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Cancer stem cells (CSCs) are subsets of cells with the ability of self-renewal and differentiation in neoplasm, which are considered to
be related to tumor heterogeneity. It has been reported that CSCs act on tumorigenesis and tumor biology of triple-negative breast
cancer (TNBC). However, the key genes that cause TNBC showing stem cell characteristics are still unclear. We combined the RNA
sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) database and mRNA expression-based stemness index
(mRNAsi) to further analyze mRNAsi with regard to molecular subtypes, tumor depth, and pathological staging characteristics
of breast cancer (BC). Secondly, we extract the differential gene expression of tumor vs. normal group and TNBC vs. other
subtypes of BC group, respectively, and intersect them to achieve precise results. We used a weighted gene coexpression network
analysis (WGCNA) to screen significant gene modules and the functions of selected genes including BIRC5, CDC25A, KIF18B,
KIF2C, ORC1, RAD54L, and TPX2 were carried out through gene ontology (GO) functional annotation. The Oncomine, bc-
GenExMiner v4.4, GeneMANIA, Kaplan-Meier Plotter (KM-plotter), and GEPIA were used to verify the expression level and
functions of key genes. In this study, we found that TNBC had the highest stem cell characteristics in BC compared with other
subtypes. The lower the mRNAsi score, the better the overall survival and treatment outcome. Seven key genes of TNBC were
screened and functional annotation indicated that there were strong correlations between them, relating to nuclear division,
organelle fission, mitotic nuclear division, and other events that determine cell fate. Among these genes, we found four genes
that were highly associated with adverse survival events. Seven key genes identified in this study were found to be closely related
to the maintenance of TNBC stemness, and the overexpression of four showed earlier recurrence. The overall survival (OS)
curves of all key genes between differential expression level crossed at around nine-year follow-up, which was consistent with
the trend of the OS curve related to mRNAsi. These findings may provide new ideas for screening therapeutic targets in order to
depress TNBC stemness.

1. Introduction

The incidence of breast cancer is highest among that of
female malignant tumors all over the world. Statistics from
the United States in 2019 showed that breast cancer is the
most common malignant tumor in female, reaching 30%,

with a mortality rate of 15% [1]. BC is divided into four sub-
types according to the status of hormone receptor (estrogen
receptor (ER) and progesterone receptor (PR)) and human
epithelial growth factor receptor 2 (HER2). TNBC is defined
as ER, PR, and HER2 negative, which accounts for 10-15% of
all BC. Compared with other subtypes of BC, TNBCs appears
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more aggressive and often leads to early recurrence [2].
Hence, it is very crucial to precisely understand the molecular
mechanism and biomarkers of TNBC, which would be bene-
ficial to find valuable targets to diagnose or improve clinical
prognosis.

With the in-depth study of the process of cell carcinogen-
esis and the mechanism of tumor progression, the heteroge-
neity of tumor has attracted more and more attention. In the
past 20 years, numerous studies had shown that only a small
number of cancer cells with tumor initiation ability were the
core source of tumorigenesis, and this subset was called can-
cer stem cell (CSC). CSCs show a high degree of plasticity
and self-renewal ability, which leads to different phenotypic,
functional, and metabolic characteristics of cells [3]. The
plasticity of CSCs is reflected in that the dynamic transfor-
mation of cell phenotype between epithelioid and stromal
mesenchyme depends on the different stages of invasion or
metastasis [4].

In breast cancer, it has been proposed that CSCs contrib-
ute to malignant progression and are associated with the
occurrence, metastasis, and drug resistance [5]. In addition,
many indicators have been found to be used to mark BCSC,
such as CD44+/CD24-/low phenotype [6]. Meanwhile, CSCs
can lead to diversification of cell composition in tumor tissue,
resulting in the production of different subclone phenotypes
and increasing the chances of leaving drug-resistant com-
ponents after anticancer treatment [7]. Evidence shows
that targeted BCSCs is effective in inhibiting stem cell-like
characteristics and reversing drug resistance in vivo and vitro
[8], but the role of BCSCs in the occurrence and development
of BC, especially in a stronger stemness type, TNBC, is still
not clear. There is an urgent need to determine the relevant
biomarkers of TNBC, which will be an important research
direction to solve the occurrence, metastasis, and drug resis-
tance of breast cancer.

An innovative one-class logistic regression (OCLR) algo-
rithm was used by Malta et al. to comprehensively analyze
the methyl group, transcriptome, and transcription factor
binding sites information of cells at different stem cell
levels on multiple platforms [9]. Two stemness indices were
proposed: mRNAsi that reflects gene expression and mDNAsi
that reflects epigenetic characteristics. We downloaded patient
information from TCGA database and obtained the corre-
sponding stemness index based on the previous study.

In this study, a novel analysis that combines TNBC
mRNAsi with corresponding patient clinical information
was applied to identify key genes that may promote tumor
progression by reinforcing cancer cell stemness.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. The RNA-
sequencing results of 1164 specimen were downloaded from
TCGA (https://portal.gdc.cancer.gov) database in May 2020,
including 1053 breast cancer samples and 111 normal sam-
ples. The mRNAsi index that used to match with TCGA
breast cancer datasets was obtained from previous studies
[9], and then, tumor purity was calculated by R software
3.6.2. Perl (http://www.perl.org/) was used to integrate the

RNA-seq value of each specimen into a matrix file; we then
used the Ensembl (http://asia.ensem/index.html) database
to transform Ensembl ID into gene symbols in the matrix
configuration file. In addition, the corresponding clinical
data of 1041 patients in TCGA were downloaded. After
merging and screening information, 107 TNBC samples
and 556 other subtyped BC samples could be distinguished
for further integration and analysis.

2.2. Clinical Characteristic Correlation Analysis. The clinical
information of TCGA samples was correlated with the corre-
sponding mRNAsi by R package beeswarm (version 0.2.3)
[10]. We used the Wilcoxon Signed Rank test to determine
the mRNAsi differences between tumor and normal tissues.
Kruskal-Wallis test was used to determine the significant dif-
ferences in subtypes, stages, and tumor depth groups. Using
the R package survival (version 3.1-8) [11] to analyze the
overall survival of BC group and TNBC group between dis-
crepant mRNAsi values. Another OS diagram of TNBC ver-
sus non-TNBC group was drawn by R software.

2.3. Screening of Differentially Expressed Genes (DEGs). R
package DESeq2 (Version 4.0; http://www.bioconductor
.org/packages/release/bioc/html/DESeq2.html) was used to
perform homogenization and difference analysis on the
count matrix of normal vs. BC group and TNBC vs. other
BC subtypes group, respectively [12]. The inclusion index
was as follows: |log2-fold change| >1, false discovery rate
(FDR) <0.05, take the average of homonym genes, and delete
the genes with expression levels <0.2. The two groups DEGs
results were intersected, respectively, and volcano maps were
drawn by R software.

2.4. WGCNA

2.4.1. Module Establishment. A coexpression network target-
ing DEGs was established by using the R package WGCNA
(version 1.68) [13]. The RNA-seq data was filtered to reduce
outliers. We used the correlation index of genes to construct a
Pearson correlation matrix, and then, the absolute value of
the correlations between transcription data was used to con-
struct the coexpression similarity matrix. A weighted adja-
cency matrix was established by formula Amn = ∣Cmn ∣ β
(Amn: adjacency between gene m and gene n; Cmn: Pear-
son’s correlation between gene m and gene n). β acts as a soft
threshold parameter who accentuation strong correlation
and penalized weak correlation between genes. Optimal β
value was selected to construct a weighted correlation net-
work, and based on the gene network interconnectedness,
the topological overlap measure was used to integrate the
adjacency matrix together. Topological overlap matrix
(TOM) added the adjacent genes generated by other related
networks, and the corresponding dissimilarity was calcu-
lated. Gene hierarchical clustering of TOM dissimilarity
measure was performed based on “hclust” algorithm, and
then, genes with highly synergistic changes were divided into
a module. The minimum genome size was 30 for gene den-
drogram. Through the dynamic branch cut methods, a den-
drogram module was constructed.
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2.4.2. Confirmation of Significant Modules. In order to find
modules that were highly relevant to mRNAsi, we calculated
the gene significance (GS) by converting p value to log10
(GS = lgp), which represents the correlation between genes
and sample traits. The principal component analysis (PCA)
of all genes in the module was carried out to generate the var-
iable principal component 1 (PC1), which was also called
module eigengene, to represent the expression pattern of
the corresponding module. Sample data is condensed
through PCA, and the expression pattern of genes in each
module could be summarized as a series of single feature
expression profiles. Secondly, we applied a variable to indi-
cate the correlation between the sample traits and the mod-
ule, which is called module significance (MS), obtained by
the average absolute GS in a given module. Then, a cutoff
value (<0.25) was used to screen and merge quite similar
modules. In this study, we selected epigenetic regulated
mRNAsi (Ereg-mRNAsi) and mRNAsi as sample traits to
find modules and related genes coexpressed with CSCs.

2.4.3. Key Gene Identification. We selected the module with
the strongest correlation through the MS value and calcu-
lated the GS and module membership of each key gene
(MM, correlation between gene expression profiles and mod-
ule genes). Key genes of this module were screened, and the
threshold was defined as cor. gene GS >0.5 and cor. gene
MM >0.8.

2.5. Functional Annotation of Modules. The functional rela-
tionship between key genes was performed by performing a
gene ontology (GO) functional annotation using the R pack-
age clusterProfiler (version 3.14.3) [14], so as to visualize the
biological functions of key genes from the aspect of gene
function. A value of p < 0:05 and an FDR <0.05 was consid-
ered to denote statistical significance.

2.6. Analysis of Coexpression Network of Key Genes. R pack-
age ggpubr (version 0.2.5) and pheatmap (version 1.0.12)
[15, 16] were applied to compare the expression value of
key genes through boxplots and heat map, respectively.
Moreover, the R package corrplot (version 0.84) [17] was
used to calculate the correlation coefficient between genes,
and then, a correlation matrices which had been calculated
was visualized. We then use an online prediction server, Gen-
eMANIA (https://genemania.org), to establish a gene net-
work and predicted the function of key genes. Peripheral
genes that may share functions with them were found and
sorted according to their prediction scores.

2.7. Data Validation. Oncomine (http://www.oncomine.org)
database was used to detect the DEGs of between different
subtype of BC and normal tissue as well as DEGs in other
malignant tumors. The threshold is: p value, 1E−4; fold
change, 2; gene level, top 10%; data type, mRNA. The online
database KM-plotter (http://www.kmplot.com/) was used to
draw regression free survival (RFS) curves of TNBC patients
and GEPIA (http://gepia2.cancer-pku.cn/) for overall sur-
vival in all BC patients between differential expression of
key genes to examined the prognosis value. Patients in RFS
curves were split by the best cutoff of expression value

selected by auto and in the OS were sorted based on the
median expression. We selected one Gene Expression Omni-
bus (GEO) dataset, GSE81540, from the online database bc-
GenExMiner v4.4 (http://bcgenex.centregauducheau.fr/) to
compare the differential expression among basal-like BC,
other BC subtypes, and normal tissue.

2.8. Comparison and Verification of Key Genes in Other
Researches. To increase the reliability our results, we compared
the difference analysis results with several published studies.
Lv et al. downloaded RNA-seq data of BC from TCGA data-
base and applied the R package edgeR [18] for DEG analysis
to explore the pathogenesis and prognosis of TNBC [19].
Moreover, we had collected other DEG consequences on BC
versus normal tissues to further verify whether the expression
trend of our key genes is correct [20, 21].

2.9. Statistical Analyses. All statistical analyses in this study
were performed using Perl (version 5.30.1) and R (version
3.6.2). The independent t-test was used for normal distri-
bution variables, and Mann–Whitney U test was used for
nonnormal distribution continuous variables. The difference
of mRNAsi score and clinical correlation were evaluated by
the Wilcoxon text function and Kruskal text function in R;
p < 0:05 was considered statistically significant.

3. Results

3.1. mRNAsi and Corrected mRNAsi in Molecular Subtypes
and Clinical Characteristics in TNBC. The mRNAsi is a novel
index to describe the self-renewal and unlimited proliferation
potential of tumor cells, and it can be regarded as a quantita-
tive representation of tumor stemness. Previous studies had
confirmed that mRNAsi in breast cancer is significantly
higher than that in normal breast tissues and increased with
the increasing of tumor stage [22]. Our study also confirmed
those results and further discovered that there were signifi-
cant differences of mRNAsi scores among the four molecular
subtypes in BC (Figures 1(a) and 1(c)). It was generally
believed that TNBC was the most aggressive subtype of BC.
Our results showed that TNBC has the highest mRNAsi
score, p < 0:001 (Figures 1(d)–1(g))). Result showed that
BC cells in T4 phase had relatively highest characteristics of
cancer stem cells (p < 0:001) (Figure 1(b)). The significant
difference between subgroups was confirmed by the Wil-
coxon test and Kruskal-Wallis test.

It was reported that the mRNAsi index was based on the
TCGA transcription datasets of normal cells and cells with
different stem degrees, and was calculated by the OCLR algo-
rithm [9]. Therefore, mRNAsi was a comprehensive score for
the stemness of the sample and could be used to assess
whether there was a further correlation between TNBC and
CSCs. R software was used to calculate the tumor matrix
score based on the ESTIMATE algorithm to eliminate sam-
ples with less tumor content. The corrected mRNAsi was
used to repeat the previous analysis, and consistent results
were obtained. We performed an OS analysis between the
high mRNAsi score group and the low mRNAsi score group
in the BC and TNBC patients, and there were no statistical
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differences (Appendices 1: Figure S1a, b). The OS curve
between TNBC and non-TNBC was also drawn, and TNBC
had worse prognosis than other BC subtypes (p = 1:327e −
02) (Appendices 1: Figure S1c).

3.2. Screening of Differentially Expressed Genes. The analysis
showed that the mRNAsi score in BC tissues was higher than

that in normal tissues, and TNBC showed much higher
mRNAsi. Therefore, we filtered and normalized the gene
expression matrices and identified the DEGs through
DESeq2 method in both tumor vs normal group and TNBC
vs non-TNBC group, and the volcano maps were drawn,
respectively (Figures 2(a) and 2(b)) [12]. We then intersect
both upregulated genes and downregulated genes between
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Figure 1: Correlation between mRNAsi score and clinical characteristics in BC. (a) Differences in mRNAsi score between normal (111
samples) and BC (1053 samples) tissues. (b) Difference in mRNAsi score between different tumor depths. (c) Comparing mRNAsi
between different clinical stages. (d–g) The mRNAsi differences in ER status (d), PR status (e), Her-2 status (f), and different molecular
subtypes (g) in BC were compared. p < 0:05 is considered to be statistically significant.

4 BioMed Research International



0

100

200

–5 0 5

Down
Not
Up

Volcano picture of DEG

log2 fold change

–
lo

g1
0 
P

ad
j

(a)

0

50

100

150

200

–10 –5 0 5 10

Volcano picture of DEG

log2 fold change
–

lo
g1

0 
P

ad
j

(b)

5661 34401239

TvN

TNBC vs. non-TNBC
Up

(c)

Down
TNBC vs. non-TNBC

TvN

3706 3811297

(d)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Cluster dendrogram

hclust (*, "average")
as.dist(dissTOM)

H
ei

gh
t

Dynamic
tree cut

Merged
dynamic

(e)

Module−trait relationships

–1

–0.5

0

0.5

1

m
RN

A
si

ER
EG

−m
RN

A
si

MEblack

MEyellow

MEgreen

MEred

MEpurple

MEbrown

MEblue

MEmagenta

MEpink

MEturquoise

MEgrey

−0.53
(4e−07)

−0.093
(0.4)

−0.57
(5e−08)

0.043
(0.7)

0.044
(0.7)

−0.27
(0.02)

−0.14
(0.2)

−0.23
(0.04)

0.037
(0.7)

−0.19
(0.09)

0.0097
(0.9)

0.068
(0.5)

0.19
(0.1)

0.15
(0.2)

0.23
(0.04)

0.18
(0.1)

0.24
(0.04)

0.028
(0.8)

0.84
(4e−22)

0.22
(0.05)

−0.26
(0.02)

−0.089
(0.4)

(f)

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Module membership vs. gene significance
cor=0.96, p=3.1e−135

Module membership in turquoise module

G
en

e s
ig

ni
fic

an
ce

 fo
r m

RN
A

si

(g)

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

Module membership vs. gene significance
cor=0.59, p=1.7e−12

Module membership in yellow module

G
en

e s
ig

ni
fic

an
ce

 fo
r m

RN
A

si

(h)

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Module membership vs. gene significance
cor=0.54, p=1.6e−09

Module membership in black module

G
en

e s
ig

ni
fic

an
ce

 fo
r m

RN
A

si

(i)

Figure 2: Screening of key genes related to the stemness of TNBC. (a, b) Volcano plots of normal vs. tumor group (a) or TNBC vs. other
subtypes of BC group (b). (c, d) Venn diagram of the overlap between two upregulated (c) and downregulated (d) gene datasets. (e) TOM
cluster dendrogram of WGCNA: a branch of the tree corresponds a cluster of highly related gene sets. Dynamic Tree Cut represents the
original module, while Merged Dynamic means the final module. No merging is needed, so they are the same. (f) Correlation of clinical
traits (mRNAsi or EREG-mRNAsi) with modules. A color represents a class of genes, and the correlation coefficient and statistical power
(p value) have been marked. (g–i) Gene modules with strong correlation with mRNAsi: turquoise module (g), yellow module (h), and
black module (i). A dot represents a gene, and the upper right points are the gene that meets the screening criteria.
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the two datasets as separate Venn diagrams in order to obtain
a more accurately overlap of DEGs matrix in TNBC
(Figures 2(c) and 2(d)). The results showed that compared
with normal tissues, 10903 DEGs were identified in BC tis-
sues, including 6900 upregulated and 4003 downregulated.
Compared with other subtypes of breast cancer, TNBC had
8787 DEGs, including 4679 upregulated and 4108 downreg-
ulated (Appendices 6: Table S1).

3.3. Construction of WGCNA and Identification of Significant
Modules and Key Genes. In this study, aWGCNA coexpression

network was constructed and classifying genes with highly
cooperative expression into a gene module (Figure 2(e)) [11].
We choose β = 4 as the soft threshold to construct a scale-
free network (R2 = 0:950) (Appendices 2: Figure S2a, b, c,
d). Scale-free networks were more likely to be found in cer-
tain kinds of technological and biological networks, and 11
gene modules were obtained (Figure 2(f); Appendices 3: Fig-
ure S3). To further explore the correlation between these 11
gene modules and mRNAsi, we applied MS as the average
significance level of all genes contained in one module to cal-
culate the correlation between the corresponding modules
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Figure 3: (a, b) Differential expression of 7 key genes in tumor vs normal group (a) and TNBC vs other subtypes of BC (b). (c) The correlation
between key genes. (d) Heatmap of key genes.
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and the clinical phenotype. R2 acts as a correlation coeffi-
cient, the closer to 0, the weaker the correlation between
the gene expression of this module and stemness.

The results showed that genes in turquoise module had the
strongest correlation with the CSCs characteristics of TNBC
(R2 = 0:84, p = 4:0e − 22), while the yellow (R2 = −0:57, p =
5:0e − 08) and black (R2 = −0:53, p = 4:0e − 07) modules
exhibited negative correlations (Figures 2(g)–2(i)). In order
to screen key genes related to TNBC stemness, we selected
the turquoise module for subsequent analysis, and the
threshold was defined cor. GS >0.5 and cor. MM >0.8. Seven
genes were finally screened: BIRC5, CDC25A, KIF18B,
KIF2C, ORC1, RAD54L, and TPX2. To extract the differen-
tial expression values of these genes, box plots were drawn
on tumor versus normal group and TNBC versus non-
TNBC group, respectively, and the result showed that all
key genes were significantly upregulated in BC group and
TNBC group (Figures 3(a) and 3(b)).

In order to further verify the credibility of the results, we
collected some other results on BC. The comparison results
of Lv et al. showed that all key genes were included in the
upregulation group of tumor versus normal, while CDC25A,
KIF18B, KIF2C, ORC1, RAD54L, and TPX2 were in the
upregulation group of TNBC versus non-TNBC [19]. R pack-
age edgeR [18] was used to normalize and analyze the differ-
ential expression of mRNAs, lncRNAs, and miRNAs of BC in
the research of Wang et al. and Gao et al. [20, 21]. The result
showed that all seven genes were upregulated in breast cancer

tissues, which was consistent with our result. We also calcu-
lated the DEGs through FPKM data, and the expression
trend of key genes was in the same direction (Appendices 7:
Table S2).

3.4. Functional Annotation of Key Modules. In order to
clarify the related functions of selected modules, the R
package clusterProfiler (version 3.14.3) [14] was applied for
GO enrichment analysis which analyzed the six key genes
at functional and molecular levels. The results showed that
the main biological processes of turquoise module were
nuclear division, organelle fission, and mitotic nuclear divi-
sion (Figure 4(b)). Yellow component and black component
were negatively correlated with the CSCs characteristics, and
GO enrichment analysis was also plotted to explore module
function (Appendices 4: Figure S4a, b). These analyses also
proved that key genes were significantly related to those cell
cycle events.

3.5. Identifying Connected Mechanism between Key Genes. To
further explore the seven prescreened key genes, we used the
GeneMANIA database to construct a gene relationship net-
work and predicted the function of target gene. The network
had 7 central dynamic genes and 20 peripheral predicted
genes. Periphery genes were ranged by the decreasing of cor-
relation score, forming a frequent and extensive interaction
network (Figure 4(a)). Pearson correlation was used to test
the interaction between key genes. We found that all genes
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had a strong correlation, with the highest score of 0.86, which
occurred between RAD54L and KIF2C as well as RAD54L
and ORC1. The lowest score occurs between CDC25A and
BIRC5, which was 0.58 (Figure 3(c)).

3.6. Analysis and Validation of Key Genes. In order to
examine the expression levels of key genes in various malig-
nant tumors, we further applied the Oncomine database
and found that these genes were widely and highly
expressed in many types of cancers including BC. All genes
ranked in the top 10% of all DEGs in the corresponding
tumors. Key genes were found to be observably overex-
pressed in colorectal cancer, lung cancer, liver cancer, etc.
BIRC5, KIF18B, KIF2C, and TPX2 were ranked in the top
1% of the DEGs in BC versus normal tissues (Figure 5).

We further analyzed the expression of these key genes in
different subtypes of BC by utilizing the Qncomine data-
base. Through the box plot, we discovered that BIRC5,
CDC25A, KIF18B, KIF2C, ORC1, and RAD54L were sig-
nificantly upregulated in basal-like BC, compared with apo-
crine BC and Luminal-like BC. The expression of TPX2 in
basal-like subtype was significantly higher than that of
luminal-like subtype (Figure 6). Because the expression value
of these key genes in TNBC was not found in the Oncomine
database, we used a basal-like subtype which was similar to
the TNBC subtype as a substitute for verification. Although
there were differences in gene expression profiles and immu-
nophenotypes between basal-like BC and TNBC, many bio-
logical characteristics still had similarities. Similarly, we
applied the GEO data which contained in bc-GenExMiner
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v4.4 database to reverified the expression level of key genes in
different subtypes of BC. As shown in Figure 7, all key genes
were significantly overexpressed in basal-like BC compared
with normal tissues and other BC subtypes, including lumi-
nal A, luminal B, and HER-2 positive BC (p < 0:0001).
Meanwhile, we used another online database, KM-plotter,
to verify the effect of differential expression of key genes
on RFS in TNBC patients (Figure 8). It was found that
KIF2C (p = 0:022, HR = 1:65), KIF18B (p = 0:0042, HR =
1:84), BIRC5 (p = 0:0014, HR = 2:19), and TPX2 (p = 0:017,
HR = 1:67) were significantly associated with the RFS in
TNBC, and higher expression led to relapse in a relatively
short time, which further indirectly indicated that key genes
may play essential roles in maintaining the CSC characteris-
tics of TNBC. Furthermore, the OS curves of key genes in BC
were drawn by the GEPIA; although no statistical difference
was gain, there was still a trend that all curves crossed at
around 9-year follow-up (Appendices 5: Figure S5).

4. Discussion

Cancer is increasingly a global problem, and breast cancer is
the most frequent malignant neoplasm in women. TNBC is a

phenotype that has been described as breast cancer who lacks
ER, PR, and HER2 gene expression. Compared with other
molecular subtypes, TNBC usually has a larger tumor size,
higher histological grade, and positive lymph nodes [23], so
they are usually associated with early recurrence and poor
survival [24]. At present, there is no specific drug for TNBC,
with few treatment options and unsustainable response. New
alternative therapies are urgently needed to improve the
prognosis of TNBC patients. Cancer stem cells are the cellu-
lar sources of unlimited proliferation and recurrence of
malignant tumors. It is reported that tumor stem cells are
involved in the process of tumor cell proliferation, invasion,
metastasis, and therapeutic resistance [25], which ultimately
predicts the low survival rate. Generally, CSCs are resistant
to currently available treatments [26]. The loss of differenti-
ated phenotype and the acquisition of stem cell-like and pro-
genitor cell-like features are indicative of tumor progression
[27]. Therefore, finding key genes that can effectively target
TNBC stem cells is the most critical step to improve the prog-
nosis of TNBC patients. Based on the mRNAsi score calcu-
lated by Malta et al., the relationship between mRNAsi and
clinical characteristics was analyzed and has been proved that
T4 and stage IV had relatively higher mRNAsi value, which

2.0
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indicated that tumor stemness increased as the tumor pro-
gressed. Meanwhile, HR+/Her2-subtype has the lowest
mRNAsi, while TNBC has the highest.

Tumor is a collection of complex components and has
strong heterogeneity; we conduct a complete DEGs analysis
in TNBC versus other subtypes of BC group and tumor versus
normal group, respectively, and the results are overlapped to
eliminate interfering factors. Through the weighted analysis
of the DEGs, a WGCNA coexpression network was con-

structed, and models which highly correlated with the
mRNAsi score of TNBC were screened. Turquoise module
has the highest correlation, mainly related to nuclear divi-
sion and organelle fission, while yellow and black modules
have a negative correlation with stem cell proliferation and
differentiation. Hence, key genes which were highly related
to the TNBC stemness were screened from turquoise mod-
ule based on the value of GS and MM. In addition, we
found that there was a strong interaction between these
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Figure 7: The differential expression boxplot from the GEO data set GSE81540 in bc-GenExMiner v4.4 database.
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genes, forming a complex network. To sum up, the key
genes have a high degree of cooperation with mRNAsi
and may become new therapeutic targets for the treatment
of triple-negative breast cancer.

Our research reassessed the relationship between TNBC
tumor progression and CSC characteristics, with the aim of
identifying genes that may be effective targets for inhibiting
tumor progression. Key genes closely related to TNBC stem-
ness have been shown to be overexpressed in most malignant
tumors. The single, self-renewing pluripotent stem cells can
differentiate into many tissues and organs during develop-

ment, suggesting that these genes might play a key role in
maintaining the CSC characteristics of a variety of cancers
[28]. A series of databases were used to validate the expres-
sion level of key genes, and the conclusion was consistent
with our results. No matter compared with normal tissues
or other subtypes of BC, the expression of key genes was sig-
nificantly upraised in TNBC. It also indirectly proved that
key genes play an important role in regulating TNBC’s CSCs
characteristics. Through Oncomine online database, it had
been found that key genes were highly expressed in breast
cancer, and 4 of the 7 genes were ranked in the top 1% of
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Figure 8: KM-plotter of regression free survival curve in TNBC patients. p < 0:05 was considered to have significant significance.
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BC gene rankings. Key genes were highly expressed in a vari-
ety of cancers, which indicated that the gene set that main-
tains stem cell characteristics may had similarities in
different tumors. KM-plotter plotted the regression free sur-
vival curve of key genes in TNBC; the high expression of
BIRC5, KIF2C, KIF18B, and TPX2 led to a worse prognosis,
suggesting that these genes may be important targets on
TNBC treatment strategies.

We could see that although the survival curves between
the high mRNAsi and low mRNAsi groups were not statisti-
cally significant, the same trend of survival curves can be seen
in both overall BC and TNBC data set. In BC group, patients
with higher mRNAsi had a poor prognosis before about 9
years follow-up, while the TNBC group at the first 3 years.
The reason why stem cell index was not statistically signifi-
cant for survival might be due to the fact that patients with
higher mRNAsi, such as TNBC, generally lacked therapeutic
target, while other BC subtypes had more specific treatment
strategies, such as Herceptin and other targeted drugs for
HER-2-positive patients and, etc [29, 30]. This made TNBC
patients usually recommended a more potent chemotherapy
protocol clinically. The difference in treatment regimen
might lead to close survival rates of the two groups. We also
found an interesting phenomenon that the OS curves of key
genes based on GEPIA database all crossed at around 9-
year follow-up, which is consistent with the trend of the OS
curve of different mRNAsi groups in BC. At the same time,
we plotted the OS curve between TNBC and non-TNBC
and still found the same intersection of survival curves at 9
years. These three points indicated that the key genes and
mRNAsi had a consistent survival trend and strong correla-
tion with TNBC, but the substantial reason that caused this
result needed to be further explored. In addition, the overex-
pression levels of key genes were positively correlated with
stemness levels, and their continued upregulation may pro-
mote treatment resistance and tumor progression. More than
half of key genes had been reported consistently in BC, and
some of them had been shown to be related to the character-
istics of CSCs.

Baculoviral IAP repeat-containing 5 (BIRC5) is a mem-
bership of class III of the inhibitor of apoptosis (IAP) gene
family and encodes a protein called survivin. The dual role
of this protein is that survivin not only act an important reg-
ulator of the mitotic process but also regulates cell death.
Studies by Paulina et al. have shown that BIRC5 is involved
in many physiological processes of stem cells such as the cell
cycle, cell differentiation, and proliferation, and its high
expression may also lead to the dedifferentiation of neoplasm
cells [31]. It has also been found that the overexpressed of
survivin can promote the reprogramming of 1F-OCT4 into
induced pluripotent stem cells in human neural progenitor
cells, and interact with the β-catenin throughWNT signaling
pathway to maintain the pluripotent status of embryonic
stem cell [32]. Survivin expression has been reported in many
types of cancer, and high expression often indicates a more
aggressive and poor prognosis of the tumor. Studies by
Badana et al. showed that in triple-negative breast cancer,
the destruction of lipid rafts induces the apoptosis of tumor
cells by attenuating the expression of survivin and LRP6

[33]. Therefore, survivin is not only a good diagnostic factor
but also a good prognostic factor, and it also plays an impor-
tant role in TNBC antitumor therapy.

Cell division cycle 25A (CDC25A) is a member of the
CDC25 phosphatase family, who regulates the progression
from G1 to S phase of the cell cycle, and eliminates the inhib-
itory phosphorylation of cyclin-dependent kinases (CDKs)
[34]. It has been identified as an oncogene and the overex-
pression of CDC25A is closely related to the occurrence of
various cancers. Studies have shown that in the glioma stem
cells (GSCs), CDC25A promotes tumor proliferation, migra-
tion, and invasion by promoting PI3K/AKT pathway and
inhibits the apoptosis of GSCs [35]. Qiu et al. found that
miR-141-3p inhibits human stromal (mesenchymal) stem
cell proliferation by arresting cells in the G1 phase of the cell
cycle, and the CDC25A who act as a direct target of miR-141-
3p is a potential mediator of miR-141-3p to inhibit the pro-
gression of cell proliferation [36]. Meanwhile, the expression
of CDC25A phosphatase has been shown to be closely related
to the recurrence and prognosis in women with peri- and
postmenopausal in BC [37]. Therefore, more research is
needed to verify the significant value of CDC25A in the field
of targeted CSCs in TNBC.

Through bioinformatics analysis, KIF2C is expected to
become a new therapeutic target for BC [38]. Gluz et al.
found that KIF2C which acted as a proliferation marker
was risk factors for the pathological complete response
(pCR) rate of TNBC. TPX2 had been proved to be overex-
pressed in many malignant tumors and promoted tumor
deterioration [39, 40]. In breast cancer cells, TPX2 affects
cancer cell colony formation, proliferation, and invasion
through PI3K/AKT signal pathway and promotes tumor
progression [41]. Some experiments had also proved that
TPX2 promotes the progress of TNBC and is expected to
become a new therapeutic target [42]. The overexpression
of KIF18B resulted in the deregulation of B1 and B2. This
interference destroys normal cell cycle control and enhances
tumorigenesis [43].

5. Conclusion

In conclusion, BIRC5, CDC25A, KIF18B, KIF2C, ORC1,
RAD54L, and TPX2 played important roles in the mainte-
nance of TNBC stemness, four of which (BIRC5, KIF2C,
KIF18B, and TPX2) were related to RFS. These genes may
be therapeutic targets for inhibiting the stem characteristics
of TNBC. However, because our data source is the TCGA
open database, which prevented us from obtaining complete
treatment information, this may lead to the results of bias.
Moreover, the conclusion was based on retrospective bioin-
formatic analysis, which needs to be validated by further bio-
logical research.
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plotter repository (http://www.kmplot.com/), GEPIA reposi-
tory (http://gepia2.cancer-pku.cn/), and bc-GenExMiner v4.4
repository (http://bcgenex.centregauducheau.fr/). The data-
sets supporting the conclusions of this article are included
within the article and its Appendices.
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Figure S4: (a, b) GO enrichment analysis of other modules of
interest. Red module (a) and magenta module (b) Figure S5.
OS curve of key genes of breast cancer in GEPIA database.
Table S1: DEGs between breast cancer versus normal tissues
and TNBC versus non-TNBC. Table S2: DEGs results in other
published study of breast cancer and the DEGs results calcu-
lated by the FPKM data. (Supplementary materials)
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