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ABSTRACT Modern SNP genotyping technologies allow measurement of the relative abundance of
different alleles for a given locus and consequently estimation of their allele dosage, opening a new road
for genetic studies in autopolyploids. Despite advances in genetic linkage analysis in autotetraploids,
there is a lack of statistical models to perform linkage analysis in organisms with higher ploidy levels. In
this paper, we present a statistical method to estimate recombination fractions and infer linkage phases in
full-sib populations of autopolyploid species with even ploidy levels for a set of SNP markers using hidden
Markov models. Our method uses efficient two-point procedures to reduce the search space for the best
linkage phase configuration and reestimate the final parameters by maximizing the likelihood of the Markov
chain. To evaluate the method, and demonstrate its properties, we rely on simulations of autotetraploid,
autohexaploid and autooctaploid populations and on a real tetraploid potato data set. The results show
the reliability of our approach, including situations with complex linkage phase scenarios in hexaploid and
octaploid populations.
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Polyploids are organisms with more than two sets of chromosomes.
They are very important in agriculture and play a fundamental role
in evolutionary processes, such as differentiation of species (Soltis
et al. 2014a). The number of sets of chromosomes in an organism is
called ploidy level. These multiple chromosome sets can originate
from the combination of genomes from different, but related spe-
cies, or from duplicated genomes from the same species (Birchler
2012; Comai 2005). In the first scenario, they are called allopolyploids;
in the second, autopolyploids. Polyploid organisms are also character-
ized according to their pattern of inheritance. In general, allopolyploids
exhibit diploid-like (or disomic) segregation, since homologous
chromosomes, or homologs, tend to form bivalents within each

sub-genome. Autopolyploids, however, have more than two homo-
logs per homology group, forming either random bivalents or multi-
valents during meiosis, resulting in polysomic segregation (Sybenga
1975; Soltis et al. 1993; Osborn et al. 2003). Since the molecular
mechanics of polyploid organisms are quite complex, this dichotomy
is often broken, and polyploids can display intermediate modes of
inheritance (Otto andWhitton 2000; Osborn et al. 2003). Throughout
this paper, the term autopolyploid (or autotetraploid, autohexaploid,
etc.) will refer to polyploid organisms that exhibit polysomic
segregation.

Despite advances in genetic studies in autotetraploids, (Mather 1936;
Fisher 1943, 1947; Hackett et al. 2001; Luo et al. 2004, 2006; Wu et al.
2004; Leach et al. 2010; Li et al. 2010; Hackett et al. 2013; Xu et al. 2013;
Rehmsmeier 2013; Zheng et al. 2016), there is still a shortage of statis-
tical methods to address organisms with higher ploidy levels, such as
sweet potato (Kriegner et al. 2003; Arizio et al. 2014; Shirasawa et al.
2017), sugarcane (Wang et al. 2010; Garcia et al. 2013), some orna-
mental flowers and forage crops (reviewed in (Soltis et al. 2014b)). In
this work, we denote as high-level autopolyploids those autopoly-
ploid organisms with ploidy level greater than four. A fundamental
class of statistical methods that have lagged behind in high-level
autopolyploid studies is the construction of genetic maps. A reliable
genetic map is a crucial step in quantitative trait loci (QTL) analysis,
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as well as the assembly of reference genomes and the study of evo-
lutionary processes (Lewin et al. 2009; Luo et al. 2013; Lemmon and
Doebley 2014). Although understanding the concept of genetic
mapping is rather easy, the construction of such maps in high-level
autopolyploids is challenging. Even under bivalent pairing, there
are many possible configurations during meiosis, and the number
of possibilities gets exponentially larger as the ploidy level increases.
Denotingm as the ploidy level, it is possible to find up tom different
alleles for a locus in one individual. Furthermore, if some of those
alleles are not distinguishable, it is necessary to consider the number
of copies of each different allelic form, also known as dosage.

The construction of a genetic map in a full-sib population can be
summarized in five basic steps: i) estimation of pairwise recombination
fractions and associated statistical tests; ii) separation of markers into
linkage groups; iii) ordering ofmarkers within each linkage group using
an optimization technique; iv) parental phasing, recombination frac-
tion updating and likelihood computation (or other objective function)
and v) if the order is optimal, the map is complete, otherwise, return
to step iii. Historically, genetic maps in high-level autopolyploids have
been constructed using only alleles present in one homolog, called
single-dose or simplex markers (Wu et al. 1992; Sorrells 1992). In a
full-sib population, these markers segregate in a 1:1 ratio (if they are
present only in one parent), or in a 1:2:1 ratio (if present in both
parents, also called double simplex). Given this level of simplification,
it is possible to use the five-step procedure coupled with a standard
software suitable for diploid populations. Nevertheless, it is well ac-
cepted that the use of single-dose markers imposes limitations on the
construction of adequate genetic maps. These approaches sub-sample
the genome (Hackett et al. 2013; Garcia et al. 2013), which precludes
further consideration of multiallelic effects in models for QTL map-
ping and subsequent studies. Moreover, there is low statistical power
to detect linkage when markers are in repulsion phase configurations
(Wu et al. 1992; Ripol et al. 1999). Although some authors have addressed
this problem by including multi-dose (or multiplex) markers when con-
structing genetic maps and performing QTL mapping (Ripol et al. 1999;
Doerge and Craig 2000), the limitations on the genotyping technologies at
the time required that the allelic dosage had to be inferred based on
expected segregation rates. Because of the high amount of hidden
information imposed by marker systems on those studies (Wu et al.
1992; Ripol et al. 1999), the estimation of recombination fraction
between multi-dose markers was highly impaired.

Quantitative genotyping technologies for single nucleotide poly-
morphism (SNPs) evaluation have opened the door for further genetic
mapping studies in high-level autopolyploids. It is now possible to
measure the abundance of specific alleles within a locus in a polyploid
genome (Voorrips et al. 2011; Serang et al. 2012; Hackett et al. 2013;
Garcia et al. 2013; Bargary et al. 2014; Mollinari and Serang 2015). This
technology, combined with the genotypic distribution in the population,
makes it possible to infer the allelic dosage by using the ratio between the
abundances of the two alternative alleles (Serang et al. 2012). Once the
dosage of themarkers is estimated, the construction of linkagemaps can
be significantly improved by taking this information into account, as
previously done in autotetraploids by Hackett et al. (2013, 2014).

Genetic linkage maps can be constructed based on two-point
or multipoint estimates of the recombination fraction. Two-point
methods use information on pairs of markers, and even though they
are less computationally demanding than multipoint methods, they
require a higher amount of information in the markers to pro-
vide reliable results. Only recently, using a two-point-based method,
van Geest et al. (2017) published an integrated hexaploid chrysanthe-
mum genetic map using scripts implemented in the R package

polymapR (Bourke et al. 2018). Multipoint approaches, instead,
use information of multiple markers present in a linkage group,
increasing the statistical efficiency of the analysis (Lander and Green
1987; Jiang and Zeng 1997; Mollinari et al. 2009; Leach et al. 2010).
This feature is particularly important in polyploid linkage analysis,
where markers are mostly partially informative. One widely used
procedure to obtain multipoint estimates is the hiddenMarkovmodel
(HMM) (Lander and Green 1987). The construction of the genetic
map using this method provides the estimates of the recombination
fractions between all adjacent markers in a linkage group, as well as
the multipoint likelihood, which has been shown to be an excellent
criterion to evaluate and compare linkage phase configurations and
orders of markers (Mollinari et al. 2009). Leach et al. (2010) presented
a statistical framework in which HMMs were applied to reconstruct
genetic linkage maps, but it was limited to autotetraploids. Recently,
software packages such as polymapR (Bourke et al. 2018), pergola
(Grandke et al. 2017) and netgwas (Behrouzi andWit 2017), have been
developed to build genetic maps in high-level autopolyploids. However,
only polymapR is capable of estimating recombination fractions and
inferring parental linkage phases in outcrossing populations, though it
does not use multipoint procedures to perform those tasks.

The main challenges we address in this paper are the inference of
thehaplotypes of themultiple homologs and themultipoint estimation
of recombination fractions in high-level autopolyploids. Although
Zheng et al. (2016) proposed a probabilistic multilocus haplotype
reconstruction model for autotetraploids considering double re-
duction, this remains as an open question for organisms with higher
ploidy levels. Our method relies on an HMM and is developed for
species with even ploidy levels under random chromosome segrega-
tion (complete polysomic inheritance). We also present a two-point
method which is capable of dealing with hundreds of markers even in
high ploidy level scenarios. Hence, we are proposing solutions for
steps i and iv in high-level autopolyploids. Step ii is straightforward
from step i using clustering algorithms, as proposed by (Van Ooijen
and Jansen 2013). Even though step iii is a challenging task in genetic
mapping, it can be addressed using pairwise recombination fractions
or the resulting likelihood of the Markov model as it has been pro-
posed by several studies (Lander et al. 1987; Buetow and Chakravarti
1987; Doerge 1996; Van Os et al. 2005; Wu et al. 2008; Preedy and
Hackett 2016; Wang et al. 2016). To evaluate our method, and to
show its properties, we rely on simulations of autotetraploid, auto-
hexaploid, and autooctaploid data and on a real tetraploid potato data
set. We also perform a set of hexaploid simulations to compare our
method to the one implemented in polymapR (Bourke et al. 2018).
The R computer codes to reproduce all simulations and analysis are
publicly available.

MATERIALS AND METHODS
In this section, we define the notation used throughout this article and
present the probabilistic model for the gamete formation in autopoly-
ploids. The mathematical derivation of the HMM, including the esti-
mation of themodel parameters, is based on thework of Rabiner (1989),
which presents the hidden Markovian process using tree major ele-
ments, namely, the transition probability function (Equation 6), the
initial state function (Equation 7), the emission probability function
(Equations 8 and 9). In the genetic mapping context, the first connects
adjacent marker loci in function of their recombination fraction,
the second is the prior probability of the genotypes in the mapping
population, and the third connects the observed marker dosage to the
complete multi-allelic hidden genotypic states. While these ideas are
widespread in the genetic mapping literature, for instance in Lander
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and Green (1987); Jiang and Zeng (1997); Hackett and Broadfoot
(2003); Hackett et al. (2013); Leach et al. (2010), here we present a
generalization to any even ploidy level. We avoid using matrix nota-
tion throughout our model derivation since their high dimensional-
ity would precludes the application of HMM techniques in polyploids
with high ploidy level. We conclude this section by explaining the
complexity of estimating linkage phases between markers, presenting
an efficient two-point algorithm that simplifies the problem in a way
that allows the phasing to be inferred using real data.

Notation
Consider a mapping population derived from a cross between two
autopolyploid individuals P and Q with the same ploidy level (full-sib
family). The ploidy level is denoted bym, and can be any even number
greater than zero. Let the vectors Pm

k ¼ fPi
kg and Pm

kþ1 ¼ fPi
kþ1g, and

Qm
k ¼ fQi

kg and Qm
kþ1 ¼ fQi

kþ1g, i ¼ 1;⋯;m, denote the genotype
of two adjacent multiallelic loci k and kþ 1 in P and Q, respectively.
The superscript i indicates one of the possible alleles for the loci, and
each locus has m different alleles in each parent. For example, for a
cross between two autohexaploid individuals, P6

k ¼ fP1
k ; P

2
k ;⋯; P6

kg;
similarly, this can be done for P6

kþ1, Q6
k and Q6

kþ1. All alleles denoted
by the same superscript number are in the same homologs (e.g., P1

k and
P1
kþ1 are in homolog 1, etc). The following assumptions are made to

ensure random chromosome segregation (Muller 1914; Haldane 1930)
and no double reduction (Burnham 1962): i) there is only formation of
bivalents during the meiosis; ii) there is no preferential pairing during
the formation of bivalents; iii) all bivalents have the same recombi-
nation fraction between loci k and kþ 1; iv) bivalents are indepen-
dent; v) there is separation of sister chromatids during meiosis II and
vi) there is no chromatid interference. Consequences of violations of
these assumptions will be addressed later using simulations. Although
each bivalent is composed by a pair of chromosomes with two sister
chromatids each, given assumption vi, we will consider only one sister
chromatid per homolog during the derivation of our model.

Bivalent formation
Bivalent formation occurs during meiosis I (more specifically, at the
pachytene stage of prophase). In diploid cells, there is only one possible
pairingconfiguration: twoduplicatedhomologs fromahomologygroup
pair to form one bivalent. However, in autopolyploid cells, given the
previous assumptions, the expected number of possible pairing config-
urations, i.e., the number of possible bivalent chromosomal pairings for
a given homology group duringmeiosis can be obtained by sequentially
choosing pairs out of m homologs without replacement, divided by all
possible permutations of the chosen pairs

wm ¼ 1
m
2 !

Ym2
i¼1

�
2i
2

�
(1)

The orientation of the bivalents does not affect the expected frequen-
cies of each gamete type, and therefore will not be considered. For
example, as showed by Hackett (2001) in autotetraploids, there are
two bivalents and three possible bivalent configurations: homolog
pair as 1 with 2, and 3 with 4; or, 1 with 3 and 2 with 4; or 1 with
4 and 2 with 3.We denoteC ¼ fcjg, j ¼ 1;⋯;wm a set of all bivalent
configurations for a given ploidy level.

Expected gametic frequency for a given
bivalent configuration
We will present the expected gametic frequencies considering parent
P. Since parent Q undergoes a similar process, it is possible to combine

the expected gametic frequencies to obtain the expected genotypic
frequency in the full-sib population. Each of the bivalents obtained
for a given configuration cj can result in two types of chromosomes
for loci k and kþ 1: parental, which results from bivalents with zero or
any other even number of recombinations between k and kþ 1; and
recombinants, which results from bivalents with any odd number
of recombinations. As presented by Doerge and Craig (2000), the
probabilities of all chromosome types for any single bivalent can
be represented always as

V ¼
2
4 Pr

�
Pik; P

i
kþ1

�
Pr
�
Pik; P

i9
kþ1

�
Pr
�
Pi9k ; P

i
kþ1

�
Pr
�
Pi9k ; P

i9
kþ1

�
3
5 ¼

2
664
12 rk
2

rk
2

rk
2

12 rk
2

3
775

where rk is the recombination fraction between k and kþ 1, i 6¼ i9.
For a given configuration cj, the expected frequencies for all possible
gametes derived from that configuration is

V15⋯5Vm
2

where 5 denotes the Kronecker product of matrices and subscripts
in V indicate the corresponding bivalent. All elements of this product
are of the form

ð12rkÞ
m
22lðrkÞl
2
m
2

where l denotes the number of total recombinant bivalents between
loci k and kþ 1, l 2 f0;⋯;m=2g. From this, we can define the
probability of observing any gamete (for two loci) given a bivalent
configuration cj as

Pr
�
pk; pkþ1

���cj

�
¼

8><
>:

ð12rkÞ
m
22lðrkÞl
2
m
2

if cj is consistent with
	
pk;   pkþ1



0 otherwise

(2)

where vectors pk and pkþ1 denote a subset of
m
2 alleles present in Pm

k
and Pm

kþ1, respectively; fpk; pkþ1g indicates a gamete for loci k and
kþ 1 from parent P. Consistent means that the gamete can be
produced from bivalent configuration cj. Notice that some gam-
etes cannot be obtained from cj once the bivalents are formed.

Since we assume that alleles with the same superscript are
in the same homolog, l can be obtained by a simple examination
of superscripts of elements contained in pk and pkþ1. Consider,
for example, c1 ¼ fð1; 2Þ; ð3; 4Þ; ð5; 6Þg (m ¼ 6, Figure 1). If
one observes pk ¼ fP1

k ; P
3
k ; P

5
kg and pkþ1 ¼ fP1

kþ1; P
4
kþ1; P

6
kþ1g, the

number of recombinant chromosomes is l ¼ 2. Therefore,

PrðfP1
k ; P

3
k ; P

5
kg; fP1

kþ1; P
4
kþ1; P

6
kþ1gjc1Þ ¼

ð12 rkÞðrkÞ2
23 .On the other

hand, PrðfP1
k ; P

2
k ; P

5
kg; fP1

kþ1; P
2
kþ1; P

5
kþ1gjc1Þ ¼ 0, since it is impossible

Figure 1 One possible pairing configuration in an autohexaploid,
namely c1. Pi

k denotes one allele present in homolog i for locus
k in parent P. Notice that some allelic configurations, such as
ðfP1

k ;P
2
k ;P

5
k g; fP1

kþ1;P
2
kþ1;P

5
kþ1gÞ, are impossible to be obtained in this

bivalent pairing. In this case, the homologs containing alleles P1
k and

P2
k will migrate to opposite poles of the cell during meiosis I. There-

fore, P1
k and P2

k will not be present in the same gamete.
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to obtain this gamete from configuration c1, i.e., it is not consistent
with c1.

Expected gametic frequency unconditional to
bivalent configurations
In reality cj is unknown, thus the conditional probability given by Equa-
tion (2)mustbe considered forall possiblecj. Theprobabilityof observing
a gamete fpk; pkþ1g, unconditional to cj, can be expressed as

Pr
�
pk;   pkþ1

� ¼Xwm

j¼1

Pr
�
pk;   pkþ1

���cj

�
Pr
�
cj

�
(3)

It is important to notice that only a subset ofC is consistent with the
observed gamete, and consequently Prðpk; pkþ1

���cjÞ. 0 only for some
cj’s. Figure 2 shows a graphical representation of Equations 2 and
3 for autohexaploid gametes.

The probability of observing a specific gamete is always the same for
each cj in this consistent subset (Equation 2). Therefore, under random
pairing (assumption ii), our task reduces to finding the number of ele-
ments in this subset that are consistent with the observed gamete and
multiply Prðpk; pkþ1

���cjÞPrðcjÞ by this number. The result is the prob-
ability of observing a gamete unconditional to the bivalent configuration.

For every gamete, l can change from zero to m=2 recombinant
homologs. The observed gamete is the result of homologs that migrate
to one pole of the cell at anaphase I with a subsequent migration to
opposite poles at anaphase II. Since we are assuming that there is
separation of sister chromatids during anaphase II, if l ¼ 0 (all
chromosomes are of parental type), there is no information about
the pairing configuration of the homologs that migrate to the oppo-
site pole of the cell. In this situation, there are

�
m
2

�
! possible pairing

configurations, and the number of possiblecj that can produce gametes
with l ¼ 0 is

�
m
2

�
!. Therefore, for l. 0, there are

�
m
2 2 l

�
! possible

pairing configurations of parental chromosomes. For the remaining
l recombinant chromosomes, the number of possible pairing config-
urations is l!. Thus, the total number of possible pairing configura-
tions that can produce a specific gamete is l!

�
m
2 2 l

�
!. This is precisely

the number of elements in the subset of C consistent with the
observed gamete. Given the assumption of no preferential pairing
during the formation of bivalents, PrðcjÞ ¼ 1

wm
, the probability of a

gamete fpk; pkþ1g, unconditional to cj, can be simplified to

Pr
�
pk; pkþ1

� ¼ l!
�
m
2 2 l

�
!

wm

ð12rkÞ
m
22lðrkÞl
2
m
2

(4)

Map reconstruction via hidden Markov model
The construction of a genetic map involves the estimation of the genetic
distance and order betweenmarkers within linkage groups. If the origin
of the haplotypes (i.e., linkage phase) for the parents of the mapping
population is unknown, it also needs to be estimated. For several years,
hidden Markov models have been proven to be an excellent avenue for
obtaining these estimates (Lander and Green 1987; Jiang and Zeng
1997;Mollinari et al. 2009; Leach et al. 2010). Themultipoint likelihood
obtained using HMMs is employable as a criterion to compare marker
orders and judge which one is best, and also to provide a reliable
estimation of recombination fraction and linkage phases. (Rabiner
1989) defines an HMM as a generative process composed of three
well-defined probability distributions: transition, initial state and
emission. In genetic mapping context, the transition probability dis-
tribution is defined as the probability of having a particular genotype

Figure 2 Graphical representation of Equations 2 and 3 for autohexaploid gametes. The first 15 tables represent the gametic probabilities given
different bivalent configurations c: (Equation 2). The rows and the columns indicate gametic configurations for loci k and k þ 1, respectively. For
simplification, only the superscripts of the gametic configurations were presented. For example, row 123, column 123, represent the gamete
ðfP1

k ;P
2
k ;P

3
k g; fP1

kþ1;P
2
kþ1;P

3
kþ1gÞ. Colored cells indicate the probability of gametic configurations consistent with the bivalent configuration c:. The

color scale indicates the number of recombinant bivalents associated to the gametic probability varying from 0 (dark blue) to 3 (light blue). Blank cells
indicate non-consistent configurations. The far right full table represents the sum over all c configurations, weighted by their probability (Equation 3).
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at position kþ 1, given the genotype at position k. Using Equation (4)
the gametic transition probabilities Prðpkþ1

��pkÞ, or the conditional
probability of a gamete genotype at locus kþ 1 given the gamete
genotype at locus k, is simply

Pr
�
pkþ1

��pk� ¼ Pr
�
pk; pkþ1

�
Pr
�
pk
�

Under random chromosome segregation, both pk and pkþ1 can have 
m
m
2

!
different genotypes. LetQm

P ¼ fumP;ig, i ¼ 1;⋯;

 
m
m
2

!
denote

all possible genotypes that pk can assume for locus k. Also, assume
that genotypes in Qm

P are arranged according to the lexicographical
order of their superscripts. For example, in an autotetraploid,
Q4

P ¼ fðP1
k ; P

2
kÞ; ðP1

k ; P
3
kÞ; ðP1

k ; P
4
kÞ; ðP2

k ; P
3
kÞ; ðP2

k ; P
4
kÞ; ðP3

k ; P
4
kÞg for lo-

cus k. After some simplifications (see Supplementary Information,
File S1) the transition probability, i.e., the conditional probability of
a gametic genotype umP;i in locus kþ 1 given the gametic genotype umP;i9
in locus k, is

Pr
�
pkþ1 ¼ umP;i9

��pk ¼ umP;i

�
¼ ð12rkÞ

m
22lðrkÞl0

@m
2

l

1
A

(5)

where i; i9 2

8><
>:1;⋯;

 
m
m
2

!9>=
>;. The initial state and the emission

probability distributions will be addressed in the next section
(Equations 7 to 9).

Including information from both parents
Any given individual in a full-sib population is formed by the union of

gametes from both parents, P and Q. Each parent can form

 
m
m
2

!

different gametes for locus k. Since the formation of gametes in both
parents is independent, the genotypic transition probability distribution
can be written as

Pr
�
Gmkþ1;j9

���Gmk;j� ¼ Pr
�
pkþ1 ¼ umP;i9

��pk ¼ umP;i

�
Pr
�
qkþ1 ¼ umQ;h9

��qk ¼ umQ;h

�

¼ ð12rkÞm2lP2lQ ðrkÞlPþlQ0
@m

2

lP

1
A
0
@m

2

lQ

1
A

(6)

where Gm
k;j denotes the genotype of an individual derived from the

union of gametes umP;i and umQ;h at locus k. The same reasoning applies

to Gm
kþ1;j9; i; i9; h; h9 2

(
1;⋯;

 
m
m
2

!)
, j ¼ ði2 1Þ

 
m
m
2

!
þ h and

j9 ¼ ði92 1Þ
 
m
m
2

!
þ h9. lP and lQ denote the number of recombinant

bivalents between loci k and kþ 1 in parents P and Q, respectively.

Let gm ¼
 
m
m
2

!2

denote the number of possible genotypes derived

from the cross between individuals P and Q. For simplification and

without loss of generality, let tkðj; j9Þ ¼ PrðGm
kþ1;j9

���Gm
k;jÞ. For a com-

prehensive autotetraploid example of the transition probabilities

(similar to that presented by Hackett (2001)) and the indexation used
in Equation 6, see Table S3.8, File S3 in Supplementary Information.

Given a ploidy level m and a recombination fraction rk, the only
information required to obtain tkðj; j9Þ in Equation (6) is lP and lQ.
Since the genotypes in Qm

P and Qm
Q are arranged according to the

lexicographical order of their superscripts, it is possible to obtain
ðlP; lQÞ for any given pair ðj; j9Þ using the algorithm presented in
Supplementary Information, File S2. Although the number of pos-
sible transitions between positions k and kþ 1 is ðgmÞ2, which can
be a very large number even for modest ploidy levels, it is possible
to obtain the transition between any specific genotypes in j and j9
without computing the entirety of the transition space.

The initial state distribution is the probability of observing a
specific genotype. Given the assumption that there is no prefer-
ential pairing during the formation of bivalents, a uniform probability
density function can be employed as the initial state probability
function

gj ¼ Pr
�
Gm
1;j

�
¼ 1

gm
; j 2 	1;⋯; gm



(7)

To this point, both transition and initial state distributions consider
different allelic variants for all m homologs in both parents. This
scenario can only be achieved when using fully informative markers.
In reality, autopolyploid species may have the same allelic variant in
some homologs. Besides, even if a particular locus have different
allelic form in all homologs, modern genotyping platforms are usually
capable of detecting polymorphisms at the nucleotide level (SNPs),
which are essentially biallelic. Due to this lack of identity between the
observed data and the full transition space, we make use of the emis-
sion function, which is defined as the probability of observing a mo-
lecular phenotype given a genotype Gm

k;j.
The detection of the allelic variants inmodern genotyping platforms

is based on the abundance of different alternative nucleotides. In the
autopolyploid setting, this can be translated as the dosage of a SNP at a
specific locus. The dosage of a SNP can be estimated using the ratio
between the abundance of its two allelic forms. Several methods were
proposed to perform this task including (Voorrips et al. 2011), (Serang
et al. 2012) and (Bargary et al. 2014). Here we introduce a biallelic
derivation of the emission probability distribution. Although the func-
tion presented here use biallelic information, other distributions can be
derived for partial informative multiallelic marker systems following
the same reasoning.

Let dkP; d
k
Q 2 f0;⋯;mg denote the observed dosage of one alle-

lic form in locus k for parents P and Q, respectively. The choice of
the allelic form denoted by dkP is arbitrary, as long as the same
allelic form is used in dkQ. The dosage observed in parent P can

be originated from alleles present in dkP of the m homologs. Let

fk
P ¼ fuk

P : uk
P4Pm

k ;#fuk
Pg ¼ dkPg denote a set of size

�
m
dkP

�
con-

taining all possible subsets in Pm
k that originate the observed dos-

age dkP . The operator #f:g is the cardinality of a set. The same
reasoning applies for fk

Q. For instance, in an autotetraploid, if d
k
P ¼ 3,

the three doses present in locus k can be derived from four distinct
subsets fk

P ¼ fðP1
k ; P

2
k ; P

3
kÞ; ðP1

k ; P
2
k ; P

4
kÞ; ðP1

k ; P
3
k ; P

4
kÞ; ðP2

k ; P
3
k ; P

4
kÞg.

Given two particular subsets uk
P and uk

Q in fk
P and fk

Q, each one
of the gm genotypic states in the full transition space can be associated
to a dosage. The observed dosage O associated to the j-th state is
obtained by counting the number of alleles present in the intersection
between the parental allelic set ðuk

P [ uk
QÞ and Gm

k;j. Thus, the emission
function can be defined as
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bjðOÞ ¼ Pr
�
O
���Gm

k;j;u
k
P;u

k
Q

�
¼
8<
:

12 e if O ¼ dðk; jÞ
e

m
otherwise

(8)

where dðk; jÞ ¼
���ðuk

P [ uk
QÞ \ Gm

k;j

��� and e denotes the global geno-
type error rate. In addition to the point estimate of the dosage, the
genotyping calling methods cited above also provide the probability
distribution of the dosages for a particular marker for all individuals of the
biparental population. If this information is available, a more general
emission function can be derived. Instead of modeling a global error rate
e, we use the prior information provided by the genotyping calling pro-
cedure. Let pk ¼ fpk

i gð1·mþ1Þ denote the probability distribution vector
associated to the dosages 0;⋯;m at position k for a particular individual

in the biparental population. For example,pk ¼
�
0; 16;

2
3;

1
6; 0

�
denotes a

tetraploid individual with probabilities 1
6,

2
3 and

1
6 of having one, two and

three doses, respectively, and zero for the remaining ones. Then, the
emission probability function can be written as

bjðOÞ ¼ Pr
�
O
���Gm

k;j;u
k
P;u

k
Q;pk

�
¼ pk

dðk;jÞþ1 (9)

In this case, the observation O can be any dosage from 0 to m and the
information about the genotypes will be contained in the probability
distribution of the dosages pk. Thus, the probability of observing any
dosage given a genotype Gm

k;j associated to a particular dosage dðk; jÞ can
be obtained by simply assessing the corresponding value in the proba-
bility distribution provided by the genotype calling procedure. Notice
that Equation 8 can be reduced to Equation 9 using the appropriatepk.
For example, in autotetraploids, when the observed dosage for locus k is

one, O ¼ 1, pk ¼
n

e
m; 12 e; em;

e
m;

e
m

o
. Moreover, for missing values, it

is possible to use the probability distribution of the genotypic classes
under polysomic segregation, as presented by Serang et al. (2012).

Multipoint likelihood and the estimation of
recombination fraction
Suppose there are zmarkers in a homology group in a known order
represented by M1;⋯;Mk;⋯;Mz . Let r ¼ ðr1;⋯; rk;⋯; rz21Þ de-
note the recombination fraction vector between all marker intervals
in this sequence. Also, assume linkage phase configurations in par-
ents P and Q denoted respectively by FP ¼ ðu1

P;⋯;uk
P;⋯;uz

PÞ and
FQ ¼ ðu1

Q;⋯;uk
Q;⋯;uz

QÞ. The sequence of observations for the z
markers is denoted by ðO1;⋯;Ok;⋯;OzÞ and its underlying prob-
ability distributions are denoted by P ¼ ðp1;⋯;pk;⋯;pzÞ. The
likelihood of M1;⋯;Mk;⋯;Mz can be obtained using Equations
(6), (7) and (9) following the classical forward procedure (Rabiner
1989). Let akðjÞ ¼ PrðO1;⋯;Ok;Gm

k;jjr;FP;FQ;PÞ denote the prob-
ability of the partial observation sequence ðO1;⋯;OkÞ and genotype
Gm
k;j, j 2 f1;⋯; gmg given the sequence of recombination fractions r,

the linkage phase configurations FP and FQ and the probability
distributions for the sequence of observations P. The forward pro-
cedure follows the steps below:

1. Initialization:

a1ðjÞ ¼ gjbjðO1Þ; j ¼ 1;⋯; gm (10)

2. Induction:

akþ1ðj9Þ ¼
"Xgm

j

akðjÞtkðj; j9Þ
#
bj9ðOkþ1Þ (11)

where k ¼ 1;⋯; z2 1 and j9 ¼ 1;⋯; gm

3. Termination:

PrðO1;⋯Ozjr;FP;FQ;PÞ ¼
Xgm
j¼1

azðjÞ (12)

Then, the likelihood of the model is defined asYn
i¼1

Pr
�
O1;i;⋯;Oz;ijr;FP;FQ;Pi

�
(13)

where n is the number of individuals in the full-sib population,
O1;i;⋯;Oz;i is the sequence of marker observations for individual i
and Pi is a ðmþ 1Þ· z matrix where the k-th column denotes the
probability distributions associated to the marker Mk, individual i.
The multipoint maximum likelihood estimate of r can be obtained
using the forward-backward procedure coupled with the EM algorithm
(Rabiner 1989). For the backward procedure, consider the variable
bkðjÞ ¼ PrðOkþ1;⋯;Oz

���Gm
k;j; r;FP;FQ;PÞ as the probability of the

partial observation sequence from kþ 1 to z, given the genotype Gm
k;j,

the recombination fraction vector r, the linkage phase configurations
FP and FQ and the probability distributions for the sequence of ob-
servations P. The solution to bkðjÞ was also described by (Rabiner
1989) as follows:

1. Initialization:

bzðjÞ ¼ 1;   j ¼ 1;⋯; gm (14)

2. Induction:

bkðjÞ ¼
Xgm
j9

tkðj; j9Þbj9ðOkþ1Þbkþ1ðj9Þ (15)

where k ¼ z2 1; z2 2;⋯; 1 and j ¼ 1;⋯; gm
To estimate the recombination fraction for all intervals in the marker
sequence we need to define jkðj; j9Þ as the probability of state Gm

k;j at
position k and state Gm

kþ1;j9 at position kþ 1 given the sequence of
observations O1;⋯Oz and their underlying probability distributions
P, the recombination fraction vector r and the linkage phase config-
urations FP and FQ

jkðj; j9jrÞ ¼ Pr
�
Gm
k;j;Gm

kþ1;j9jO1;⋯Oz;P; r;FP;FQ

�

                        ¼ akðjÞtkðj; j9Þbj9ðOkþ1Þbkþ1ðj9ÞPgm
j¼1

Pgm
j9¼1

akðjÞtkðj; j9Þbj9ðOkþ1Þbkþ1ðj9Þ
(16)

The recombination frequency rk can be estimated through an iterative
process using

rsþ1
k ¼

Xn
i¼1

Xgm
j¼1

Xgm
j9¼1

jkðj; j9jrsÞfðj; j9Þ
n

(17)

where jkðj; j9jrsÞ is calculated for individual i, fðj; j9Þ ¼ ðlPþlQÞ
m is the

proportion of recombinations between markers k and kþ 1 for
individuals with genotypes Gm

k;j and Gm
kþ1;j9 and rs is the vector of

recombination fractions in the iteration ðsÞ and rsþ1 is the updated
recombination fraction vector (Broman and Sen 2009).

Estimation of linkage phase
Let the Cartesian product f1

P ·⋯·fk
P ·⋯ ·fz

P ¼
fðu1

P;⋯;uk
P;⋯;uz

PÞ
��ui

P 2 fi
P; i ¼ 1;⋯; zg denotes a set contain-

ing all possible linkage phase configurations in parent P. Also, let
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F ¼ fFug ¼ ðf1
P · ⋯ · fk

P ·⋯·fz
PÞ · ðf1

Q ·⋯·fk
Q ·⋯ ·fz

QÞ,
u ¼ 1;⋯;

Qz
k¼2

�
m
dkP

��
m
dkQ

�
, denote a set containing all possi-

ble linkage phase configurations in both parents. The probability
of the linkage phase configurations can be obtained using Bayes’
rule

PrðFujO;P; rÞ ¼
Qn
i¼1

Pr
�
O1;i;⋯;Oz;ijr;Pi;F

u�PrðFuÞ
P

Fu2F

Qn
i¼1

Pr
�
O1;i;⋯;Oz;ijr;Pi;F

u�PrðFuÞ

(18)

where O is an array containing the observation for z markers in n
individuals, and P is the underlying probability distribution for all
marker observations. Since the prior probability PrðFuÞ can be as-
sumed to be uniform, the posterior probability is proportional to the
likelihood of the model, which can be used to select the best linkage
phase configuration. Depending on the dosage and number of
markers, some of these configurations are equivalent and will result
in the same likelihood. The search space for the best linkage phase
configuration can be unwieldy depending on the ploidy level, dos-
age and number of markers. Also, the transition space on the HMM
gets larger as the ploidy level increases. To circumvent these prob-
lems, we propose a very efficient two-point procedure to reduce the
search space for linkage phases. With the estimates in hands, it is
possible to compare two-point likelihoods of alternative linkage
phase configurations, eliminating those that do not meet a given
threshold. The remaining configurations will be evaluated using the
multipoint approach. The adequate threshold level will be discussed
in the Simulations section.

Two-point algorithm for high-level autopolyploids
When the linkage analysis is conducted only between twomarkers (two-
point analysis), the information contained in these markers does not
propagate into the rest of the chain. Thus, based on the dosage and
linkage phase configuration of the markers involved in the analysis, the
gm genotypic states present in the full transition space can be collapsed
into a small number of states, and a straightforward likelihood function
can be derived. It is worthwhile to mention that the estimates obtained
using the two-point procedure are the same as those obtained
using the multipoint algorithm for two markers. However, the two-
point computation is extremely faster.

Consider a biallelicmarker in an autopolyploid biparental cross with
ploidy m. The number of possible genotypic states in the progeny for
a given locus at position k is uðdkPÞ þ uðdkQÞ þ 1, where the operator

uðxÞ ¼ kx2 m
2

���2m
2

��� and j:j denotes module. For example, in an auto-

hexaploid biparental cross, if the dosage of the marker at position k in
parent P is two (dkP ¼ 2) and in parentQ is three (dkQ ¼ 3), the number
of possible genotypic classes expected in the progeny is six. Depending
on the linkage phase configuration, each of the gm genotypic states in
the full transition space corresponds to one of these expected genotypic
classes, as presented in the emission function (Equations 8 and 9).
Thus, in the previous example, all the gm states could be collapsed into
six different classes. To perform this reduction of dimensionality, let
Dm

k 2 f0;⋯;mg denote one of the possible genotypes based on the
observed dosage of one individual in the progeny of an autopolyploid
biparental cross for position k with ploidy m. The joint probability of
Dm

k and Dm
k9, for a given genotypic configuration at positions k and k9

can be written as

Pr
�
Dm

k ;Dm
k9

��uk
P;u

k
Q;u

k9
P ;u

k9
Q

�
¼
X
j2Tk

X
  j92Tk9

Pr
�
Gm
k9;j9

���Gm
k;j

�
Pr
�
Gm
k;j

�
(19)

where Tk ¼ fjjdðk; jÞ ¼ Dm
k   ; j ¼ 1;⋯; gmg and dðk; jÞ was defined

in Equation 8; the same applies to Tk9. Since in a two-point analysis
the probability distribution of the genotypic states in locus k can be
assumed to be uniform, i.e., PrðGm

k;jÞ ¼ 1
gm
, Equation (19) can be re-

written as a sum of weighted terms from Equation (6)

Pr
�
Dm

k ;Dm
k9

���rk;uk
P;u

k9
P ;u

k
Q;u

k9
Q

�
¼
Xm

2

lP¼0

Xm
2

lQ¼0

zTk;Tk9
ðlP; lQÞ 

·
ð12rkÞm2lP2lQ ðrkÞlPþlQ0

@m
2

lP

1
A
0
@m

2

lQ

1
A

(20)

where

zTk;Tk9
ðlP; lQÞ ¼ 1

gm

X
j2Tk

X
  j92Tk9

hðj; j9; lP; lQÞ

hðj; j9; lP; lQÞ is 1 if ðj; j9Þ corresponds to ðlP; lQÞ according to the
procedure described in Supplementary Information, File S2, and
zero otherwise. Equation 20 can be expressed in matrix form as

Auk
P ;u

k9
P ;u

k
Q;u

k9
Q
ðrkÞ ¼

�
Pr
�
Dm

k ¼ i2 1;Dm
k9 ¼ j2 1jrk;uk

P;u
k9
P ;u

k
Q;u

k9
Q

�
i;j

�
(21)

where Auk
P ;u

k9
P ;u

k
Q ;u

k9
Q
ðrkÞ is a ðmþ 1Þ· ðmþ 1Þ matrix. Yet, in a two-

point analysis with biallelic markers, the linkage phase configuration
can be summarized in an ordered pair ðwk;k9

P ;wk;k9
Q Þ indicating the

number of homologs that share allelic variants for loci k and k9 in
parents P and Q, respectively. For a given pair ðuk

P;u
k9
P Þ,

wk;k9
P ¼ #fxkP \ xk9P g, where xkP and xk9P denote the set of homologs

inherited by parent P in positions k and k9, which can be assessed
using the superscripts in uk

P and u
k9
P .#f:g indicates the cardinality of

the set. Notice that uk
P and uk9

P can assume several linkage phase
configurations resulting in the samewk;k9

P . LetFk;k9
P ¼ fk

P ·f
k9
P denote

a set containing all possible pairs ðuk
P;u

k9
P Þ for aup given pair ðdkP; dk9P Þ.

In this set, there are minfuðdkpÞ; uðdk9p Þg þ 1 partitions, each one

corresponding to a different wk;k9
P . Figure 3 shows an example of

Fk;k9
P for ðdkP ¼ 2; dk9P ¼ 2Þ in an autotetraploid homology group.

The size of the set is 36, and it can be subdivided into three partitions
where wk;k9

P ¼ 2, wk;k9
P ¼ 1 and wk;k9

P ¼ 0.
In a two-point context, the likelihood function derived from any of

the configurations belonging to the same partition (same wk;k9
P ) will

be the same. Thus, any of them can be used to obtain the likelihood
function for a given wk;k9

P . Let ðuk
P;u

k9
P Þ

�
denote one of the possible

pairs ðuk
P;u

k9
P Þ that correspond to wk;k9

P . The same reasoning applies to
parent Q. Without loss of generality, the two-point likelihood function
of biallelic observed molecular phenotypes for markers k and k9 given
wk;k9
P and wk;k9

Q is

L
�
rk
���wk;k9

P ;wk;k9
Q

�
¼
Yn
i¼1

pkAðuk
P ;u

k9
P Þ� ;ðuk

Q ;u
k9
QÞ� ðrkÞ

�
pk9
�T

(22)

where n is the number of individuals and T denotes transposition of a
vector. In Equation (22), rk can be estimated using iterative proce-
dures such as EM or Newton-Raphson. As in Equation (18), it is
possible to list all linkage phase configurations and evaluate them
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based on their likelihood. Here we use the LOD Score (base-10 log-
arithm of likelihood ratios) in relation to the highest likelihood. Thus,
models with high likelihoods will yield LOD Scores close to zero. We
also use the LOD Score to assess the evidence for linkage between the
two markers using the ratio between the model under Ha : r ¼ r̂ and
under the null hypothesis of no linkage Ho : r ¼ 0:5, given a linkage
phase configuration.

As previously shown, it is possible to enumerate all linkage
phase configurations for parent P using the Cartesian product
f1
P ·f

2
P ·⋯ ·fz

P . To reduce this Cartesian space based on two-point
analysis, we add a restriction where all pairs ðuk

P;u
k9
P Þ in a sequence

of configurations ðu1
P;⋯;uz

PÞ must be contained in Fk;k9
P ðhÞ, where

Fk;k9
P ðhÞ is a subset of all partitions in Fk;k9

P in which the associated
LOD Score is smaller than h. Thus, a reduced subset of linkage phases
in parent P based on two-point analysis can be obtained using

FPðhÞ ¼
n�

u1
P;⋯;uz

P

����ui
P 2 fi

P∧
�
uk
P;u

k9
P

�
2 Fk;k9

P ðhÞ;

"  k; k9 2 ð1;⋯; zÞ; k. k9
o (23)

It is important to note that it is not necessary to represent the whole
Cartesian space fFPg to restrict the linkage phase configurations
to the condition ðuk

P;u
k9
P Þ 2 Fk;k9

P ðhÞ. This procedure can be done
through the sequential addition of markers from M1 to Mz . For each
marker Mk9 added to the end of the chain, the ordered pair ðk; k9Þ,
k9 ¼ 2;⋯; z and k ¼ k92 1;⋯; 1, is evaluated and only linkage
phase configurations that meet the condition ðuk

P;u
k9
P Þ 2 Fk;k9

P ðhÞ
"k 2 fk92 1;⋯; 1g are considered.

Someof the configurations selectedusing thepreviousprocedure can
be equivalent once they are products of a permutation of the same set of

homologs. In order to remove this redundancy, let each one of the
selected configurations be represented as a binarymatrix of dimensions
ðm · k9Þ such as

Hu
k9 ¼

	
hi;j


ðm·k9Þ ¼

�
1 if Pij 2 uj

P
0 otherwise

(24)

where u 2 f1;⋯;Ug, U is the number of selected linkage phase con-
figurations, and k9 indicates that Mk9 was the last marker inserted in
the chain. The rows of matrix Hu

k9 represent the homologs for the
u-th linkage phase configuration with the insertion of the k9-th
marker at the end of chain; 1 denotes the presence of an allelic var-
iation, and 0 denotes its absence. If a matrix Hk9 could be obtained
from amatrixHu9

k9 just by permuting the rows (permuting the order of
the homologs), these two linkage configurations yield the same likeli-
hood. Thus, one of the configurations should be excluded from con-
sideration. The same reasoning applies to parent Q. This procedure
can be done recursively until all redundancy is eliminated. The
reduced linkage phase configurations search space considering
both parents is obtained using FðhÞ ¼ FPðhÞ·FQðhÞ, such as
#fFðhÞg � #fFg, combined with the redundancy elimination
for homology groups. This sequential procedure results in a set of
linkage phase configurations containing markers up toMk9, which are
evaluated using the HMM likelihood. A LOD Score threshold in re-
lation to the most likely configuration is assumed to determine which
configurations should be taken into consideration in the next round
of marker inclusion (Figure 4). Additionally, it is possible to limit the
two-point search space reduction to a window of SNPs in the terminal
part of the chain to speed up the phasing process. Finally, with all
markers inserted, the multipoint likelihood of the whole map is used

Figure 3 Example of Fk;k9
P ¼ fk

P ·f
k9
P for an autotetraploid homology group with observed dosages dk

P ¼ 2 and dk9
P ¼ 2 homologs sharing alleles.

In this case, fk
P denotes a set of size six, containing all possible subsets of size two in P4

k ¼ fP1
k ;P

2
k ;P

3
k ;P

4
k g. The same reasoning applies to fk9

P . The
horizontal bars represent homologs forming a homology group and the dots represent allelic variations of a biallelic marker. The number below
each homology group represents the number of homologs that share allelic variants (wk;k9

P ). This defines three partitions: wk;k9
P ¼ 2, wk;k9

P ¼ 1 and
wk;k9

P ¼ 0. Notice that, from a homology group within a specific partition, it is possible to obtain the same linkage phase configuration observed in
another homology group within that partition by permuting the its homologs.
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to find the best configuration among the remaining ones, and the
recombination fractions are reestimated. To demonstrate the me-
chanics of the two-point analysis coupled with the multipoint
procedure, a simple example is presented in Supplementary Informa-
tion, File S3.

Data availability
All the methods and procedures described here are available in the R
package MAPpoly, which is freely available from https://github.com/
mmollina/mappoly. R scripts to perform the simulations and the potato
map construction presented in this article can be accessed at https://
github.com/mmollina/Autopolyploid_Linkage. The tetraploid potato
data set is available through the Solanaceae Coordinated Agricultural
Project at http://solcap.msu.edu/potato_infinium.shtml. Supplemental
material available at FigShare: https://doi.org/10.25387/g3.8218325.

RESULTS

Simulations

Simulation 1 - local performance under random bivalent pairing:
the aim of this simulation study was to evaluate the local performance
of the algorithm considering three ploidy levels (m ¼ 4, m ¼ 6 and
m ¼ 8) under the mapping model assumptions (i.e., random pairing
and bivalent formation). To be in accordance with molecular data that
have been made available through sequence technologies, we simulated
bi-allelic markers that can be observed in terms of dosage in parents
and progeny. Three different linkage phase scenarios were simulated.
In scenario A, for eachmarker, one of the allelic variants was assigned
to the first homolog in the homology group and the remaining var-
iants of the same type were assigned to the subsequent homologs. In
scenario B, the allelic variant was randomly assigned to one of the first
m
2 homolog and the remaining were assigned to the subsequent ho-
mologs. In scenario C, the allelic variants were randomly assigned to
them homologs. Thus, it is expected an increasing difficulty to detect
recombination events from scenario A, where the allelic variants were
concentrated in the same homologs, to scenario C, where they were
randomly distributed.

For each combination of ploidy level and linkage phase scenario,
we simulated five different parental haplotypes. In total, 45 parental
configurations were considered (3· 3 · 5, Supplementary Information,
Figure S4). For autotetraploid and autohexaploid configurations, we
simulated 1000 full-sib populations. For autooctaploids, this number
was reduced to 200 due to the high demand of computer processing
required to reconstruct suchmaps. Each population was comprised of
200 individuals with one linkage group containing 10 markers posi-
tioned at a fixed distance of 1 centimorgan (cM) between them. For
each combination, the percentage of correctly estimated linkage phase
configuration in each parent was recorded. Also, for the cases where
the linkage phases were correctly estimated, we calculated the average
Euclidean distance between the distances of the estimated and simu-

lated maps using

(
ðd̂2 dÞT ðd̂2dÞ

z21

)21
2

where d̂ is the vector of dis-

tances for a estimatedmap, d is the vector of distances for the simulated
map, z is the number of markers and T indicates vector transposition.
For example, a value of 1 cM indicates that the maps differ 1 cM in
average from each other (Mollinari et al. 2009). We used the sequential
two-point procedure to reduce the search space assuming that linkage
phase configurations with associated LOD, 3:0 should be investigated
using HMMmultipoint strategies (h ¼ 3). For the remaining config-
urations evaluated using HMM, we kept those with LOD, 10:0 to be
evaluated in the next round of marker insertion.

Simulation 2 - chromosome-wide performance under preferential
pairing and multivalent formation: In this simulation study, we
evaluated the performance of the algorithm in dense maps, allowing
for multivalent formation and preferential pairing.We used Scenario C
from the previous study as a template to simulate five tetraploid and five
hexaploid parental haplotypic configurations, each one comprising
200 equally spaced markers with a final length of 100.0 cM (Supple-
mentary Information, Figure S5). For each parental configuration, we
simulated 200 full-sib populations of 200 offspring considering a
combination of three levels of preferential pairing (0.00, 0.25 and
0.50) and three levels of cross-like quadrivalent formation proportion

Figure 4 Example of linkage phase configuration estimation using sequential search space reduction and HMM evaluation. Only one parent is
presented. The two-point search reduction is composed of two parts: the first one evaluates the LOD Scores obtained through pairwise
recombination fraction likelihoods. The second detects equivalent configurations by performing all possible permutations of the homologs. The
remaining configurations are evaluated using the HMM-based likelihood. In the first step, linkage phase configurations of M1 and M2 are
evaluated using the two-point analysis. Color shades indicate different linkage phase configurations provided by the two-point analysis. In this
example, there are two possible linkage phases represented by two shades of red. In the second step, we evaluate the linkage phases between
markers M3 and M2, and M3 and M1. Configurations with LOD Scores smaller than h are maintained to be evaluated by HMM. There are two
possible linkage phases given a certain h, represented by two shades of blue. These two configurations are combined with the configurations
from the previous step, resulting in four configurations evaluated using HMM likelihood. Given a likelihood threshold, only configurations 1 and
4 are eligible for the next step. The same reasoning applies for the remaining markers. A final linkage phase configuration is obtained after
inserting the last marker and choosing the one that yields the highest HMM-based likelihood.

Volume 9 October 2019 | Linkage Analysis in Autopolyploids | 3305

https://github.com/mmollina/mappoly
https://github.com/mmollina/mappoly
https://github.com/mmollina/Autopolyploid_Linkage
https://github.com/mmollina/Autopolyploid_Linkage
http://solcap.msu.edu/potato_infinium.shtml
https://doi.org/10.25387/g3.8218325


(0.00, 0.25 and 0.50) with the position of the pairing partner switch
varying across simulations. No hexavalents were simulated in
this study. For autohexaploids, the multivalent configurations were
always composed by a cross-like quadrivalent plus a bivalent. The
centromere was positioned at 20.0 cM from the beginning of the
chromosome (subtelocentric centromere with arms ratio 1:4) to
study the effect of the double reductionwhich ismore pronounced at
the end of both chromosome arms. All simulations were conducted
using the software PedigreeSim (Voorrips andMaliepaard 2012). In
addition to the statistics recorded in Simulation 1, we computed
the rate of double reduction observed in each marker for all con-
structed maps using the “founderalleles” file provided by Pedigree-
Sim. We also evaluate two values for the LOD Score threshold
associated to the two-point analysis (h ¼ 3 and h ¼ 5). We used
a multipoint LOD Score threshold of 10.0 and also limited the two-
point search to a 50 SNP window in the terminal part of the map.
Markers presenting higher doses than the sum of the doses in both
parents, originated from double reduced gametes were filtered-out
and assumed as missing data.

Simulation results

Simulation 1: Table 1 shows the percentage of data sets where the
linkage phase configuration was correctly estimated in both parents
P and Q. In scenario (A) the method was capable of recovering the
correct linkage phase configuration in all situations for all ploidy
levels. In scenarios (B) and (C) there was a slight decrease in the
ability to correctly estimate the linkage phase configuration, espe-
cially form ¼ 6 andm ¼ 8. Although in these cases the percentages
of correctly estimated linkage phases was lower, they were never-
theless high, varying from 100 to 88.8%. This indicates a very good
performance to estimate the linkage phase configurations, even
using the two-point procedure to narrow the search space.

Figure 5 shows the distributions of the average Euclidean distances
between the estimated and simulated distance vectors for the correctly
estimated linkage phase configuration. In all cases, the majority of the
recombination fractions were consistently estimated once the medians
of all distributions are very close 0.5 cM, with no practical problems
in terms of mapping construction. These results show that, apart
from a relatively small percentage of entangled linkage phase con-
figurations, the method successfully performed the phasing and

managed to estimate the recombination fraction of 10 markers in
all situations evaluated.

Simulation 2: The proportion of correctly estimated linkage phase
configurations for the dense chromosome-wisemap is shown inTable 2.
In general, results for tetraploid maps were superior when compared to
results for hexaploid maps. It is also possible to observe a better per-
formance for the threshold level h ¼ 5 in comparison to h ¼ 3. Sim-
ilarly to Simulation 1, maps resulting from configurations with no
preferential pairing or quadrivalent formation showed a high propor-
tion of correctly estimated linkage phase configurations. Results ranged
from 100 to 99% for tetraploidmaps and from 100 to 84% for hexaploid
maps. Different levels of quadrivalent formation rate had no substantial
influence in estimating the correct linkage phase configurations in
tetraploids. Within the preferential pairing level 0.0, the percentage
of maps with correct linkage phases varied from 100 to 90%. For
hexaploids, there was a decrease in this percentage as the quadrivalent
formation increases from 0.0 to 0.50, with proportions varying from
100 to 70.5%. Especially for autohexaploids, there was considerable
variation between the five simulated configurations. This occurred be-
cause the effect of the quadrivalent formation can be more pronounced
depending on the level of information contained in a particular con-
figuration. Also, the use of a more stringent two-point threshold h ¼ 5,
improved the performance of the phasing algorithm.

Within the preferential pairing level 0.25, results showed decay of
correctly estimated linkage phases, which was more pronounced for
hexaploid cases with threshold level h ¼ 3, reaching a minimum value
of 52.5% for parent Q in configuration 1. Again, the use of a higher
two-point threshold level, h ¼ 5, helped to improve this number to
68.5%. For preferential pairing level 0.50, there was a clear distinction
between the results in tetraploid and hexaploid cases. In the former,
the effect was not as pronounced as it was in the latter, where in
several cases, the proportion of correctly estimated linkage phases
was close to zero. As expected, the usage of a higher threshold level
of h ¼ 5 helped to improve the number of corrected estimated link-
age phase configurations. Interestingly, for both cases with preferen-
tial pairing (0.25 and 0.50), the formation of quadrivalents had an
overall tendency to improve the algorithm’s performance. This im-
provement was expected because when a quadrivalent is formed, each
chromosome involved can exchange segments with two others, pro-
viding more information regarding their phase configuration.

n Table 1 Percentage of data sets where linkage phase configuration was correctly estimated for five different
parental P and Q haplotypes in simulation 1

Ploidy level A B C

P Q P Q P Q

Autotetraploid (m ¼ 4) 100 100 99.7 99.8 100 100
100 100 99.7 99.7 99.9 99.7
100 100 100 100 99.7 99.8
100 100 99.9 99.7 99.9 99.9
100 100 99.9 99.8 100 100

Autohexaploid (m ¼ 6) 100 100 96.6 97.2 96.1 94.6
100 100 97.3 97.5 95.8 95.6
100 100 96.5 96.7 94.7 94.6
100 100 97.3 97.4 96.1 94.7
100 100 97.2 97.4 95.2 94.5

Autooctaploid (m ¼ 8) 100 100 93.6 94.4 93.2 95.7
100 100 97.6 96.8 92.1 93.9
100 100 96.8 97.6 90.4 89.2
100 100 97.7 98.4 90.6 90.0
100 100 96.9 94.6 88.8 90.6
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Given a correctly estimated linkage phase, the recombination frac-
tionswere consistently estimated for all levels of preferential pairingwith
no quadrivalent formation (Figure 6). However, they were overesti-
mated in the presence of quadrivalent formation. This effect wasmainly
observed at the terminal regions of the chromosome, especially in
the long arm, where double reduction is more pronounced. In this
case, tetraploid maps were the most affected. This is in agreement
with our expectations since in autohexaploid simulations, there was
always the formation of a bivalent which was not involved in the
double reduction process (although the rates of double reduction
were very similar in both ploidy levels, Figure 6). In addition to the
quadrivalent, the bivalent serves as an extra source of information to
access the recombination events. The average Euclidean distances
reflect the overestimation of recombination fractions in cases with
quadrivalent formation, showing distributions with higher medians
and interquartile ranges in tetraploid cases when compared to hexa-
ploids (Supplementary Information, Figure S6). Nevertheless, all the
Euclidean distances distributions were located relatively close to
zero, with a maximum value of 1.4 cM, indicating that although
we observed overestimated recombination fractions toward the ter-
minal ends of the chromosome, they were equally distributed, causing
no severe disturbances in the final map. Figure S7, in Supplementary
Information, shows an example of the effect of increasing quadriva-
lent formation rate in autotetraploid and autohexaploid maps. As the
markers get further away from the centromere, the recombination
fractions become overestimated.

Analysis of real tetraploid potato SNP data set
We applied our method to construct a genetic map of the B2721
populationwhich is a cross between tetraploid potato varietiesAtlantic
and B1829-5. The population comprises 160 offsprings genotyped
with the SolCAP Infinium 8303 potato array. The genotype calling
was performed using fitTetra R package (Voorrips et al. 2011). We
obtained 4017 SNPs and computed all the pairwise recombination
fraction between them for all possible linkage phase configurations.
For each pair, we selected the configuration that yields the higher

likelihood and applied the Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) clustering algorithm to assign markers
into 12 linkage groups. Within each linkage group, we ordered the
markers using the MDSMap R package (Preedy and Hackett 2016).
We applied the unconstrained multidimensional scaling algorithm
(MDS) to the pairwise marker distance obtained using Haldane’s
mapping function and LOD2 weighting. We performed two rounds
of marker removal by inspecting the nearest neighbor measure
scatter plot and also the monotony of the resulting recombination
fraction matrix. Given the marker order obtained for each group,
we applied our algorithm using h ¼ 10. For each round of marker
inclusion, we limited our phase search to the last 100 markers
inserted at the end of the map and eliminated markers that caused
map inflation greater than 10 cM. The resulting map consisted of
3348 SNPs (58% simplex and double simplex markers and 42%
multiplex) distributed in 12 linkage groups with lengths varying
from 165.2 cM to 332.5 cM with no visible gaps between markers
(Supplementary Information, Table S8.1). These values seem inflated
compared to tetraploid potato maps available in the literature (Hackett
et al. 2013; Sharma et al. 2013;Massa et al. 2015; Bourke et al. 2015; Rak
et al. 2017). The map expansion observed here was mainly caused by
two sources of error, namely, local marker misplacement and gen-
otyping errors. Both factors cause the detection of spurious recom-
bination events which are propagated through the HMM causing a
global overestimation of recombination fractions.

While obtaining a de novo order based on multiploint likelihood
is not feasible in our current implementation, we used the multipoint
likelihood as an objective function to compare the map obtained using
the genomic order from the Solanum tuberosum genome version 4.03
(Sharma et al. 2013) and theMDS based order.When using the genomic
order, the length of all linkage groups are smaller, and the likelihoods
were substantially superior when compared to the de novo MDS-based
order (Supplementary Information, Table S8.1 and Figure S8.1). Fur-
thermore, our algorithm estimated the same linkage phase in both
cases, indicating the robustness of the phasingmethod to local marker
misplacement. To address the genotyping errors, we used the approaches

Figure 5 Distributions of the average Euclidean distances between the estimated and simulated distance vectors considering correctly estimated
linkage phase configurations. The order of boxplots is the same as the order of haplotypes in Figure S4. Each column indicates the results for
different linkage phase configuration scenarios, namely, A, B and C, and each row indicates a different haplotypic configuration within three
ploidy levels.
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presented in Equations 8 and 9, i.e., ðiÞ use the probability distribution
provided by the mixture proportions of the doses from fitTetra software
and ðiiÞ assuming a global genotyping error; in this case we assumed an
ad hoc error rate of 5%. We applied this prior information in both de
novoMDS-based and the genome-based orders. The result also can be
observed in Table S8.1 and Figure S8.1. Both approaches produced
smaller maps when compared to their relative original maps. How-
ever, since ðiÞ relies on the dosage proportions based in single SNPs,
the adjustment of the map was not as flexible as observed in ðiiÞ, which
assumes an equal global error for all markers. Thus the usage of global
error allowed genotypes to conform to a global chromosomal structure,
rather than restrain the markers in certain genotypic classes pro-
posed by the classification method. Furthermore, the usage of a
global error mitigates the effect of the local marker misplacement
caused by the MDS algorithm by clustering markers into link-
age disequilibrium blocks. This effect can be observed in linkage

groups 1, 5, 8, 10, 11, and 12, where the difference between de novo
MDS-based and the genome-based order when modeling a global
error was less than 10 cM.

Comparison with polymapR software
Among the available methods to construct maps in high-dose auto-
polyploids, namely, pergola (Grandke et al. 2017), netgwas (Behrouzi
and Wit 2017), and polymapR (Bourke et al. 2018), only the latter is
capable of inferring parental haplotypes and estimating recombination
fraction in outcrossing populations. Thus, we limited our comparison
to polymapR software. To assess the performance of the methods, we
simulated 50 full-sib hexaploid populations with 200 each individuals
in five marker density scenarios: 200, 400, 600, 800, and 1000 equally
spaced markers in a 100 cM linkage group. Similarly to Simulation 2 de-
scribed before, we randomly assigned allelic variants, from 0 to 3 doses,
to the six homologs. Additionally, in this study, we considered two

n Table 2 Percentage of data sets where linkage phase configuration was correctly estimated for parents P and Q in
simulation 2

Preferential pairing 0.00 0.25 0.50

Quadrivalent formation 0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50

Autotetraploid
h ¼ 3 P 100.0 99.0 91.5 98.5 98.5 90.0 80.5 93.0 87.5

100.0 99.5 99.5 98.5 99.5 97.5 57.5 88.5 97.0
99.5 97.5 98.5 100.0 98.5 94.0 55.0 85.5 94.5

100.0 100.0 99.5 99.0 98.0 98.0 60.5 86.5 93.0
99.5 99.5 97.0 98.5 97.0 95.5 67.5 84.5 97.5

Q 100.0 98.5 90.0 100.0 97.0 90.0 60.0 91.5 86.0
100.0 100.0 98.0 99.5 100.0 99.0 65.0 89.0 93.5
100.0 98.5 98.0 97.0 98.5 94.5 41.0 82.0 93.5
100.0 100.0 99.0 99.5 98.0 98.0 56.5 84.5 90.0
99.5 99.5 98.0 99.0 98.5 94.5 58.0 82.0 94.0

h ¼ 5 P 100.0 99.5 93.0 100.0 99.5 95.0 98.0 99.0 95.0
100.0 100.0 100.0 100.0 100.0 100.0 90.0 99.5 99.0
100.0 99.5 100.0 100.0 100.0 99.5 86.0 98.5 100.0
100.0 100.0 100.0 99.5 100.0 99.5 86.5 98.5 100.0
100.0 100.0 100.0 100.0 100.0 100.0 90.5 96.0 100.0

Q 100.0 99.5 93.0 100.0 99.0 94.0 88.0 98.5 95.5
100.0 100.0 100.0 100.0 100.0 100.0 91.5 99.5 99.5
100.0 99.5 100.0 99.5 100.0 99.0 85.0 98.0 100.0
100.0 100.0 100.0 99.5 100.0 99.5 86.0 97.5 98.5
100.0 100.0 99.5 100.0 100.0 100.0 92.0 96.0 99.0

Autohexaploid
h ¼ 3 P 84.0 78.5 70.5 69.0 63.5 61.0 2.5 10.5 19.0

99.0 94.0 91.0 93.0 84.5 80.0 6.5 16.0 22.0
89.0 94.0 88.0 80.0 84.0 80.5 10.5 16.0 32.5
93.0 90.5 86.0 88.5 84.0 80.0 9.0 16.5 28.5
96.0 92.5 91.5 89.5 94.0 87.5 19.0 30.5 44.5

Q 85.0 81.0 71.0 68.0 52.5 57.5 1.5 3.5 8.5
99.0 95.0 91.0 86.5 90.0 88.5 9.0 28.0 37.5
90.0 90.0 86.0 79.0 82.0 77.0 9.5 18.0 28.0
96.5 92.5 89.5 90.0 89.0 89.0 25.5 35.5 41.0
95.0 92.0 92.5 89.5 91.0 88.0 16.0 23.0 39.0

h ¼ 5 P 86.0 84.5 75.5 77.5 69.5 72.5 27.0 36.5 52.5
100.0 97.5 96.5 98.5 98.0 91.0 55.5 70.5 74.5
91.5 95.5 93.0 90.5 94.5 89.5 68.0 68.5 77.5
96.5 94.0 91.0 99.5 99.0 96.5 65.0 78.5 85.0
98.0 98.5 100.0 97.5 99.0 99.0 73.0 87.5 91.0

Q 86.5 83.5 75.0 69.5 68.5 72.0 17.5 20.0 39.5
100.0 99.5 99.0 100.0 99.5 100.0 74.0 81.0 92.5
91.5 95.5 93.0 91.0 95.0 89.5 67.5 71.5 77.0
99.0 97.5 93.5 100.0 100.0 99.5 80.0 89.0 92.0
98.0 98.5 100.0 97.5 99.0 99.0 83.0 83.0 90.5
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different dosage proportions scenarios: the first one considers a
higher proportion of simplex and double simplex markers, with
40% of the simulated markers being nulliplex, 40% simplex, 10%
duplex and 10% triplex in both parents; the second, considers
equal proportions for all doses, with 25% for all dosage types,
from nulliplex to triplex (Supplementary Information, Figure S9).
In total, 500 populations were simulated (5 · 2 · 50) and for each,
we obtained the phased map using polymapR and our HMM-based
procedure. All simulations were performed using the software Pedi-
greeSim (Voorrips and Maliepaard 2012) considering no preferential

pairing and no quadrivalent formation. For bothmethods, we recorded
the percentage of correctly phased markers, the final map length, and
the number of markers inserted in each phased map.

To employ our HMM-based method, we ordered the markers
using the unconstrained MDS algorithm (Preedy and Hackett 2016)
weighted by LOD2 with no rounds of marker removal. Given theMDS
order, two levels of h were used: 3 and 5; the same levels were used
for the multilocus LOD threshold. The phase search was limited to
the last 50 markers inserted at the end of the map. To construct maps
using polymapR, we first applied the function cluster_SN_markers

Figure 6 Comparison of estimated vs. simulated maps given a correct estimation of linkage phases in simulation 2. Smoothed conditional means
of the observed average rate of double reduction is presented along with the simulated chromosome. The centromere was positioned at 20 cM
from its beginning (vertical dashed line). Upper panels show the results for tetraploid simulations while lower panels show the results for hexaploid
simulations. Three levels of preferential pairing (0.00, 0.25, 0.50) and three levels of quadrivalent formation rate (0.00, 0.25, 0.50) were simulated.
The lines superimposed to the scatter plots are smoothed conditional means of the distances using a generalized additive model. Both two-point
thresholds were considered since they only affect the phasing procedure.
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to perform a grid search from LOD Scores 1 to 20 and chose the
lowest one that yields six homologs based on simplex markers in
coupling linkage phase. In the next step, we assigned double sim-
plex and duplex markers to the linkage group using the function
assign_linkage_group, and the remaining marker types were assigned
using the function homolog_lg_assignment. This procedure was per-
formed for both parents assuming LOD Score thresholds of 3 and 5.
All remaining pairwise recombination fractions were computed, and
the MDS algorithm (Preedy and Hackett 2016) was used to order the
markers. Marker positions were estimated using the projection of the
MDS result onto a single dimension principal curve. Finally, a phased
map was created using the function create_phased_maplist. We used
polymapR version 1.0.19. Differently from the HMM-based method,
where the h indicates the LOD threshold from which the multipoint
likelihood should be used to chose the best phase configuration,
polymapR uses LOD thresholds to make decisions whether a marker
should be used in a certain mapping context, such as, clustering
homologs or to assign it into assembled linkage groups. Thus, they
are not directly comparable.

Table S10.1 in Supplementary Information, shows the results
obtained using both methods. Overall, both methods recovered the
vast majority of the linkage phases of the markers across all simula-
tions. In the presence of a high number of single-dose markers both
methods recovered the correct linkage phase from 99.7 to 100% of the
included markers with polymapR positioning in average 94.3% of the
markers when using LOD ¼ 3:0 and 85.0% when using LOD ¼ 5:0
and our HMM-based method positioned in average 100.0% of the
markers when using LOD ¼ 3:0 and 99.8% when using LOD ¼ 5:0.
In cases where the dosages were uniformly assigned, 96.2–100% of the
markers were correctly phased when using polymapR and from 99.1
to 100% when using the HMM-based method. In this case, the num-
ber of positioned markers varied from 16.9 to 77.5% for LOD ¼ 3 and
from 14.4 to 57.0% for LOD ¼ 5 for polymapR and from 99.3 to
99.9% for LOD ¼ 3 and from 97.8 to 99.9% for LOD ¼ 5 when using
our HMM-based method. As pointed out by van Geest et al. (2017),
when using polymapR’s method, the presence of a sufficiently large
number of simplex markers uniformly distributed throughout the
genome is essential to define each homologs and be able to assign
multiple dose markers to the framework map. It is important to
mention that using modern genotyping technologies, most data sets
have high proportions of single dose markers. While this is generally
true, single dose markers can be absent in certain chromosome re-
gions or even along entire homologs due to recent duplication events.

Table S10.2, Supplementary Information, shows the average map
length and the associated standard deviation obtained in all simulations.
In cases with a high number of single-dose markers, the average map
length produced by polymapR ranged from87.0 to 89.9 cM,while in the
case where the dosages where uniformly assigned, map lengths ranged
from 76.7 and 80.1 cM. These results confirm the underestimation
tendency in the MDS algorithm when using when using LOD2 as
weighting function, as observed by Preedy and Hackett (2016). In
our HMM-based method, considering the MDS order, the maps
lengths were highly overestimated, ranging from 143.0 cM to 548.0
cM. Since we did not introduce errors in our simulation procedures,
the observed map inflation is exclusively due to local marker misplace-
ment caused by the MDS algorithm. Nonetheless, even with local
marker misplacements, the linkage phase configuration was correctly
estimated in the vast majority of the cases. To accommodate the local
marker misplacements, we used an ad hoc global error of 5% in the
HMM emission function. As observed in the tetraploid potato anal-
ysis, this strategy allowed markers in the wrong order, but in the same

linkage disequilibrium block, being positioned closely together
through the HMM estimation process. The resulting maps lengths
were close to the simulated 100 cM (Supplementary Information,
Table S10.2 and Figure S10.1). Although in general, our method
yielded denser maps, it is worthwhile to mention that, polymapR’s
method is substantially faster than ours, notably when our method
uses high values for h, in which case the HMM computations play a
significant role in the phasing procedures (Supplementary Infor-
mation, Table S10.3). Nonetheless, it was precisely the multipoint
procedure that allowed our method to position more markers when
compared to polymapR.

DISCUSSION
Although the concept of linkage mapping is relatively simple, the
combinatorial properties and increasingly missing information that
arise from themultiple sets of chromosomes make the construction of
geneticmaps inhigh-level autopolyploids challenging. In thiswork,we
frame and solve two fundamental steps toward the construction of
suchmaps, namelymultipoint recombination fraction estimation and
linkage phase estimation. We showed that, combined with standard
grouping and ordering procedures (Preedy and Hackett 2016), these
maps could be reliably constructed. Our method can be applied to
biallelic codominant markers and, due to the flexibility of the HMM
framework upon which it was derived, it is extendable to any codom-
inant molecular marker. The HMM used in this work takes into
account the linkage phase configuration of the whole linkage group
to estimate the recombination fractions between adjacent markers.
An efficient two-point approach was also presented to reduce the
search space of linkage phase configurations. As a result, our method
provides the likelihood of the model, which can be used as an objec-
tive function to compare different map configurations, including
linkage phases and marker orders. When considering experimental
populations, our method is a generalization, for any even ploidy level,
of well established genetic linkage mapping methods. For diploid
(m ¼ 2) populations derived from biparental crosses, our method is
equivalent to the influential Lander and Green algorithm (Lander and
Green 1987); considering full-sib phase-unknown crosses, it is equiv-
alent to Wu et al. (2002). For tetraploids (m ¼ 4) the method is
equivalent to Leach et al. (2010), disregarding double reduction.

To assess the statistical power of our method, we conducted two
simulation studies. In simulation1,wedemonstrated that ourmodelwas
capable of correctly estimating the majority of parental linkage phase
configurations and recombination fractions in a limited number of
markers, even for complex linkage phase configurations and high
ploidy levels. Since othermethods are based on single-dosemarkers to
assemble homology groups, to the best of our knowledge, this is the
only method capable of phasing markers in high-dose autopolyploid
genomes in small regions. These well-assembled regions could func-
tion as multiallelic codominant markers which propagate their in-
formation through the HMM to the rest of the chain, improving the
quality of the final map. In simulation 2, we analyzed a sequence of
200markers in combinations of different levels of preferential pairing
and rates of quadrivalent formation. In this situation, quadrivalent
formation rate had a marginal effect on the phasing procedure,
whereas preferential pairing reduced its performance, especially for
autohexaploids. The usage of a higher two-point threshold (h) im-
proved the linkage phase estimation in all cases. This fact indicates
that the haplotype phasing is more accurate when HMM-based likeli-
hood is used as objective function to evaluate linkage phases. We also
observed that quadrivalent formation yield overestimated recombi-
nation fractions between adjacent markers located further away from

3310 | M. Mollinari and A. A. F. Garcia



the centromere. Interestingly, Bourke et al. (2015, 2016) found that
higher quadrivalent rates had little effect on the recombination frac-
tions. Most likely, the source of this discrepancy was the different
usage of information in both approaches. While in both studies
(Bourke et al. 2015, 2016) used exclusively two-point recombination
fraction estimates, here the information of the markers propagates
along the linkage group and the recombination fraction between two
adjacent markers depends on the behavior of the whole chromosome.
Moreover, the overestimation of the recombination fraction was
expected since our model disregards double reduction and, conse-
quently, was not able to correctly assess the number of crossing over
events when this phenomenon was present.

Although our model is robust enough to cope with certain levels
of preferential pairing and tetravalent rate formation, it is possible to
include both phenomena in specific points of its derivation. Preferential
paring can be included in Equation 4 by not considering PrðcjÞ as
uniformly distributed. Double reduction can be included in the defini-
tion of the genotypic states in the full transition space (Equation 5).
These two phenomena add extra layers of complexity to the genetic
mapping of polyploid organisms with high ploidy levels and should be
addressed in future studies.

Wealso build a tetraploidmapusing the ideas presented in this study
coupled with standard grouping and ordering procedures. While the
choice of the genotype error rate depends on specific characteristics
of the data set,wedemonstrate that it is possible touse prior information
on the HMM framework, including the probability distribution of the
marker dosages for each SNP and a global error to avoid map inflation
causedby localmarkermisplacement and genotyping errors. Finally,we
compared our HMM-based method to the polymapR two-point based
method and, as already pointed out by (van Geest et al. 2017), we
concluded that with a number sufficiently large of single-dose markers
uniformly distributed across the homologs, both methods performed
well. However, when those markers are absent in a specific homologs

or chromosome region, our method was able to build denser maps
when compared to polymapR. Moreover, some autopolyploids with
ploidy level higher than six, such as sugarcane (Aitken et al. 2007)
and garden dahlias (Schie et al. 2014), could benefit only from our
method, since polymapR is limited only to tetraploid and hexaploid
species. The difficulty in correctly estimating linkage phase configu-
rations where multi-dose allelic variants are spread randomly in all
homologous chromosomes lies in two significant aspects of the ex-
periments studied here: (i) the outbred nature of the experimental
crosses and (ii) the incomplete information of the markers based on
dosage (i.e., by not being multiallelic). In experimental population
derived from inbred lines, the origin of the haplotypes can be easily
inferred from the genetic design. However, obtaining pure inbred
lines in high-level autopolyploids has been proven to be impractical
due to the high number of crosses and generations necessary to
achieve homozygous genotypes and to the inbreeding depression
which some species undergo (Gallais 2003). In our method, the
linkage phase configuration is obtained by comparing the likelihood
of a set of models with different linkage phase configurations (Equation
18). The capability of estimating the correct configuration is directly
related to the information contained in the marker data. Some of
these limitations are overcome through the use of HMMs which take
into account the information of the linkage group as a whole.

HMMs provide an excellent avenue to assemble genetic maps in
complex scenarios, but they are remarkably computational demanding
and, in some cases, unfeasible to use. Apart from parallel computing,
which can greatly speed up the estimation process and is ubiquitous
nowadays, theusage of two-point approaches is a viable option to reduce
the dimension of the original problem efficiently. The dimension re-
duction is achieved by collapsing genotypic states in the full transition
space according to the marker information. However, in several cases,
the two-point based method can result in low statistical power which is
related to the amount of information contained in markers in certain

Figure 7 Fisher’s information for the two-point maximum likelihood estimators in different combinations of dosages and linkage phases config-
urations considering one informative hexaploid parent. (I) single-dose markers; alleles share 1 and 0 homologs. (II) double-dose markers; alleles
share 2, 1 and 0 homologs. (III) triple dose markers; alleles share 3, 2, 1 and 0 homologs.
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combinations of allelic dosage and linkage phase configurations. This
lackof information is exacerbatedasmarkersgetdistant fromeachother.
Figure 7 shows nine possible configurations of pairs of markers in one
autohexaploid parent. Considering one of the parents non-informative,
we computed the Fisher’s information equations based on the likeli-
hood Equation (22) (Mather 1957; Ripol et al. 1999; Luo et al. 2004).
The equations were plotted as a function of the recombination fraction.
The information profiles are related to the number of different haplo-
types present on the parental configuration for a given marker dosage.
For instance, for two single-dose markers (Figure 7, panel A), when the
alleles share the same homolog (wk ¼ 1), it is always possible to detect
if the gamete contains at least one recombinant chromosome. However,
when the alleles are in different homologs (wk ¼ 0), the detection of
recombination events is limited to meiotic configurations containing
a bivalent where these chromosomes paired with each other. Inter-
mediate situations involving multi-dose markers can be observed in
the other panels in Figure 7. Additionally, the model proposed here
contemplates both parents on the analyses, leading to more com-
plicated linkage phase configurations and information equations.
The lack of information for some phase configurations in two-point
procedures is essentially caused by the biallelic nature of the dosage-
based markers. However, in several situations, genomic and tran-
scriptomic references are available for related diploid species and
often provide the physical order of the SNPs in small regions. Our
phasing procedure could be applied in these regions to obtain local
haplotypes, which could function as multiallelic markers improving
the information in a two-point analysis. Moreover, in a multipoint
context, when using multiallelic markers, the number of visited states
in the Markov model can be significantly reduced, making the HMM
procedure much more efficient. Ideally, in a full-sib population, the
number of different alleles should be as high as two times the ploidy
level (fully informative). In this case, the Markov model would be
fully observed and, the task of estimating recombination fraction
reduces to count the number of recombinant events given a link-
age phase configuration. Since our algorithm does not need the
entire transition space to work, only a subset of states should be
visited, making the calculation much faster when compared to
the biallelic case.

Once themap is assembled, given theHMMframework, it is a trivial
exercise to obtain the probability of a specific genotype at any map
position, conditioned on the whole linkage group and to compute the
probability of anyunobserved genotype given the geneticmap using this
information. These conditional probabilities are the basis for answering
a series of fundamental questions about quantitative trait loci analysis
in high-level autopolyploids, such as the effect of the dosage level on
the variation of quantitative traits, the interaction of the alleles within
(dominance effects) and between loci (epistatic effects). Therefore,
the present study provides a sound basis for unveiling the complex
structure of autopolyploid genomes through genetic mapping.
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