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We introduce a method to accurately and efficiently estimate the effective dynamics of
collective variables in molecular simulations. Such reduced dynamics play an essential
role in the study of a broad class of processes, ranging from chemical reactions in
solution to conformational changes in biomolecules or phase transitions in condensed
matter systems. The standard Markovian approximation often breaks down due to the
lack of a proper separation of time scales, and memory effects must be taken into
account. Using a parametrization based on hidden auxiliary variables, we obtain a
generalized Langevin equation by maximizing the statistical likelihood of the observed
trajectories. Both the memory kernel and random noise are correctly recovered by
this procedure. This data-driven approach provides a reduced dynamical model for
multidimensional collective variables, enabling the accurate sampling of their long-time
dynamical properties at a computational cost drastically reduced with respect to all-atom
numerical simulations. The present strategy, based on the reproduction of the dynamics
of trajectories rather than the memory kernel or the velocity-autocorrelation function,
conveniently provides other observables beyond these two, including, e.g., stationary
currents in nonequilibrium situations or the distribution of first passage times between
metastable states.

generalized Langevin equation | coarse-grained models | maximum likelihood | data-driven
parametrization

In different branches of science, the interpretation and mathematical modeling of both
experimental and computational data requires the analysis of the system dynamics in
terms of a reduced set of collective variables (CVs), or order parameters. Prominent
examples include chemical reactions in solution, conformational changes in biomolecules,
or phase transitions in condensed matter systems. A standard approach is to approximate
the evolution of the CVs by an effective dynamics, namely, a closed equation in which the
degrees of freedom beyond the CVs (forming the so-called environment or “bath”) do not
appear explicitly. Such coarse-grained models not only provide a physical interpretation
more accessible to understanding than the full system but also, from a numerical
perspective, enable one to recover the desired dynamical properties with long but cheap
simulations of the reduced system (while only shorter simulations of the large system are
used to determine the effective dynamics).

The most widespread model for this task is the Langevin equation, which can be
derived—in some particular cases—from the Hamiltonian dynamics of a small system
interacting with a large environment. It describes the evolution of a Markov process,
which requires that the decorrelation time of the environment be short compared to
the characteristic times of the reduced system. However, many cases do not enter the
validity range of this approximation, displaying memory effects (1–8). To go beyond the
Markovian approximation, a popular class of processes is given by the generalized Langevin
equation (GLE) (9–15)⎧⎨

⎩
ẋ (t) = v(t)

Mv̇(t) = Feff(x (t))−
∫ t

0

K (t − τ)v(τ)dτ + R(t),
[1]

where x (t) is the value of the d -dimensional CV at time t; v(t) is its time derivative; M is
an effective mass, Feff is a mean force, usually deriving from a potential V identified with
the free energy; K is a memory kernel; and R(t) is a (colored) noise.

This form of the GLE can be motivated from the dynamics of the original full
system following the Mori–Zwanzig formalism (9, 16–18), even though it cannot be
formally obtained as a controlled approximation of the exact coarse-grained dynamics,
since a rigorous derivation generally results in a memory kernel that depends on the CVs
(19, 20). Nevertheless, in practice, this simple form is the most widely used effective
dynamics. While an analytical derivation of the memory kernel is possible only in a few
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cases (21), for more general systems, K can be estimated from
a data-driven approach. In most cases, the goal is to extract the
memory kernel from trajectories of the CV computed with all-
atom simulations (4, 22–37).

As already mentioned, the solutions of Eq. 1 are not Markov
processes, except when K is the Dirac δ function and R is a white
noise. Both for fitting the model and then for generating new
trajectories of the effective dynamics, it is convenient to consider
the subclass of models where an extended process (x , v , h) is
Markovian, with h some hidden auxiliary variables (12, 38–45).
Restricting further to the case where the evolution of the hidden
variables and the coupling with the observed variables are linear,
this leads to an equation of the form⎧⎨
⎩
ẋ = v

v̇ =M−1Feff(x )− Avhh − Avvv + σvvξ(t) + σvhW (t)

ḣ = −Ahhh − Ahvv + σT
vhξ(t) + σhhW (t),

[2]
where Avh ,Avv ,Ahh ,Ahv ,σvv ,σvh ,σhh are constant matrices
and ξ and W are independent standard white noises. This gives a
convenient class of models parametrized by the dimension dh of
h, the corresponding matrices, and the (rescaled) effective force
M−1Feff. For equilibrium processes, the coefficients of Eq. 2
are related by the so-called fluctuation–dissipation relation (40).
Although we could enforce this condition, thereby reducing the
number of parameters, we do not, since we also consider nonequi-
librium systems in the following.

Integrating over the hidden variables, we recover Eq. 1 with a
memory kernel of the form of a finite Prony series (40, 41)

K (τ) = w0δ(τ) +

dh∑
k=1

wke
−λkτ , [3]

where wk and λk are (possibly complex) coefficients of the series
derived from the matrices Avh ,Avv ,Ahh ,Ahv . In principle, on
all finite time intervals, any kernel given as the sum of a Dirac
function at zero and of a continuous function can be approxi-
mated arbitrarily accurately by a sum of the form Eq. 3. However,
in practice dh is relatively small, and a memory kernel with, e.g.,
an algebraic tail can only be approximated on a small time interval
(38, 45).

The use of auxiliary variables in the form of Eq. 2 has been
abundantly used and studied as it allows efficient integration of
GLE Eq. 1 (40, 42, 46), even though other methods exist (28, 29,
33, 47, 48). The estimation of GLE parameters from simulations
is an active field of research. The main method consists in a
nonparametric estimation of the memory kernel via the Volterra
integral equation (12, 25, 34, 37, 39, 46, 49, 50), but other
methods have also been proposed (24, 32, 44, 45, 51). In the
present work, we 1) introduce a parametric estimator of GLE
coefficients, based on a maximum likelihood approach, and 2)
show that it allows building faithful coarse-grained models of MD
simulations in a cost-effective way (i.e., starting from a relatively
small training data set), such that the dynamics is well reproduced.

Data-Driven Approach on Extended Dynamics

In statistics, a standard method to deal with hidden variables is
the expectation-maximization (EM) algorithm, which belongs to
the category of likelihood maximization algorithms (52, 53). It is
frequently used to estimate parameters of time series models in
the case of partial or noisy observations of the system, for either
hidden Markov models (54) or state-space models (55). A first

application in the context of GLE was proposed in ref. 38 to
reconstruct the memory kernel in the absence of effective force
Feff(x ) and under more restrictive conditions than the method
presented below.

The algorithm proceeds by alternating steps: in the E step, one
determines the conditional probability law of the hidden variables
given the observed ones at fixed parameters; in the M step, one
optimizes the parameters to maximize the log-likelihood averaged
with respect to these conditional laws. In the following we denote
as Θj the whole set of parameters estimated after j iterations of
the algorithm, which includes the mean force projected on some
functional basis (which can be very large in general or reduced if
prior knowledge on the system is available), the coefficients of the
matrices A,σ of Eq. 2, and, for technical reasons discussed below,
the mean value at time 0 of the hidden variables, 〈h0〉.

EM Algorithm. The available data, obtained from all-atom simu-
lations, consists of a set of independent trajectories. For simplic-
ity of the notation, we introduce the algorithm with only one
trajectory {x}0:N = {x (kΔt), k ∈ �0,N �} for some time step
Δt and simulation time T = NΔt , the extension to the general
case being straightforward. The statistical models we consider are
Euler–Maruyama discretizations of Eq. 2 with the same time step
Δt , for a fixed dimension dh of auxiliary variables h. The state
of the system at time t = kΔt will be denoted (xk , vk , hk ) =

(X̃ , h)k = Xk , and we write {X }0:N as a complete trajectory of
the system. Hence, X̃ is the value of the known variables since
from the choice of the Euler–Maruyama scheme, the velocity can
be computed as vk = (xk+1 − xk )/Δt . In the following we write
π(z ) as the probability density of a variable z; π(z |u) as the
conditional probability density of z with respect to u; and, in both
cases, πΘ to make explicit the value of the parameters if needed.

As the extended system is Markovian, we have for the proba-
bility density of a trajectory

π ({X }0:N ) = π (X0)×
N−1∏
k=0

π(Xk+1|Xk ), [4]

and the form of Eq. 2 and of the Euler–Maruyama scheme lead
to a Gaussian transition kernel, characterized by its mean μ and
variance Σ (SI Appendix).

E Step. The first step is to compute the conditional law of the
hidden variables given the observed variables at the current guess
of the parameters, i.e., πΘj

({h}0:N |{X̃ }0:N ). Due to the Marko-
vianity of the extended system, it is sufficient to compute the mean
and variance of the Gaussian marginal laws π(hk , hk+1|{X̃ }0:N )
for all k ∈ �0,N − 1�. Taking advantage of the explicit form
of the transition probability (SI Appendix, Eq. 3), we apply an
iterative predictor–corrector–smoother approach (also known as
Kalman filter and Rauch–Tung–Striebel smoother) (56). Starting
from the trajectory up to step k − 1, we determine the law
of the hidden variable hk conditioned on the past informa-
tion {X̃ }0:k−1 only. We then use the expression of the transi-
tion probability π(Xk |Xk−1) to determine the current value of
π
(
hk |{X̃ }0:k

)
. These are the prediction and correction parts

that are run forward on the trajectory, i.e., from k = 0 to k = N
(arrow 1 in Fig. 1). The initial guess at k = 0 of π (h0) uses the
measured 〈h0〉 vector as the mean and an arbitrary variance (iden-
tity matrix). Such initial guess could be optimized, but we did not
observe any influence on the final results. The second part of the
E step, called the smoother part, computes π(hk−1|hk , {X̃ }0:N )
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Fig. 1. E step. (1) We first predict iteratively the history of hk for the whole
trajectory, using a predictor-corrector. (2) The values of hk′ are then smoothed
iteratively backward from the end of the trajectory (see Data-Driven Approach
on Extended Dynamics).

and is run backward, i.e., from k = N to k = 0 (arrow 2 in
Fig. 1), which finally gives the required probability law of hk−1, hk
conditioned to the full observed trajectory. Detailed formulas are
presented in SI Appendix.

M Step. For any set of parameters Θ, introduce the evidence
lower bound Lj

LB after the jth iteration of the algorithm as
the expectation with respect to πΘj

({h}0:N |{X̃ }0:N ) of the
log-likelihood of the full trajectory {X }0:N with parameter Θ,
namely (see derivation in SI Appendix),

Lj
LB (Θ) =

∫
πΘj

({h}0:N |{X̃ }0:N ) lnπΘ ({X }0:N ) d{h}0:N

=

∫
πΘj

(h0|{X̃ }0:N ) lnπΘ(X0)dh0

+

N−1∑
k=0

∫
πΘj

(hk , hk+1|{X̃ }0:N )

× lnπΘ(Xk+1|Xk )dhkdhk+1. [5]

The M step consists in setting Θj+1 to be the maximizer of
this quantity. Notice that due to the particular form of Eq. 2,
Lj
LB (Θ) is an explicit function of Θ that can be easily optimized

as described in SI Appendix.

Full Algorithm. The algorithm is then run as follows. An initial
random or informed guess Θ0 is taken for the parameters. Such
an informed guess could come from a previous execution of
the algorithm with a different number of hidden dimensions.
From parameters Θj , a new set of parameters Θj+1 is computed
through an iteration of E and M steps. Since maximizing the
evidence lower bound Lj

LB increases the observed likelihood, the
method is iterated until either a prescribed maximum number of
EM steps or a convergence criterion is reached.

Assessing the Quality of a Given Model. The number of hidden
dimensions dh is an important parameter of the algorithm. It
can be chosen using a model validation approach, classically by
dividing the set of trajectories between a training and a validation
set. However, here we simply compute the optimal parameters
for several values of dh and compare the predictions of the
corresponding models for a number of observable properties, such
as the memory kernel, velocity-autocorrelation functions (VACF),
or first passage times (FPTs). Similarly, the quality of the model
depends on the time step used for the coarse-grained dynamics.
This choice depends among other things on the numerical scheme
for the propagator. For a given underlying dynamics of the full
system, the most accurate choice for the coarse-grained one is to
use the same time stepΔtfull , but as a compromise for the amount
of data, one can also use Δt =mΔtfull (i.e., using only every m
step), with m a small integer.

Efficient Sampling of New Trajectories. Once the model has
been optimized by the EM algorithm, it can be used to generate
new trajectories in the CV space. Due to their limited computa-
tional cost compared to MD trajectories, such synthetic data grant
easier access to well-converged average properties, in the form of
static and dynamic observables. As an example, in Results the mean
FPTs (as well as their probability densities) of a Lennard–Jones
(LJ) dimer in a bath are estimated based on the GLE model and
compared with the corresponding ones extracted from expensive
MD simulations.

Results

We first present the result of the algorithm on a simple yet
nontrivial test case with a one-dimensional (1D) system following
the extended dynamics of Eq. 2, with five hidden dimensions and
a quadratic potential well V (x ) = x 2/2, using 20 trajectories of
2.5× 104 steps and a time step of 5× 10−3. The effective force
is fitted as a linear function of x. Fig. 2A compares the result of
our algorithm to the true memory function that can be computed
from Eq. 3 and the one obtained by the Volterra method (Mate-
rials and Methods). It demonstrates that the present EM method
is able to reproduce the true memory kernel. Furthermore, the
parametric structure of the fitted model enforces the decay to zero
of the memory kernel, whereas the Volterra method is unstable
for times longer than a few tens. Fig. 2B finally shows that the
method accurately reproduces the VACF.

The algorithm also applies to multidimensional and nonequi-
librium systems. This is illustrated in Fig. 3 for a 2D system
with two different thermal noises along each axis, with temper-

A

B

Fig. 2. Equilibrium 1D case. (A) Memory kernel K(τ) divided by the mass
M: the true kernel used to generate the reference trajectories (dark blue
line) is compared with the predictions of the Volterra method (cyan solid
line, with shaded area indicating uncertainties computed from a bootstrap
analysis) and of the present EM method (dash-dotted yellow line). (B) Velocity
autocorrelation function, from the reference trajectories (dark blue line) and
from new trajectories sampled using the fitted EM model (dash-dotted yellow
line).
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A B C

Fig. 3. Nonequilibrium 2D case. (A) Locus of V(x, y) = 1 for the original potential and the one estimated by the EM algorithm. (B) xx component of the
reconstructed memory kernel Kxx(τ) divided by the mass M: the true kernel used to generate the reference trajectories (dark blue line) is compared with
the predictions of the Volterra method (cyan solid line, with shaded area indicating uncertainties computed from a bootstrap analysis) and of the present EM
method (dash-dotted yellow line); the left peak represents the Dirac function of Eq. 3. (C) Velocity autocorrelation function (for the x component of the velocity),
from the reference trajectories (dark blue line) and from new trajectories sampled using the fitted EM model (dash-dotted yellow line).

atures Tx = 1 and Ty = 5 and a quadratic potential V (x , y) =
1

2

(
x 2 +

3

4
xy + y2

)
whose principal axes are not aligned with

the x and y axes, leading to nonequilibrium conditions. This
setup is inspired by a similar Markovian model used to describe
nonequilibrium experiments on cold atoms (57). We run 20
trajectories of 3× 104 steps with a time step of 5× 10−3. The
effective 2D force is fitted as a linear combination of x and y.
The corresponding quadratic potential, illustrated in Fig. 3A, is in
good agreement with the one used to generate the trajectories. Fig.
3B then shows that the algorithm correctly estimates the memory
kernel (in the present case, a simple one with a single hidden
dimension for each visible dimension). In particular, the presence
of a strong Markovian component is captured by the algorithm
but missed by the Volterra method. Finally, the dynamics of the
system is well reproduced, as demonstrated for the VACF in
Fig. 3C.

The present approach, based on the reproduction of the dy-
namics of trajectories rather than the memory kernel or the
VACF, conveniently provides other observables beyond these two.
Indeed, by generating new trajectories corresponding to the fitted
GLE model, one has in principle access to all properties that can be
computed from the time evolution of the CVs. As an illustration,
Fig. 4 shows for the same nonequilibrium 2D case the stationary
probability distribution and the average velocity as a function of
the position, estimated using either the initial trajectories used
to fit the GLE model (Fig. 4A) or the same number of trajec-
tories generated with the latter (Fig. 4B). Despite the relatively
small number (only 20) of original trajectories used to fit the
model and to compute the properties, those computed from the
fitted GLE model are in very good agreement with the original
ones.

As a final illustration, we apply our algorithm to a more realistic
3D system composed of 512 LJ particles at reduced temperature
T̂ = kBT/ε= 1 and reduced density ρ̂= ρσ3 = 1. Two of the
LJ particles are singled out to form a dimer (24), the others consti-
tuting the solvent. The CV of interest is the distance r between the
two particles forming the dimer. LJ parameters for all interactions
are taken as ε= 1 and σ = 1 (in LJ units), except between the
two particles forming the dimer, with εd = 2 and σ = 1. The
size of the cubic simulation box is 8σ, with periodic boundary
conditions in all directions. The dynamics is integrated with a
time step of ΔtMD = 10−3 (in LJ units) in the microcanonical

ensemble (NVE; constant number of particles N , volume V and
energy E ) using the LAMMPS simulation package (58). We run
20 trajectories with length of 105 time steps, and CV values are
extracted every 2 steps.

A

B

Fig. 4. Nonequilibrium 2D case: beyond the kernel and the VACF. Stationary
probability distribution (colors) and average velocity (arrows) as function of
the position for (A) the original dynamics and (B) the GLE model estimated by
the EM algorithm. The two ellipses are the same as in Fig. 3A and represent the
locus of V(x, y) = 1 for the original potential (blue line) and the one estimated
by the EM algorithm (dashed yellow line).
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A B

C

D

E

Fig. 5. LJ fluid: two solutes in an explicit solvent. In all panels, results are shown for the reference MD trajectory (dark blue line) and for trajectories generated by
the estimated Markov model (dashed cyan lines) and EM models with three to six hidden dimensions (from dark green to purple). Unless specified, all quantities
are in LJ units. (A) Free energy (in units of the thermal energy, kBT ) estimated from histograms of the distance r between the two solutes. The various curves are
shifted by physically irrelevant constants for clarity. (B) Memory kernel and (C) velocity autocorrelation function. Inset in B shows a zoom on intermediate times.
(D) Mean FPT to reach r = 2.0 starting from the distance r. (E) Distribution of the FPT for trajectories starting at r = 21/6 and ending at r = 2.0 (Inset shows a
zoom on the tail of the distributions, on semilogarithmic scale).

We fit GLE models defined by Eq. 2 with the EM algorithm
for a number of hidden dimensions ranging from three to six.
In all cases, the effective force F eff(r) determined from the MD
trajectory is used as the single function of the above-mentioned
functional basis, so that fitting this part reduces to determining a
single prefactor. Our aim is to test the ability of these models to
reproduce, in the statistical sense, the properties of the original
simulations. In order to check the importance of the hidden
variables, we also provide an analysis for a Markovian model, fitted
using a maximum likelihood algorithm with 0 hidden dimensions
(corresponding to the M step of the above EM algorithm). For
each fitted GLE model, we generate 75 new trajectories of length
105 time steps using Eq. 2, to compute the observable properties
and compare them with those obtained from the original set of
MD trajectories.

We first compare the stationary distribution for the various
GLE models in Fig. 5A, which shows the free energy as a function
of the r coordinate computed from the histogram of each set
of new trajectories (i.e., not the one corresponding to the fitted
effective force). The good agreement with the MD free energy
profile demonstrates 1) that the coefficient multiplying the model
free energy profile of each model is fitted precisely and 2) that the
numerical integration of the GLE models is performed accurately.
Notice that free energy beyond r = 4σ is affected by the size of
the periodic box. The free energy displays two potential wells at
r = 1.12σ and r = 2.00σ, corresponding to the contact pair (CP,
i.e., the dimer) and the solvent shared pair (SSP, with solvent
atoms belonging to the solvation shells of both solutes), whose
dynamics is investigated below.

We then consider dynamical observables in Fig. 5B, which
shows the memory kernel estimated from the Volterra method
(4) for MD as well as GLE trajectories, and Fig. 5C, which
illustrates the VACF (the velocities being computed numerically
from positions both in the MD and GLE trajectories). In both
cases, increasing the number of hidden dimensions increases the
fidelity of the model with respect to the original data. The latter
are correctly reproduced for five and six hidden dimensions. The
plot also shows the poor quality of the Markovian model, which
confirms the necessity of introducing some hidden variables (37).

Finally, we study the transition kinetics between the CP and
SSP states, as a stringent test requiring accurate reproduction
of both thermodynamic and dynamic properties of the system.

Fig. 5D represents the mean FPT to reach the SSP state starting
from smaller r distances, whereas Fig. 5E represents the FPT dis-
tribution for trajectories starting from the CP state and reaching
the SSP state. Clearly, a sufficient number of hidden dimensions
(in this case five to six) allows us to quantitatively reproduce
the detailed transition statistics. This demonstrates again both
the importance of memory effects and the ability of the present
algorithm to reconstruct an accurate GLE model.

Conclusions

In this work we addressed the construction of reduced mathe-
matical models of the dynamics of complex molecular systems.
Projecting the phase-space trajectories on a reduced set of CVs
leads to a powerful framework for the prediction of thermody-
namic and kinetic properties of experimental interest. However,
the key problems in this context consist of the identification
of a suitable dynamical equation and its parametrization. We
developed an approach combining GLEs, their numerically ef-
ficient representation via Markovian equations including hidden
variables, and a powerful machine-learning algorithm borrowed
from the field of statistical modeling and data science. Starting
from non-Markovian trajectories (e.g., projected all-atom molec-
ular dynamics trajectories in condensed-matter applications), we
maximize the likelihood of an extended Markovian model em-
ploying the EM algorithm. The advantage of obtaining an ex-
plicit parametrization allows for inexpensive sampling of synthetic
trajectories, which can be used for the direct computation of
quantitative observables (beyond the standard memory kernel and
VACF) such as stationary currents in nonequilibrium situations or
the distribution of FPTs between metastable states, generally hard
to access through atomistic simulations.

Several features distinguish our approach from others existing
in the literature. First, the model we optimize includes an explicit
parametrization of both the friction and the noise, ensuring
consistency between the analysis of the MD trajectories and the
generation of new projected trajectories. Second, our method is
based on a maximum likelihood procedure, which is well justified
from a mathematical perspective. In particular, instead of estimat-
ing a nonparametric kernel which is then parametrized (as e.g., in
Volterra-based approaches), the parametric model is directly fitted
on the data; this should limit the accumulation of errors. Third,

PNAS 2022 Vol. 119 No. 13 e2117586119 https://doi.org/10.1073/pnas.2117586119 5 of 7

https://doi.org/10.1073/pnas.2117586119


we do not enforce equilibrium conditions (such as the fluctuation
dissipation theorem) on the model, so that the present approach
offers the possibility to investigate nonequilibrium systems. Fi-
nally, the present approach readily applies to multidimensional
CVs and corresponding matrix memory kernels.

The maximum likelihood approach offers a versatile strat-
egy to implement various extended Markovian models, which
could be extended in particular to position-dependent GLEs and
higher-order discretization schemes. Overall, the present work
provides an efficient way to generate reduced dynamical models
for multidimensional CVs, with the same memory kernels as the
underlying complex system, enabling the accurate sampling of
the long-time dynamics of the latter at a dramatically reduced
computational cost.

Materials and Methods

Estimate of the (Potential of) Mean Force. In the first two examples, the
coefficients of the quadratic potentials in the EM method follow from those of the
corresponding forces, which are the ones determined numerically along with the
parameters related to the memory (SI Appendix). Potentials of mean force in the
Volterra method result from quadratic fits of the logarithm of histograms of the
position. We obtain the results for the memory kernel with the Volterra approach
using the memtools package [https://github.com/jandaldrop/memtools (4)] in
the 1D case and the multidimensional version of ref. 39 (see our implementation
at https://github.com/HadrienNU/VolterraBasis) in the 2D case.

MD Simulation Details for the LJ Dimer. The dynamics is integrated with
a time step of ΔtMD = 0.001 (in LJ units) in the NVE ensemble with the
velocity Verlet algorithm using the LAMMPS simulation package (58). We run 20
trajectories of 105 time steps, and CV values are extracted every 2 steps.

EM Convergence. Initial values of the parameters are taken randomly. For all
examples, we stop the EM iterations if the difference of log-likelihood between
two EM steps is less than 10−8 or if the number of EM steps exceeds 2,000.

Density and Average Velocity for the Nonequilibrium 2D Case. The
density is estimated by kernel density estimation using the positions along the

trajectories. The average velocities are estimated conditionally on the positions
using kernel regression. The same Gaussian kernel is used in both cases, with a
bandwidth of 1. For Fig. 4B, 20 new trajectories of 3 × 104 steps with a time
step of 5 × 10−3 were sampled from the fitted GLE model and compared to
the original 20 trajectories of Fig. 4A.

Mean FPT Estimation. The FPT is estimated for molecular dynamics starting by
restraining the initial position with a parabolic potential as a function of r using
PLUMED (59). Two thousand trajectories are generated from different restrained
positions. Gaussian kernel estimates (with bandwidth of 1/ΔtMD) of the mean
FPT as well as the FPT density are then obtained conditioned on the realized
starting position. The FPT and mean FPT from the fitted models are computed
using 1,500 trajectories per initial value of the distance, again employing kernel
estimates.

Data and Code Availability. A python package to perform the analy-
sis introduced in the present work is available at GitHub, https://github.
com/HadrienNU/GLE AnalysisEM. Our implementation of the 2D Volterra
method is available at GitHub, https://github.com/HadrienNU/VolterraBasis.
These data and code are also available at Zenodo (DOI: 10.5281/zenodo.5536561).
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