. The early evaluation of vaccine efficacy, to predict
vaccine responders from non-responders, can be extremely relevant. In this context, the
idea is to establish correlations between one or several early-induced non-antigen-specific
biomarkers—an innate immune signature—with highly specific putative correlates of
protection. Nevertheless, many early vaccine signatures associated with adaptive response
parameters have been proposed and constitute innate biomarker candidates. Yellow fever
vaccine (YF-17D), one of the most effective vaccines available, has been widely studied to
identify these early signatures and dissect the relationship between the innate and adaptive
response [99–103]. Molecules involved in stress response pathways, i.e., EIF2K (also called
GCN2), and the complement protein (C1qB) have been shown to predict, with up to 90%
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accuracy, the CD8+ T cell responses, while TNFR17 predicted the neutralizing antibody
response with up to 100% accuracy [102]. These early signatures were able to accurately
predict the adaptive response outcome measured 2 months following vaccination. In the
context of influenza vaccination with the trivalent influenza vaccine, we demonstrated that
a minimal gene signature of nine genes associated with the serum CXCL10 level measured
as soon as day1 after vaccination was able to predict specific granzyme B-producing CD8+
T cells and antibody responses 21 days later [5].

This kind of holistic approach requires the use of bioinformatic tools for data integra-
tion such as dimensionality reduction visualization t-SNE, UMAP, PCA, MDS . . . ), and
analyzing algorithms (LDA, LASSO . . . ) [102,104]. Omics studies have already highlighted
the role of very diverse parameters interfering with vaccine-induced immunity, such as
endocrine hormones [105], the microbiota population [106] and nutrient receptors [107].
Systems biology would be probably a cornerstone of rationale-based vaccine development,
with computational biology tools allowing one to select, in silico, immunogenic T cell
epitopes that are more susceptible to inducing an adequate immune response [108]. Along
with immune parameters, computational tools can also take intrinsic host characteristics
into account, such as HLA profiling, which significantly contribute to genetic susceptibility
to infectious diseases and variations in the response to vaccines [109]. Other host-related
factors also influence immune responses, such as age, gender, social environment or chron-
ical diseases. The integration of the different data levels using omics technologies and
bioinformatical modeling can depict the strength of the immune response to vaccines
over time from the molecular networking to the cellular composition and cell-to-cell cross-
talk following vaccination, and paves the way forward to the personalized vaccination
concept [109], where all vaccine doses would be adapted based on each subject’s history.

In the context of COVID-19 disease, important discoveries about the SARS-CoV-2-
induced immune response have been made possible thanks to cutting-edge technologies
based on integrative approaches. Indeed, a very large and heterogenic combination of
immunomonitoring techniques—shortly exemplified in Tables 1 and 2—succeeded in
providing insights about how to fight against this disease.

6. Conclusions

In the past years, major advances in immunomonitoring methods have seen the
promise of systems biology era. Slowly, integrative data strategies taking advantage of
high-throughput devices have depicted, more and more precisely and rapidly, the immune
processes associated with vaccination, infection or cancers. These technologies have al-
ready begun to provide insights about the predictive biomarkers or immune mechanisms
triggered by diseases such as COVID-19. As a counterpart, it demands important amounts
of time and resources, including interdisciplinary collaboration among mathematicians,
informaticians, immunologists, and also chemists and physicians. International partner-
ships, consensual standard operating procedures, biobanking, protocols and database
management are still essential to establishing relevant data integration and meta-analysis.
Undoubtably, new discoveries resulting from this continuously arising holistic field will
lead to more rationale-based vaccine development. The incredibly fast development of
vaccines to fight against the COVID-19 pandemic has demonstrated the incredible mobi-
lization capacity of industrial and academic researchers in a sanitary crisis context. It brings
hope that a highly effective, collaborative and coordinated worldwide research taskforce
could be established to face future pandemics.

Author Contributions: L.A., P.R., O.B. and B.C. wrote the review. All authors have read and agreed
to the published version of the manuscript.

Funding: Authors have received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No. 681137.

Institutional Review Board Statement: Not applicable.



Vaccines 2021, 9, 365 11 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ELISA enzyme-linked immunosorbent assay
ADCC antibody-dependent cell cytotoxicity
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