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Abstract

Psoriasis is a chronic inflammatory disease involving the skin. Both genetic and 
environmental factors play a pathogenic role in psoriasis and contribute to the severity 
of the disease. Psoriasis, in fact, has been associated with different comorbidities such 
as diabetes, metabolic syndrome, gastrointestinal or kidney diseases, cardiovascular 
disease (CVD), and cerebrovascular diseases (CeVD). Indeed, life expectancy in severe 
psoriasis is reduced by up to 5 years due to CVD and CeVD. Moreover, patients with severe 
psoriasis have a higher prevalence of traditional cardiovascular (CV) risk factors, including 
dyslipidemia, diabetes, smoking, and hypertension. Further, systemic inflammation 
is associated with oxidative stress increase and induces endothelial damage and 
atherosclerosis progression. Different miRNA have been already described in psoriasis, 
both in the skin tissues and in the blood flow, to play a role in the progression of disease. In 
this review, we will summarize and discuss the most important miRNAs that play a role in 
psoriasis and are also linked to CVD.

Introduction

Psoriasis is a complex and chronic inflammatory disease 
affecting 2–3% of the world’s population (1). The etiology 
of psoriasis is complex, and still debated, as the disorder 
is caused by the interaction among multiple genes, the 
immune system and environmental factors (2, 3).

From a dermatological point of view, psoriasis 
is characterized by hyperproliferative epidermis and 
cutaneous lymphocytic infiltration that can also involve 
joints causing a form of arthritis, known as psoriatic 
arthritis (PsA) (3).

A prominent role is played by the increased risk in 
these patients of major adverse cardiovascular events: 
this evidence has received increasing attention in the last 

decades (4, 5). This finding cannot be explained only on 
the basis of high prevalence of traditional cardiovascular 
risk factors seen in psoriatic patients (6); additional and 
independent factors such as the systemic inflammation 
associated with psoriasis, the presence of psoriasis-related 
comorbidities (7, 8) and the atherogenic side-effects of 
systemic therapies for psoriasis have also been reported (9).

Atherosclerosis and inflammation in 
psoriatic patients

Ample research work has demonstrated that inflammation 
is a key driver of atherosclerosis. 
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Indeed, the risk of cardiovascular events is not 
sufficiently indexed by cholesterol and other traditional 
risk factors. High-sensitivity C-reactive protein (hsCRP) 
and interleukin-6 (IL6) levels, despite significant 
reductions in low-density lipoprotein cholesterol (LDL-C) 
obtainable with maximal medical therapy, are associated 
with 'residual inflammatory risk'. Control of inflammation 
has increasingly become a viable pharmacologic target 
for primary and secondary prevention of atherosclerotic 
disease (10).

The inflammatory process seen in psoriasis shares 
many features with atherosclerosis including T helper 
1-mediated inflammation, alterations in angiogenesis, and 
endothelial dysfunction that may link the pathogenesis 
of psoriasis with the development of atherosclerosis and 
cardiovascular disease (CVD) (11).

The typical histological features of the psoriatic plaque 
with dermal inflammation and leucocyte infiltration are 
similar to those of the atherosclerotic plaque. The theory 
of 'two plaques for one syndrome' has been hypothesized 
given the similarities in the molecular mechanisms and 
pro-inflammatory cytokine profile found in psoriatic 
lesions and those of atherosclerotic ones, with a 
comparable inflammatory infiltrate of T cells, macrophages 
and monocytes (9, 12).

Both atherosclerosis and psoriasis are characterized 
by immune system activation, involving T helper-1, T 
helper-17, regulatory T cells and inflammatory cytokines 
such as INFG, IL2, TNF and IL17 (13). These mediators 
play a key role in the development of psoriatic plaques, 
stimulating angiogenesis and keratinocyte proliferation 
and promote insulin resistance, metabolic abnormalities 
and endothelial dysfunction, which contribute to 
atherosclerotic plaque formation and progression (14, 
15). In support of this theory, large epidemiologic studies 
have found increased rates of cardiovascular mortality, 
myocardial infarction (MI) (4, 5), atrial fibrillation and 
stroke (16) among patients with both mild and severe 
psoriasis. Recent comprehensive meta-analysis and 
cohort studies have confirmed that the association is 
statistically significant (16). For a definitive evaluation 
of the association, more long-term prospective studies  
will be needed.

Psoriatic patients, therefore, appear to have a shorter 
life expectancy, estimated as approximately 5 years (17). 
These subjects have increased prevalence of traditional 
cardiovascular risk factors such as diabetes, hypertension, 
dyslipidemia, tobacco use and obesity (7, 8). Psoriasis, as 
already pointed out and mainly if severe, appears to be an 
independent risk factor for atherosclerotic CVD, as the risk 

persists even after adjusting for the traditional risk factors, 
probably due to the role that systemic inflammation  
plays in determining premature atherosclerosis in these 
patients (4, 5).

The impact of psoriasis duration on aging and 
cardiovascular risk

Estimation of cardiovascular risk based on the traditional 
score system has limitations in peculiar clinical contexts. 
These scores are known to underperform because 
traditional cardiovascular risk factors do not fully explain 
the increased cardiovascular risk in patients with psoriasis. 
Consequently, cardiovascular risk is often underestimated 
in these individuals (18).

Although the relative risk of major adverse clinical 
events is greater for young patients with severe psoriasis 
vs old ones with mild disease, the greater population 
prevalence of mild psoriasis translates into a greater 
population-attributable risk of mild psoriasis for both 
MI and stroke. These findings emphasize that all patients 
with psoriasis, rather than only young patients with severe 
psoriasis, should be educated regarding the increased risk 
of CVD. 

In addition, the risk of MI in psoriatic patients 
aged between 30 and 40 years vs tose between 50 and 60 
years with a long history of psoriasis was compared (13). 
Attributable risk and excess risk calculated based on the 
adjusted relative risk of MI were much higher in the older 
group being roughly 70-fold higher.

Patients with psoriasis were more likely to have 
coronary artery disease (CAD) as visualized on coronary 
angiogram. This association was still evident after adjusting 
for established cardiovascular risk factors, leading the 
authors to conclude that psoriasis is independently 
associated with the presence of CAD (19). Finally, a strict 
correlation between the duration of psoriasis and the 
extension of CAD exists.
microRNA involved in psoriasis and CVDmiRNAs are short 
non-coding RNAs that inhibit translation and/or induce 
degradation of target messenger RNAs (mRNAs) (20). 

The following miRNAs (summarized in Table 1) are the 
most important miRNAs modulated in psoriasis that are 
also involved in CVD. 

miR-200 family

miR-200 family is composed of five members (i.e. miR200a, 
miR-200b, miR-200c, miR-429 and miR-141). This miRNA 
family has been shown to be induced in lesional skin (LS) of 
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psoriatic patients compared to non-lesional (NL) one (21). 
Further, miR-200c is the only one also induced compared 
to healthy skin subjects (HS). The entire miRNA family 
was assayed in the bloodstream of psoriatic patients, and 
miR-200c and miR-200a were upregulated significantly 
compared to healthy subjects. The correlation analysis 
with psoriasis area severity index (PASI) and the duration 
of disease showed that only miR-200c expression levels 
positively correlated with both, indicating that miR-
200c could be considered as an inflammatory biomarker 
for this disease (21). Moreover, miR-200c correlated with 
different determinants of cardiovascular risk, such as 
relative wall thickness (RWT), left ventricular (LV) mass, 
and E/e’ parameter, a marker of diastolic dysfunction (21). 
Circulating miR-200a correlated only with LV mass and 
augmentation index, a marker of stiffness, although not 
significantly (P = 0.06).

These data indicated that miR-200c increases in 
plaques and plasma of psoriatic patients and could be 
involved in the establishment of inflammation and CVD 
in psoriasis.

In another study, it has been shown that the 
upregulation of miR-200a in CD4+ T cells may induce 
immune dysfunction through Th17/Treg cells and relevant 
cytokines (i.e. IL17 and IL23) levels in psoriasis vulgaris 
patients and positively correlates with PASI (22).

miR-200c was upregulated in endothelial cells (ECs) 
upon oxidative stress exposure and is responsible for 
apoptosis, senescence (23), nitric oxide (NO) decrease and 
reactive oxygen species (ROS) increase, and all features 
associated with endothelial dysfunction (24). In particular, 
miR-200c targets zinc finger E-box binding homoeobox 1 
(ZEB1) protein, inducing apoptosis and senescence of ECs 
(23) and disrupts the autoregulatory loop existing among 
Sirtuin1 (SIRT1), endothelial nitric oxide synthase (eNOS) 
and forkhead boxO1 (FOXO1), directly targeting all of 
them, causing NO decrease and ROS increase (24).

It is well known that endothelial dysfunction 
plays a key role in unstable plaques genesis. In keeping 
with this, miR-200c was increased in carotid plaques 
of atherosclerotic patients, and it is higher in unstable 
plaques vs stable plaques (25).

miR-200c was found to be elevated in the plasma of 
patients with atherosclerosis, although the circulating 
levels did not discriminate between stable or unstable 
plaques. Interestingly, the plasma levels were decreased 
after carotid endarterectomy (CEA), and after 1 month, the 
levels of miR-200c were increased in patients with unstable 
plaques, whereas 1 month after CEA miR-200c levels were 
still low in patients with stable plaques, indicating that m
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increased levels of miR-200c are most probably associated 
with endothelial dysfunction and inflammation (25).

Interestingly, miR-200c levels positively correlated 
with biomarkers of plaque instability such as 
cyclooxygenase-2 (COX2), IL6, monocyte chemoattractant 
protein-1 (MCP1), metalloproteinase (MMP) 1, MMP9 and 
negatively correlated with stability biomarkers (i.e. ZEB1, 
eNOS, FOXO1 and eNOS).

Interestingly, miR-200c positively correlated with two 
important miRNAs, miR-33a/b (see following paragraph), 
which have been linked to atherosclerosis progression 
(26) and are key players of cholesterol homeostasis, since 
they are key regulators of high-density lipoprotein (HDL) 
cholesterol synthesis (27).

In conclusion, the miR-200 family is increased in 
psoriasis skin, and among its members, miR-200c plasma 
levels correlate with cardiovascular risk and inflammatory 
biomarkers (Fig. 1).

miR-33a/b

miR-33a and miR-33b share the same seed sequence and 
are embedded in introns of sterol regulatory element-
binding protein (SREBP)2 and SREBP1 genes, respectively 
(28). SREBP genes are important transcription factors 
that regulate lipid metabolism, and their transcriptional 
upregulation induces miR-33a and miR-33b  
expression (28).

miR-33a was found to be higher in plasma of patients 
with plaque psoriasis compared to controls and correlated 

positively with plasma insulin and the homeostatic 
model assessment (HOMA)-insulin resistance index value. 
Moreover, psoriasis patients displayed greater carotid 
intima-media thickness (IMT) than controls (29).

miR-33 are known to directly target the cholesterol 
transporter ATP-binding cassette transporter A1 (ABCA1) 
and ATP-binding cassette transporter G1 (ABCG1), proteins 
implicated in the efflux of cholesterol from macrophages 
to generate HDL (27). miR-33a/b also regulate fatty acid 
oxidation and insulin signaling (30, 31).

Given their role in cholesterol and lipid metabolism, 
different studies evaluated miR-33 inhibition in animal 
studies. miR-33 inhibition has been shown to raise plasma 
HDL-cholesterol and to protect from atherosclerosis in 
mice (32). miR-33 inhibition in non-human primates 
upregulates the hepatic expression of ABCA1, increasing 
plasma HDL-cholesterol levels and suppressing the plasma 
levels of very-low-density lipoprotein (VLDL)-associated 
triglycerides (33). 

Interestingly, as aforementioned, miR-33a and miR-
33b were found to be increased in carotid atherosclerotic 
plaques, suggesting their role in advanced atherosclerosis 
in humans (26). 

In keeping with this, miR-33a/b were also found 
to be upregulated in plasma of children with familial 
hypercholesterolemia, a disease that causes atherosclerosis 
in the pediatric age. miR-33a/b positively correlated with 
total cholesterol, LDL-cholesterol, apolipoprotein B, 
glycemia and CRP (34). Moreover, these miRNAs correlated 
also with miR-200c plasma levels, and the extracellular 

Figure 1
miR-200c in psoriasis and CVD. miR-200c is 
upregulated by reactive oxygen species (ROS) and 
is responsible for apoptosis, senescence, 
endothelial dysfunction, ROS increase and nitric 
oxide decrease, all features associated with 
atherosclerosis. Indeed, miR-200c increases in 
carotid plaques and plasma of atherosclerotic 
patients vs healthy subjects and positively 
correlates with plaque instability biomarkers (i.e. 
MCP1, IL6, COX2, MMP1, MMP9 and miR-33) and 
negatively with stability biomarkers (i.e. SIRT1, 
FOXO1, eNOS and ZEB1). ROS modulation, 
endothelial dysfunction, cardiac remodeling and 
inflammation are also associated with psoriasis. 
Iin keeping with this, miR-200c is increased in LS 
vs NL and vs HS, and in plasma of psoriatic 
patients. miR-200c correlates with PASI and the 
duration of disease and with determinants of CVD 
(i.e. LV mass, E/e’ and RWT) in psoriatic patients. 
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release of miR-200c was mediated by miR-33 since the 
overexpression of miR-33a/b in vitro in different cells 
(i.e. ECs, hepatic cells and embryonic kidney cells) was 
mediated by a ZEB1-decrease mechanism (35).

The latter is a transcriptional inhibitor of miR-200c; 
hence, ZEB1-decrease causes an increase of both intracellular 
and extracellular miR-200c expression levels (35). 

A positive correlation between miR-200c and miR-33a/b 
was also found in the plasma and plaques of atherosclerotic 
patients as mentioned previously (25) (Fig. 2). 

Thus, a complex interplay among miRNAs is 
most probably the basis of metabolic dysfunction and 
inflammation and oxidative stress increase in psoriatic 
patients.

miR-133a

miR-133a was found to be downregulated in LS of psoriatic 
patients compared to NS (36). miR-133a expression levels 
increased after treatment with biologics.

Notably, miR-133a is muscle-specific miRNA, and it is 
involved in cardiac development and pathophysiology. 

Interestingly, miR-133a is downregulated in both the 
infarcted area and the border zone both in humans, as well 
as in experimental animals (37, 38).

On the other hand, miR-133a levels in serum increased 
significantly in patients with acute myocardial infarction 

(AMI) or with unstable angina pectoris, and circulation 
increase of miR-133a positively correlates with the 
infarcted area (39).

Indeed, miR-133a decrease is involved in cardiac 
hypertrophy, and its overexpression inhibits hypertrophy 
(40). Moreover, miR-133a increase plays a major role in 
preventing cardiac fibrosis in chronic heart failure (HF) 
(41), and its increase in adult cardiac progenitor cells (CPCs) 
improves cardiac function, decreasing fibrosis and increasing 
cardiomyocyte proliferation and vascularization (42). 

miR133a was found to be downregulated in plasma and 
in atherosclerotic plaques, and its decrease in vascular smooth 
muscle cells (VSMCs) results in the inhibition of proliferation 
and in the induction of apoptosis via MMP9 (43).

miR-133a has been shown to inhibit the osteogenic 
differentiation of VSMCs; therefore, its decrease induces 
arterial calcification (44).

Finally, miR-133a is also decreased in thoracic aortic 
aneurysms (TAA), and its decrease negatively correlates 
with aortic diameters (45).

Thus, miR-133a decrease in psoriasis could be involved 
in the onset of different CVD.

miR-135b

miR-135b was upregulated in LS compared to NS (46), 
and after treatment with biologics, miR-135b was 

Figure 2
miR-200c and miR-33 interplay in psoriasis and 
CVD. miR-200c and miR-33 positively correlate in 
plasma and plaques of atherosclerotic patients. A 
molecular mechanism among miR-33a/b and 
miR-200c increase does exist. Indeed, the 
overexpression of miR-33a/b in vitro in different 
cells (i.e. ECs, hepatic cells and embryonic kidney 
cells) causes the intracellular and extracellular 
increase of miR-200c via a ZEB1-decrease 
mechanism. ZEB1, in fact, is a direct target of both 
miR-33 and miR-200c and a transcriptional 
inhibitor of miR-200c. Hence, a ZEB1-decrease 
causes upregulation of both intracellular and 
extracellular miR-200c expression levels. An 
increase of miR-200c in skin plaques and plasma 
of psoriatic patients was also observed, and it 
positively correlates with PASI index and 
determinants of CVD risk (RWT, E/e’ and LV mass). 
Interestingly, miR-33a was found to be 
upregulated in the plasma of psoriatic patients 
and positively correlates with HOMA-insulin 
resistance index and cIMT. Therefore, a possible 
link in psoriasis could also exist among miR-33 
and miR-200c, contributing to the increase of CVD 
in these patients.
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downregulated, significantly returning to those levels 
detected in NS (36). 

After treatment with biologics, miR-135b levels 
were associated with both PASI improvement and local 
inflammatory response decrease (36).

Interestingly, in MI, miR-135b is downregulated, 
and its overexpression attenuates pyroptosis, a caspase-
1-dependent proinflammatory programmed cell death. 
Thus, miR-135b plays a protective role in MI (47).

Moreover, miR-135b was found to be upregulated in 
sera of atherosclerotic subjects with CAD compared to 
healthy control subjects. Interestingly, miR-135b directly 
targets myocyte enhancer factor 2C (MEF2C), which 
plays an important role in promoting ECs and VSMCs 
proliferation and migration (48). 

Further, miR-135b is decreased in cardiac hypertrophy, 
and its overexpression is attenuated in an animal model 
of hypertrophy by targeting L-type calcium channel 
CACNA1C, a protein involved in cardiac hypertrophy 
signaling (49).

miR-135b upregulation in psoriasis resembles the 
modulation in atherosclerosis, whereas it is modulated in 
CVD differently.

miR-21

miR-21 was significantly upregulated in LS of patients 
with psoriasis compared to healthy skin (50), and narrow-
band UV phototherapy treatment decreased its expression 
in skin biopsies derived from psoriatic patients (51). 
Moreover, a specific single nucleotide polymorphism in 
3'UTR of integrin alpha-M (ITGAM) is associated with a 
binding site improvement for miR-21 that can manifest 
an aberrant function of innate immune cells, resulting in 
higher risk insurgence of psoriasis in women (52). Other 
data suggest that miR-21 upregulation could increase 
the inflammatory process, by suppressing the apoptosis 
pathway in dermal T-cells of psoriatic patients (53). A 
recent study has shown that the interaction between 
miR-21 and lncRNA maternally expressed gene3 (MEG3) 
can influence the apoptotic axis in human psoriatic 
keratinocytes (54).

miR-21 inhibition was able to reduce psoriatic 
phenotype in a mouse model of psoriasis (55).

miR-21 has been widely studied in CVD. miR-21 was 
shown to be upregulated by oxidative stress in rat VSMCs. 
Its upregulation was found to be protective from apoptosis 
since programmed cell death 4 (PDCD4) is a direct target of 
miR-21 (56). PDCD4, in fact, is a pro-apoptotic protein that 
inhibits the activity of the transcription factor AP-1 (57). 

The latter is a signaling molecule, which determines cell 
fate based on extracellular stimuli, including ROS.

Interestingly, miR-21 is upregulated by shear stress and 
also protects ECs from apoptosis, increasing eNOS and NO 
production (58).

miR-21 upregulation also occurs in atherosclerotic 
plaques, decreasing the function of superoxide dismutase-2 
(SOD2) antioxidant enzyme and targeting a negative 
regulator of the branching morphogenesis, sprouty 
homolog 2 (SPRY2). This, in turn, leads to the activation of 
ERK/MAP kinase provoking ROS increase and angiogenic 
progenitor cell (APC) migratory defects (59).

Moreover, miR-21 expression is increased in myocardial 
tissue and plasma of patients with aortic stenosis (60), 
in a mouse model of cardiac hypertrophy induced by 
aortic banding, and in neonatal rat cardiomyocytes 
after stimulation with hypertrophic agents (61); miR-
21 upregulation in cardiac hypertrophic growth caused 
SPRY2 downregulation, enhancing the formation of 
various cellular protrusions and gap junction remodeling, 
enhancing conduction velocity (62).

miR-21 circulating levels have been also used  
as excellent biomarkers for the diagnosis of heart 
dysfunction (63).

In conclusion, miR-21 increase in psoriasis could be a 
possible link to CVDs such as atherosclerosis and cardiac 
hypertrophy.

miR-22

miR-22 circulating expression levels were significantly 
downregulated in the blood of patients affected by 
psoriasis vulgaris compared to healthy subjects (64). In 
addition, plasma levels of miR-22 were evaluated in PsA 
and ankylosing spondylitis, two chronic inflammatory 
rheumatic disorders. miR-22 circulating expression 
was found to be markedly lower in PsA subjects than in 
ankylosing spondylitis patients (65).

Psoriasis is widely regarded as a classical autoimmune 
disease. Interestingly, it has been shown that miR-22 levels 
are upregulated in the spleen and spinal cords of mice that 
developed autoimmune encephalomyelitis, and its high 
expression in inflammatory Th17 cells could protect mice 
from autoimmunity (66). 

miR-22 also plays a pivotal role in CVD. miR-22 is a 
pro-hypertrophic miRNA, and in fact, miR-22 levels were 
increased in cardiomyocyte hypertrophy and in different 
cardiac hypertrophy mice models (67, 68). Moreover, 
cardiac-specific deletion of miR-22 inhibits stress-induced 
cardiac hypertrophy and remodeling (68, 69), whereas 
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cardiac-specific overexpression of miR-22 elicited cardiac 
dilation and HF (70). 

Moreover, pharmacological inhibition of miR-22 
promoted cardiac functional recovery after MI by eliciting 
cardiac autophagy (71).

Ischemia-reperfusion (IR) in rat cardiomyocytes 
induced down-modulation of miR-22 and an increase of 
p53-upregulated-modulator-of-apoptosis (PUMA), thus 
increasing apoptosis (72).

Moreover, miR-22 expression is decreased in human 
femoral arteries with atherosclerotic plaques compared 
to healthy arteries (73). miR-22 plays a regulatory role 
in VSMC phenotype switching and vascular neointima 
lesion formation, by regulating multiple target genes (i.e. 
HDAC4, methyl-CpG binding protein 2 and ecotropic viral 
integration site-1). Overexpression of miR-22 can reverse 
the process of VSMC phenotype switching in the injured 
arteries and prevent postangioplasty restenosis, supporting 
a potential role for miR-22 and its target genes in a variety 
of proliferative vascular diseases (73).

Further, miR-22 circulating levels were significantly 
decreased in patients affected by AMI compared to controls, 
suggesting that it could be considered as a promising 
diagnostic biomarker (74).

All the previously described studies underlined a 
decrease in psoriasis of miR-22 that is likely associated with 
atherosclerotic plaques, whereas in cardiac tissues, the 
miR-22 decrease has a protective function, and its increase 
induces cardiac dilation and failure. 

miR-369

miR-369 expression levels were found to be increased in 
serum samples and skin tissues deriving from psoriatic 
patients compared to healthy subjects, and a positive 
correlation existed between skin miR-369 levels and PASI 
(64, 75).

miR-369 has emerged as a key regulator of inflammatory 
response in dendritic cells since it decreases LPS-induced 
NO production, by directly targeting iNOS expression and 
simultaneously inhibiting nuclear translocation of NFKB 
(76). In keeping with this, miR-369 overexpression in these 
cells significantly decreased cytokine production (i.e. TNF, 
IL6, IL12, IL1A and IL1B) in response to LPS, and some 
anti-inflammatory cytokines, such as IL-10 and IL-1RA, 
were indirectly increased (76).

In line with its anti-inflammatory role, miR-369 
overexpression is able to suppress cardiomyocyte apoptosis 
and inflammation pathways triggered by hypoxia (77).

Furthermore, plasma of patients with HF, following 
AMI, exhibited higher miR-369 expression levels, compared 
to subjects affected by MI without HF (78).

These observations suggest that miR-369 upregulation 
in psoriasis and CVD seems to play a protective role against 
the deleterious effect inflammatory pathways elicited in 
these diseases.

miR-378a/378a*

miRNA-378a, known also as miR-378 or miR-422b, originates 
from the first intron of the peroxisome proliferator-
activated receptor gamma coactivator 1 beta (PPARGC1B) 
gene encoding PGC1B, a transcriptional regulator of 
oxidative energy metabolism. The complementary strand 
named miR-378a* is also miRNA active (79).

High levels of miR-378a were detected in the LS 
compared to NL. Further, biological treatment can restore 
its levels of expression to those in NS (36). Moreover, miR-
378a was found to be upregulated in keratinocytes from 
LS of psoriasis compared to paired NL samples andalso vs 
healthy keratinocytes (80).

miR-378a* was also found to be upregulated in LS 
keratinocytes compared to NL keratinocytes (80). 

Interestingly, miR-378a* induces vascular endothelial 
growth factor expression (VEGF) competing for the same 
binding site with miR-125, which, in fact, is downregulated 
in psoriatic plaque (81).

A growing body of studies suggests that miR-
378a/378a*, encoded within PGC1B, plays a mediatory role 
in lipid pathway metabolism (82). 

miR-378a has been shown to play a protective role 
against hyperlipidemia. It has been shown that miR-
378/378* adipose tissue-specific transgenic mice counteract 
genetic and high-fat diet (HFD)-induced obesity, through 
the expansion of brown fat (BAT) (83), which is known to 
reduce plasma triglyceride and cholesterol levels (84).

On the other hand, knockout mice for miR-378a/378a* 
are also resistant to HFD-induced obesity and show a 
mitochondrial fatty acid metabolism and oxidative 
capacity increase in insulin-target tissues (e.g. liver, 
muscles, and adipose tissues). This occurs since miR-378 
and miR-378a* counterbalance the metabolic actions of 
PGC1B (85).

miR-378a also plays a major role in atherosclerosis. 
In VSMCs of human atherosclerotic plaques, a positive 
correlation between miR-378a expression, PGC-1α levels 
and the media were found and were decreased compared to 
healthy subjects (86).
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miR-378a induction is regulated by transcription 
factors such as nuclear respiratory factor 1 (NFR1) 
via interaction with PGC1A. Thus PGC1A decrease 
determines miR-378a suppression. Interestingly, miR-378a 
overexpression plays an anti-atherogenic role in inhibiting 
free fatty acid-induced VSMC proliferation, migration and 
inflammation directly targeting insulin growth factor 1 
(IGF1) and toll-like receptor 8 (TLR8), which are two genes 
aberrantly upregulated in atherosclerotic vessels (86).

On the other hand, miR-378a has been shown to 
directly target ABCG1, a transporter cassette implicated 
in macrophage reverse cholesterol efflux to generate HDL 
(87). In line with previous studies, miR-378a was found 
to be decreased in atherosclerotic plaques in low‐density 
lipoprotein receptor-deficient mice (ApoE−/−) vs WT 
aortas (88).

miR-378a targets directly signal regulatory protein α 
(SIRPA), a negative modulator of macrophage phagocytosis 
and inflammation. Thus, miR-378a levels decrease 
in ApoE−/− mice atherosclerotic plaques, promotes 
inflammation, increases macrophage phagocytosis, and 
increases macrophage reverse cholesterol efflux.

According to a recent study, miR-378a has 
antihypertrophic activity in the heart, playing an important 
role in the regulation of myocardial remodeling (89).

Thus, miR-378a dysregulation in psoriasis could 
modulate cardiometabolic diseases associated with this 
disease.

miR-9

miR-9 was found to be downregulated in the LS compared 
to NL in psoriasis (36). 

miR-9 plays a major role in the modulation of 
inflammatory pathways. In fact, it is not only induced by 
an NFKB1-dependent pathway in human monocytes (90), 
but it also targets NFKB1 (91), and thus a negative feedback 
loop exists between miR-9 and NFKB1.

Interestingly, in a peripheral artery disease rat model, 
it was found that deep vein thrombosis miR-9 decreased 
and NFKB1 increased, eliciting inflammation. Moreover, 
its overexpression alleviates inflammation and thrombosis 
in rats (92).

In metabolic syndrome, miR-9 was found to be 
upregulated in peripheral blood mononuclear cells 
(PBMCs) causing the decrease of its target ABCA1, 
diminishing cholesterol efflux and HDL production (93).

miR-9 was found to be decreased in PBMCs isolated 
from patients with the acute coronary syndrome (ACS) 
compared to healthy subjects and in aortic lysates of HFD-

fed ApoE−/− mice compared to normal diet-fed ApoE−/− 
mice. miR-9 overexpression in HFD ApoE−/− mice reduced 
inflammation and atherosclerotic plaques, acting as a 
negative regulator of SDC2-dependent FAK/ERK signaling 
pathway activated in these mice (94). 

In keeping with this, it was found that miR-9 can 
decrease atherosclerosis in an ACS mouse model, via 
oxidized low-density lipoprotein (lectin-like) receptor 1 
direct targeting that inhibits p38MAPK, thus promoting 
vascular remodeling (95).

miR-9 was also found to be downregulated in rat 
hypertrophic cardiomyocytes, and its overexpression 
counteracts hypertrophy in a mouse cardiac hypertrophy 
model since myocardin is a direct target of miR-9 (96). 

In contrast, inhibition of miR-9 in mice prevented 
cardiac remodeling following MI through the upregulation 
of its target follistatin-like 1 (FSTL1) that is known to 
protect cardiomyocytes from different pathologic injuries 
including MI (97). 

Interestingly, miR-9 also plays an angiogenic role. 
ECs exposed to high glucose (HG) showed a decrease in 
miR-9 and an increase in chemokine receptor-4 (CXCR4). 
miR-9 overexpression in HG-treated cells increases cell 
proliferation, tubule formation, decreases apoptosis and 
inflammation targeting CXCR4 (98).

Thus, miR-9 is deeply involved in inflammatory and 
metabolic regulation, and its downregulation is also 
associated with different CVD.

miR-375

miR-375 was found to be downregulated in the LS of 
psoriasis patients compared to NL. Further, the biological 
treatment restores its levels of expression (36). 

IGF receptor 1, which is overexpressed in psoriatic 
epidermis, regulates the keratinocyte proliferation, 
apoptosis, and differentiation (99) and has been shown to 
be a direct target of miR-375 (100).

miR-375 also targets Janus kinase 2 (JAK2) (101), 
which plays a pivotal role in both inflammatory and anti-
inflammatory signaling in keratinocytes. 

Patients with HF have high levels of miR-375 (102). In 
addition, it has been shown that the inhibition of miR-375 
decreases the inflammatory response after MI in a rodent 
model (103), and further, after MI, IL10 inhibits miR-375 
improving murine EPC's survival and function, promoting 
cardiac neovascularization and attenuating ischemic 
injury (104).

Thus, miR-375 decrease in psoriasis seems to play a 
protective role against inflammation and CVD.
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miR-340

miR-340 is located in the intronic region of the ring finger 
protein 130 (RNF130) gene and is regulated by promoter 
hypermethylation (105). 

miR-340 regulates the function and differentiation of 
immune cells and influences the progression of multiple 
autoimmune diseases, such as experimental immune 
encephalomyelitis (EAE), an animal model of brain 
inflammation and psoriasis (106). 

Indeed, miR-340 inhibits the differentiation of Th2 
cells through the downregulation of genes involved in the 
Th2 pathway, including IL4 (106).

Furthermore, miR-340 directly targets IL17A, a positive 
regulator of Th17 differentiation cells (107). 

It was found that the expression of miR-340 was 
significantly decreased in mice treated with imiquimod 
(IMQ), the most widely accepted psoriasis animal model, 
with consequent upregulation of IL17A and development 
of psoriasis. Thus, miR-340 negatively regulates the IL17A 
expression and alleviates the severity of the disorder in the 
IMQ-induced psoriasis mouse model, giving an important 
role for Th17 cells in psoriasis development (108).

For these reasons, miR-340 has been suggested as a 
therapeutic target for the treatment of psoriasis and other 
IL17A-mediated autoimmune diseases (108).

Moreover, miR-340 has an important role in CVDs, 
such as eccentric hypertrophy, HF and cardiomyopathy. 
In particular, miR-340 upregulation is induced by 
cardiotrophin-1 (CT1) stimulation, a member of the IL6 
family which initiates cardiac hypertrophy through the 
gp130/LIF receptor signaling pathway, which has a pivotal 
role in eccentric hypertrophy (109, 110)

miR-340 results in a downstream factor of gp130/LIF 
receptor pathway, and knockdown of miR-340 decreases 
the signal of CT1 and the hypertrophic response. At the 
same time, miR-340 is necessary for the induction and 
mediation of eccentric hypertrophy (111, 112).

Dystrophin is a structural protein present in the 
subsarcolemmal layer of cardiomyocytes and protects 
cells from stress during contraction and relaxation, and 
thus dystrophin deficiency results in the disruption of 
the sarcolemmal membrane and disorganization of the 
cytoskeleton (113).

It was found that dystrophin mRNA is a direct target of 
miR-340. miR-340 was found to be upregulated in failing 
heart caused by volume overload that in turns lead to 
alteration of cardiomyocytes sarcolemmal integrity and 
decompensation (111, 113)

Therefore, heart volume overload causes CT1 release 
which subsequently induces miR-340 upregulation that 
inhibits dystrophin, exacerbating eccentric hypertrophy 
and HF (111).

All the aforementioned studies show that alterations 
of miR-340 expression play a major role in inflammatory 
diseases and in cardiac pathogenesis.

miR-19a

miR-19a is a member of the miR-19 family together with 
miR-19b1 and miR-19b2, and they all share the same 
seed sequence. This family is located in the miR-17–92 
polycistronic cluster that encodes miRNAs belonging to 
the miR-17, miR-18, miR-19 and miR-92 families. 

Interestingly, IMQ-treated skin in mice differentially 
regulates the expression of the miR-17-92 cluster: miR-
17 and miR-19 families are upregulated, while miR-92 
is downregulated. However, overexpression or deletion 
of this cluster in keratinocytes or T cells does not have a 
relevant influence in IMQ-induced psoriasis, suggesting 
different functions and roles of miRNA families in T cell 
and keratinocytes (114).

Since miR-19a directly targets TNF (115), its expression 
levels were assayed in psoriasis to determine whether it 
could be a biomarker of this inflammatory disease. 

It was found that miR-19a was upregulated in hair 
roots of psoriasis patients compared to healthy subjects. 
Moreover, miR-19a levels were negatively correlated with 
the duration of symptom onset in psoriasis patients (116).

Interestingly, miR-19a was found to be upregulated 
in sera of patients with coronary atherosclerosis vs 
healthy controls. miR-19a was shown to promote vascular 
inflammation and foam cell formation. In ApoE−/− 
mice fed with HFD, inhibition of miR-19a decreased 
atherosclerotic plaques and lipids load (117).

The miR-19 family has been shown to regulate cardiac 
hypertrophy. It was shown that the miR-19 family has 
a pro-hypertrophic role in rat neonatal cardiomyocytes 
since it directly targets the anti-hypertrophic proteins 
ATROGIN1 and MURF-1 (118).

On the contrary, another study showed that in a mouse 
model of cardiac hypertrophy, miR-19a/b expression was 
reduced in hypertrophic hearts. In keeping with this, miR-
19a/b transgenic mice prevented cardiac hypertrophy and 
cardiac progression in response to angiotensin II via direct 
targeting of cardiac phosphodiesterase 5 (PDE5A) that 
regulates cardiac tone and vascular function (119).
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miR-19a modulation is involved in psoriasis and in 
CVDs although discrepancies on its role are present in the 
literature.

miR-424

miR-424(322)/-503 are mammal-specific members of 
the extended miR-15/107 miRNA family, present on 
chromosome X.

miR-424 was found to be markedly decreased in 
psoriasis skin, although no significant difference in the sera 
of psoriasis patients vs healthy controls was found. miR-
424 targets mitogen-activated protein kinase 1 (MEK1) and 
CYCLIN E1 that indeed were increased in psoriatic skin, 
leading to cell proliferation (120).

Hair shaft miR-424 levels, on the contrary, were 
significantly higher in psoriasis patients vs normal subjects. 
miR-424 levels do not correlate with other clinical psoriasis 
markers, disease duration or body surface area (120).

Interestingly, miR-424 was found to be decreased in 
the peripheral blood of atherosclerotic patients and in rat 
models of atherosclerosis (121).

miR‐424 targets apolipoprotein C3 (APOC3) gene 
directly, whose decrease causes NFKB1 signaling pathway 
repression. Thus, miR-424 upregulation or APOC3 silencing 
suppressed inflammation, proliferation, migration and 
induced aortic smooth muscle cells apoptosis. 

In keeping with this, miR-424 upregulation decreases 
atherosclerosis progression, blocking APOC3‐mediated 
NFKB1 signaling pathway, whereas miR-424 downregulation 
accelerates atherosclerosis progression (121).

miR-424 upregulation was reported in cardiac IR 
injury in mice. In particular, IR in heart tissue and 
hypoxia/reoxygenation-injury in rat cardiomyocytes 
lead to miR-424 upregulation and repression of its direct 
target cysteine-rich secretory protein LCCL domain-
containing 2 (CRISPLD2) (122). Decrease in CRISPLD2 
expression triggers cardiac pyroptosis, associated with 
cytokine increase and activation of pro-inflammatory  
immune mediators, that finally leads to ischemic heart 
disease (122).

miR-424 is modulated in psoriasis and in CVDs, and its 
levels control proliferation and inflammatory pathways.

miR-146

The human miR-146 family is composed of two members, 
miR146a and miR146b, that share almost identical 
sequences and seed regions, located on different 
chromosomes. 

miR-146a was found to be upregulated in psoriatic 
plaque epidermis vs healthy skin (123). It was observed 
that both miR-146a and miR-146b were upregulated in LS 
of psoriatic patients vs NL and vs HS (124). In that study, it 
was demonstrated that miR-146a targets and inhibits the 
proliferation marker fermitin family member 1 (FERMT1) 
that is also involved in the linkage of the actin cytoskeleton 
to the extracellular matrix, thus in the formation of a 
normal skin structure (125). Consequently, in human 
primary keratinocytes, overexpression of miR-146a 
inhibited cell proliferation. 

miR-146a was found to be increased in PBMCs of 
psoriasis patients compared to healthy controls and 
correlated with PASI, suggesting that it could potentially 
act as a biomarker (126).

miR-146a has been found to be upregulated in valvular 
tissue from patients with atherosclerosis compared to 
controls (127), whereas in ApoE−/− mice, miR-146a was 
found to be decreased in both monocyte/macrophages 
and miR-146a delivery in ApoE−/−Ldlr(−/−) and Ldlr−/− 
mice decreased atherosclerosis reducing monocyte/
macrophage activation in the absence of plasma lipid 
reduction (128).

This occurs since miR-146a acts as a negative regulator 
of NFKB 1 signaling (128).

Interestingly, miR-146b also was found to be 
upregulated in the aortic plaques of ApoE−/− mice and 
in response to inflammatory cytokines. It was found 
that miR-146b repressed proliferation and migration of  
VSMCs by downregulating BCL2-associated athanogene 
1 (BAG1) and matrix metalloproteinase (MMP)16, 
respectively (129).

Interestingly, in transgenic mice overexpressing TNF 
in the heart, miR-146a levels were increased in cardiac 
ventricular tissue and also in a human cardiomyocyte cell 
line exposed to TNF (130). 

miR-146a targets Fos and thus the Fos-containing 
transcription factor complex the activator protein 1 (AP1), 
which transcribes MMP9. Therefore, miR-146a increase 
downregulates the AP1-MMP9 pathway, whose activation 
is correlated to HF and myocardial dysfunction. Therefore, 
miR-146a has been proposed as a therapeutic tool for 
treating CVD associated with enhanced inflammation in 
the heart (130).

In a recent study, miR-146a was found to be upregulated 
in human hearts in HF patients compared to nonfailing 
ones. A negative correlation was found with small ubiquitin-
like modifier 1 (SUMO1) mRNA that was identified as a 
target of miR-146a. SUMO1 is a positive regulator of the 
sarcoplasmic reticulum Ca2+-ATPase pump (SERCA2A). 
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SERCA2A, in fact, undergoes SUMOylation that confers 
stability and increased activity to SERCA2A, restoring 
cardiac function in both mouse and swine HF models (131).

Thus, miR-146 is involved in psoriasis and CVD, where 
it plays anti-inflammatory roles in atherosclerosis but 
detrimental roles in HF.

miR-143/145

miR143/145 cluster is composed of two co-transcribed 
miRNAs.

It was shown that miR-143 upregulated in PBMCs of 
patients with psoriasis compared to healthy subjects, and 
significantly correlated with PASI (132). Interestingly, 
miR-143 decreased after treatment in psoriatic patients, 
suggesting that miR-143 could serve as an early biomarker 
for psoriasis severity and treatment response (132). 

Indeed, miR-145 is also downregulated in psoriatic LS 
vs healthy skin and inhibits proliferation and chemokine 
secretion in keratinocytes (133).

miR-145 was significantly reduced in plasma of CAD 
patients who received state-of-the-art pharmacological 
treatment compared to healthy subjects (134).

In another study, circulating miR-145 was induced 
in unstable CAD compared with healthy controls. miR-
145 was not modulated in stable CAD (135) and was also 
upregulated in patients with symptomatic vs asymptomatic 
carotid atherosclerosis (136).

miR-145a levels were found to be decreased in the 
aortas of ApoE −/− fed with western diets compared to 
controls and in human carotid atherosclerotic plaques 
compared to segments without plaques (137, 138).

Since miR-145 is highly expressed in VSMC, a VSMC-
specific overexpression was used to determine its role 
in ApoE−/− mice fed with a western diet to induce 
atherosclerosis. miR-145a overexpression reduced plaque 
size, necrotic core and inflammation, whereas fibrous cap 
and collagen content increased, all features associated 
with plaque stability. It was found that miR-145a promotes 
VSMC differentiation toward the contractile phenotype 
via a mechanism that involves downregulation of its target 
Kruppel-like factor 4 and myocardin increase (137, 138).

In keeping with this, overexpression of miR-145 
in the aorta of ApoE−/− mice reduced plaque size and 
decreased proliferation and apoptosis by direct targeting 
of osteoprotegerin (OPG) and KLF5 that are known to 
induce the NFKB1 signaling pathway, therefore reducing 
inflammation, as well (139).

Indeed, it was found that KLF2 induces the 
transcriptional upregulation of the miR-143/145 cluster. 

Extracellular vesicles secreted by KLF2-transduced ECs or 
shear-stress-stimulated ECs are enriched in miR-143/145 
and are able to control gene expression in co-cultured 
VSMCs. Interestingly, extracellular vesicles derived from 
KLF2-expressing ECs reduced atherosclerotic lesion 
formation in ApoE/− mice (140).

Moreover, circulating miR-145 was found to be 
upregulated in MI patients, and miR-145 levels correlated 
with infarct sizes estimated by troponin T release (141). 

miR-143 was shown to be the most abundant miRNA 
released in exosomes by rat cardiomyocytes cultured in 
ischemic conditions. The exosomes released were found 
to improve angiogenesis in matrigel plug assays. Finally, 
intramyocardial delivery of ischemic exosomes induced 
neovascularization following MI (142).

miR-143-145 modulation in psoriasis could be the 
basis of atherosclerosis and CVD in these patients.

Let-7 a/b

Let-7a and b belong to let-7 family of miRNA composed 
of nine isoforms (i.e. let-7a-1, 7a-2, 7a-3, 7b, 7c, 7d, 7e, 
7f-1, 7f-2, 7g, 7i, and miR-98) encoded by 12 different  
genomic loci. 

Interestingly, in the mice model of psoriasis, let-7b was 
also found to be downregulated in keratinocytes. In such 
a model, let-7b overexpression led to the decrease of its 
target IL6, promoting keratinocytes differentiation which 
resulted in improvement of psoriasis (143).

Plasma-derived extracellular vesicles were isolated and 
sequenced in PsA compared to cutaneous psoriasis only. It 
was found that let-7b extracellular levels were significantly 
decreased in PsA patients compared to psoriatic patients, 
suggesting that this miRNA could act as a promising 
biomarker for arthritis development (144).

Interestingly, let-7a also was found to be lower in T cells 
of psoriatic patients vs control and negatively correlated 
with signal transducer and activator of transcription 
3 (STAT3) expression; further, let-7a overexpression 
decreased IFNG in T cells (145).

In human carotid plaque tissues, let-7b was 
downregulated in symptomatic compared to asymptomatic 
atherosclerotic patients. Diabetes is a condition that is 
considered to accelerate the atherosclerosis process, and 
let-7b decreased levels were also confirmed in diabetic 
plaque tissues compared to non-diabetic tissues (146). 
Interestingly, such decreased levels were also confirmed 
in the aortic tissue from diabetic ApoE−/− mice models 
compared to non-diabetic mice (146).
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Interestingly, let-7a was decreased in Ang II-induced 
cardiac hypertrophy in vitro and in vivo, and its 
overexpression attenuated hypertrophy in mice (147).

let-7a downregulated the expression of its target 
Ccalmodulin (CALM) protein that together with Ca2+ 
induces the transcription of the hypertrophic genes (147).

let-7a was found to be downregulated in the 
myocardium of pigs after MI and also in the plasma of 
humans and pigs after MI (148). In this study, a let-7a 
overexpression was shown to be cardiac protective via 
inhibition of TGFBR3-p38 MAPK signaling pathways that 
regulate cardiomyocyte apoptosis (148). 

The aforementioned papers showed that let-7a/b 
decrease seems to play a detrimental role in psoriasis and 
in eliciting CVD. 
miRNA-based treatment of CVDGiven their importance 
in CVD, different miRNAs are currently used in preclinical 
studies and some of them could eventually be included in 
clinical trials. 

This miRNA-based strategy holds good promise and has 
been demonstrated to be effective for hepatitis C therapy, 
where the feasibility of using miRNAs as a therapeutic 
tool is confirmed by the fact that a phase 2a clinical trial 
adopting anti-miR-122 has been completed successfully 
(149). This trial showed that the locked nucleic acid (LNA)-
anti-miRNA is safe, not toxic and well-tolerated.

Different miRNAs modulations have been used in 
preclinical studies to counteract CVD insurgence by 
systemic delivery.

As mentioned earlier, miR-33 inhibition by anti-
miRNA oligonucleotide that targets both miR-33a and 
miR-33b in non-human primates raises plasma HDL 
and lowers VLDL triglyceride levels and is a promising 
strategy for the treatment of dyslipidemias that increase 
CVD (33).

Moreover, systemic delivery of miR-9 mimics 
was shown to reduce isoproterenol-induced cardiac 
hypertrophy in mice and improve cardiac function (150); 
the systemic delivery of an LNA-oligonucleotide targeting 
the entire miR-15 family, which is upregulated in different 
forms of heart disease in both murine and porcine 
cardiac tissue, reduced infarct size and inhibited cardiac 
remodeling in the injured heart (151). Interestingly, the 
injected animals showed no evidence of LNA-associated 
toxicity or histopathologic abnormalities in the heart, 
liver, or kidneys. 

miRNAs inhibition by antagomirs and sponges was 
successfully used in mice; in a cardiovascular setting, the in 
vivo inhibition of miR-133 by infusion of an antagomir or a 
sponge caused marked and sustained cardiac hypertrophy 

in mice, associated with a re-induction of fetal gene 
expression (40).

A drawback of the systemic delivery of miRNA therapy 
is that it targets predominantly the liver, although it has 
also been largely utilized to target the heart, and different 
strategies have been adopted to modulate miRNAs in a 
specific tissue or organ. Specific delivery is one of the most 
important problems due to the lack of clinical trials with 
miRNA-based technology (152).

To circumvent this problem, the delivery of miRNA 
mimics or anti-miRNA in a cardiac-specific or tissue-
specific manner could be performed using serotype-specific 
adeno-associated virus 9 (AAV9) genetically modified to 
express a given miRNA mimic or antimir under a cardiac-
specific or other tissue-specific promoters (153). AAV9 has 
been successfully used to deliver miRNAs to cardiac tissue, 
an additional advantage is that AAVs preferably infect 
nondividing cells, such as cardiomyocytes. Although 
many preclinical and phase I clinical studies have provided 
encouraging results regarding the safety of AAVs in humans, 
the clinical use of AAVs is still a challenge since they can 
induce the host immune response, and the AAV DNA can 
randomly integrate into the host genome. Although it 
occurs at a low rate, it was reported to occur.

Another possibility is minicircle; nonviral vectors 
that lack both the origin of replication and the antibiotic 
selection marker, carrying only short bacterial sequences, 
can be used to overexpress a miRNA. Their small size confers 
greater transfection efficiency, and the lack of bacterial 
backbone creates less immunogenicity and a longer time 
of expression.

Minicircles carrying an miR-210 expression cassette  
were injected intramyocardially in adult mice that 
underwent coronary ligation in order to demonstrate 
that miR-210 overexpression was able to improve cardiac 
function by upregulating angiogenesis and inhibited 
apoptosis (154). 

Many strategies have been developed to ameliorate the 
uptake of nucleic acids into tissues and cells.

In order to facilitate the lipid bilayer crossing of the 
target cell membrane, the oligonucleotide needs to be 
packaged into liposomes or nanoparticles (155).

A class of liposomes, termed 'lipidoid', has been 
developed, showing high levels of specific silencing of 
endogenous gene transcripts (156). Preliminary studies 
with lipidoids tested in animal models (mice, rats and non-
human primates) met the safety and specificity standards. 

Finally, nanotechnology offers an attractive drug 
delivery system, with comparable efficacy and less toxicity 
compared to other vehicles (157). 
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Since in psoriasis, the predominant tissue involved 
is the skin, the topical delivery of miRNA mimics or 
anti-miRNA is easier to achieve, although topically 
applied miRNA-based therapeutics show difficulties in 
penetrating the stratum corneum barrier of the skin. To 
circumvent this problem, the following approaches have 
been used: 

(i) Ultra-deformable liposomes (UDLs) are liposomes 
with augmented skin penetration capability: ethosomes 
and transfersomes (158); (ii) surfactant-ethanol-
cholesterol-osomes (SECosomes) comprising a cationic 
lipid, a helper lipid, cholesterol, a single-chain surfactant 
and ethanol that help to penetrate the skin barrier (159); 
(iii) finally, cell-penetrating peptides (CPPs) that bind 
nucleic acids and facilitate their entry through the skin 
could be used to deliver miRNA (160).

Nowadays, no trials on specific miRNAs are currently 
ongoing in psoriasis. This is probably due to the fact 
that miRNA modulation and regulation during psoriasis 
treatment have only been sparsely studied. 

Further studies on miRNA involved in psoriasis and 
their possible involvement in CVD associated with this 
disease are needed in order to generate an individualized 
miRNA-based treatment of psoriasis. 

Conclusions

Nowadays, miRNAs have been linked to many pathological 
conditions, and it is now clear that molecular circuits exist 
among miRNAs. Thus, the modulation of miRNAs caused 
by a disease in a specific tissue region or in a different tissue 
could either systemically or non-systemically induce a 
deleterious effect that could result in causing successive 
evident comorbidities associated with that disease.

In this review, we summarized those miRNAs that have 
been associated with psoriasis either in the skin and or in 
the blood flow that are known to play a role in CVD, and 
hence, could contribute to the establishment of secondary 
effects of psoriasis that shorten life expectancy.
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