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Deep learning‑based automated 
and universal bubble detection 
and mask extraction in complex 
two‑phase flows
Yewon Kim1 & Hyungmin Park1,2*

While investigating multiphase flows experimentally, the spatiotemporal variation in the interfacial 
shape between different phases must be measured to analyze the transport phenomena. For this, 
numerous image processing techniques have been proposed, showing good performance. However, 
they require trial-and-error optimization of thresholding parameters, which are not universal for all 
experimental conditions; thus, their accuracy is highly dependent on human experience, and the 
overall processing cost is high. Motivated by the remarkable improvements in deep learning-based 
image processing, we trained the Mask R-CNN to develop an automated bubble detection and 
mask extraction tool that works universally in gas–liquid two-phase flows. The training dataset was 
rigorously optimized to improve the model performance and delay overfitting with a finite amount 
of data. The range of detectable bubble size (particularly smaller bubbles) could be extended using a 
customized weighted loss function. Validation with different bubbly flows yields promising results, 
with AP50 reaching 98%. Even while testing with bubble-swarm flows not included in the training set, 
the model detects more than 95% of the bubbles, which is equivalent or superior to conventional 
image processing methods. The pure processing speed for mask extraction is more than twice as fast 
as conventional approaches, even without counting the time required for tedious threshold parameter 
tuning. The present bubble detection and mask extraction tool is available online (https://​github.​com/​
ywflow/​BubMa​sk).

Measurement techniques based on optical visualization are ubiquitous approaches that are now being adopted 
in the experimental investigations of diverse problems from biological (small scale) to industrial (large scale) 
phenomena1–4. This is also true while studying multiphase flows, where the simultaneous measurement of indi-
vidual phases over a large region of interest, without disturbing the flow, is advantageous (compared to intrusive 
measurement methods) in understanding the interaction between phases. In dealing with a gas–liquid two-phase 
(bubbly) flow, in particular, it is critical to measure the spatiotemporal variation of the interfacial shape accurately 
for the purpose of analyzing the transport phenomena between phases5–9. While detecting bubbles using opti-
cal visualization, the major obstacle is to identify and track individual bubbles (and statistics including the size 
and velocity) from the overlapped bubble cluster. Numerous image processing techniques have been proposed 
as tools for effective bubble detection, such as the Hough transform10,11, breakpoint method12,13, and Watershed 
transform9,14,15. These methods have proved to be useful, but the application of a simple image processing filter is 
insufficient to process all images of bubbles with various geometrical features, because of the wide scatter of the 
flow conditions and optical settings of each study. Even in a single image of a bubbly flow, bubble images have 
different characteristics that cannot be readily distinguished using a single process (criteria). While addressing 
this issue, our group established a reliable framework to detect bubbles in different types of bubbly flows with 
volume void fractions as high as 2% by rigorously synthesizing digital image processing algorithms5,8; however, 
the limitation of this approach still exists. Most importantly, conventional methods require the optimization of 
coefficients or thresholds by trial-and-error, and they are not universally applicable to various types of bubbly 
flow. Therefore, detection accuracy largely varies depending on the skillfulness of the researcher, and the overall 
processing cost including human resources is very high.

In recent years, deep learning has been recognized as a powerful tool in the field of digital image processing, 
and has also proved promising in addressing various problems in fluid mechanics20–25. These studies are finding 
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ways to overcome long-lasting problems by applying a deep learning-based methodology to solve governing 
equations or to improve experimental techniques, which have been shown to enhance model accuracy and save 
on overall data processing cost, which is dominated by human resources. Recent experiments in multiphase flow 
studies attempted to detect objects (e.g., bubbles, droplets, and particles) by combining deep learning models like 
object detection models such as Faster R-CNN26 with conventional image processing in gas–liquid two-phase 
flow27–33. Cerqueira and Paladino27 determined the best fitted ellipse of each candidate bubble using the region 
proposal algorithm and a CNN (convolution neural network), and Poletaev et al.31 found the center, axes, and 
orientation of each bubble in a bubbly jet flow using an autoencoder and a CNN classifier. To understand the 
detailed interactions between each phase, however, it is important to know the exact shape (not just the bound-
ing box or fitted ellipse) of the gas–liquid interface, which has not been possible previously. The aforementioned 
studies have a distinct limitation in that it is not feasible to obtain the actual bubble geometry under the shape 
instability (i.e., wobbling or deformation) caused by various flow conditions, because they considered a narrow 
range of bubble shapes, namely spherical or synthetic (artificially manipulated). It should also be noted that 
testing (validation) of the trained model with untrained data is missing in most previous studies.

Therefore, in the present study, we develop and validate a fully automated tool to detect and extract the actual 
shape of bubbles based on a deep-learning framework, which can be universally applied to various types of 
two-phase flows. We focused on instance segmentation, which extracts a pixel-wise segmentation mask of each 
detected instance, one of the representative challenges in the area of computer vision34,35. It has been actively 
adopted in fields where it is necessary to identify each instance under harsh conditions, such as high noise or 
variation in image contrast and color. For example, there are many studies in biology and biotechnology that 
need to identify each cell or tissue in a complex image36–39. We train the Mask R-CNN34, one of the instance 
segmentation models, with training data composed of bubbly flow data obtained experimentally under differ-
ent conditions and synthetic bubble images. We optimized the amount and composition of training data from 
different sources and used a variety of image augmentation methods to optimize model performance. Typically, 
the object detection model requires a large amount of training data, but we were able to achieve a high detection 
performance with a relatively small but rigorously refined dataset. In addition, a customized loss function was 
used to improve the performance of small bubble detections, which is typically poorer than that of larger object 
detections34,36. As a result, we obtained a fully automated bubble detection and mask extraction tool that is effec-
tive in different gas–liquid bubbly flows without manually tuning the thresholds. We hope this will be useful in 
reducing the difficulties in the analysis of the optical images of multiple objects interacting in a complex manner.

Training and evaluation of the algorithm
Data acquisition and optimization.  For a training dataset, we used both experimental and synthetic 
bubbly flow images obtained from the upward bubbly flows in an expansion pipe8 and BubGAN algorithm40, 
respectively (Fig. 1a,b). The experimental bubbly flow data included bubbles with a size range of 7–98 pixels 

Figure 1.   Examples of bubbly flow images used as a training and test dataset: (a) experimental data of upward 
bubbly flows in an expansion pipe8; (b) synthetic bubble images from BubGAN40; (c) experimental data of 
bubble-swarm flow9.
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(0.25–3.4  mm in physical scale), and its volume void fraction was 0.72%. As shown in Fig.  1(a), they were 
obtained using two different techniques: two-phase particle image velocimetry (PIV) and shadowgraph. Whereas 
the shadowgraph visualizes the bubble shadow only, the two-phase PIV measures the liquid-phase velocity as 
well as the bubble statistics (shadows). Thus, the images obtained using the two-phase PIV were added to the 
training dataset to make the model robust in environments, wherein the optical image has a significant level of 
noise (represented by seeding particle images). In addition, the training dataset would benefit from the fact that 
the distribution of gray levels in the image differs depending on the optical setup8,9. Because one of our primary 
goals is to improve the performance of disassembling of overlapped bubbles, the conditions possibly missing in 
the experimental dataset can be supplemented by the synthetic dataset in which the size and distribution of bub-
bles are controlled. For the data produced by the BubGAN, the bubble size was varied between 4 and 123 pixels, 
and the intersection over union (IoU) between two bounding boxes (of each bubble) was set as IoUB = 0.11, 0.16, 
and 0.2 (Fig. 1(b)). A much higher value of IoUB caused negative effects, in that the dense bubble population 
would lead to excessive split of bubbles. Here, the IoU indicates the ratio of the overlapping area between two 
objects to the union area. The void fraction of the synthetic dataset was set to 3.0–8.0%. To add bubbles smaller 
than the average size of 35 pixels in diameter, on the other hand, the height of the image with IoUB = 0.16 was 
adjusted to three times longer than for other cases (IoUB = 0.11 and 0.2), because all training inputs are scaled to 
be the same size (640 × 640 pixels), regardless of the physical size of the image.

Although some of the images from the same experimental conditions as the training dataset were used to 
evaluate the model, we also added the experimental data of bubble-swarm flow9 to the test dataset, which was 
not included in the training set (Fig. 1(c)). The bubble size range in the bubble-swarm flow data in the test 
set was 7–65 pixels (0.6–5.2 mm) with a volume void fraction of 0.3–2.0%. For all experimental images in the 
training and test datasets, the overlapped bubbles that were difficult to obtain the exact separated mask (ground 
truth) were removed to avoid detrimental effects to the model. The conditions of the training and test datasets 
are listed in Table 1.

In general, a model trained with more data performs better, but there is a practical limit to the amount, as 
well as the level of quality, of data that can be obtained from the experiments. Therefore, we needed to optimize 
the composition of the training dataset and ran several experiments to determine the optimal condition. In 
other words, two models were trained for the same iterations, the first one was trained with the experimental 
data, whereas the second one was trained with the synthetic data. They were then evaluated with the same test 
dataset: 30% from the upward bubbly flow in an expansion pipe, 45% from the synthetic bubble images, and 25% 
from the bubble-swarm flow. The model trained with the synthetic data only exhibited half the accuracy (AP50, 
average precision (AP) for the cases of IoU ≥ 0.5) as the model trained only with the experimental data, thereby 
indicating that the model trained with only the synthetic dataset (even though its size is large) does not provide 
the desired performance. The experimental data play a critical role in transferring the ability to recognize the 
actual bubble shapes under various conditions.

By adding synthetic bubble images to the training set of the experimental data, it was enhanced to disas-
semble the overlapped bubbles. Moreover, we found that the accuracy (AP50) increased slightly if the training 
dataset included the experimental images without a brightness gradient inside the bubble shadows, i.e., if all the 
bubbles were completely filled with black color. The optimized compositions of the training and test datasets 
are presented in Table 1.

Deep learning model and training configurations.  Mask R-CNN is an instance segmentation model 
that labels each pixel corresponding to each instance detected by adding a parallel mask branch to Faster 
R-CNN, a widely used object detection model. In this study, we used the Matterport Mask R-CNN implemen-
tation (https://​github.​com/​matte​rport/​Mask_​RCNN), using ResNet-101 as the backbone and applied transfer 
learning from pre-trained COCO weights (https://​github.​com/​matte​rport/​Mask_​RCNN/​relea​ses/​downl​oad/​
v2.0/​mask_​rcnn_​coco.​h5) to maximize the data efficiency and delay overfitting. The model was trained for 24 
epochs using a batch size of 1, with an initial learning rate of 10–4, which was optimized for our computing envi-
ronment using a grid search (from 10–2 to 10–5), while decreasing it by a factor of 10 after every 10 epochs. From 
the entire model, only ResNet stage 5 and the head layer were re-trained, and it was empirically shown that the 
highest accuracy was achieved before the occurrence of overfitting, compared to the selection of other layers to 

Table 1.   Details for training and test datasets. The numbers in the bracket denote the averaged bubble size.

Source of data

Bubbly flow in an expansion 
pipe8

BubGAN40 Bubble-swarm flow9two-phase PIV Shadowgraph

Resolution [pixels] 736 × 1120 576 × 1032 200 × 300
100 × 900 624 × 976

Bubble size [pixels] 7–98 (46.8) 10–60 (31.4) 4–123 (34.0) 7–65 (28.3)

Volume void fraction [%] 0.72 0.72 3.0–8.0 0.3–2.0

Training set
# of images 1588 854 150 –

# of bubbles 8160 14,640 15,280 –

Test set
# of images 8 8 8 8

# of bubbles 40 120 770 330

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5
https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5
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be trained. In addition, to slow down the overfitting, we applied several image augmentations, such as flipping, 
rotation, and Gaussian noise addition, randomly to the training input image at each iteration. For the training, 
ADAM was chosen as an optimizer, and the regularization weight decay value was set to 10–4. The training was 
conducted on a single NVIDIA RTX 2080 Ti GPU.

In general, large objects in an image have a dominant influence on the training loss of the object detection 
model34,36, and thus the accuracy of smaller objects detection tends to be low. Regarding the bubble detection 
problem, however, the detection accuracy of small bubbles is as important as that of large bubbles, because the 
bubble size follows a Gaussian distribution in a typical gas–liquid two-phase flows, and their scale-wise inter-
actions are especially important in studying the transport phenomenon5,8,9. Therefore, we improved the mask 
accuracy of small bubbles using a customized loss function that increases or reduces the effect of the bubble size 
on the loss by weighting the loss according to the bubble size (more details are provided in the Methods section). 
As a result, the mask accuracy of small bubbles (APS) increased by approximately 4%, and the overall accuracy 
(AP50) slightly increased (the definitions of APx are provided in the next section). More configuration details can 
be found in our code, which is available online (https://​github.​com/​ywflow/​BubMa​sk).

Evaluation of the bubble mask extraction performance.  The performance of the model was evalu-
ated by calculating the mask AP for each mask IoU threshold and object size range, following the COCO evalu-
ation metrics (https://​cocod​ataset.​org/#​detec​tion-​eval). The evaluation metrics used include the AP (averaged 
over IoU thresholds from 0.5 to 0.95 with intervals of 0.05), AP50 (for IoU ≥ 0.5), and AP75 (IoU ≥ 0.75) according 
to the IoU threshold, and APS, APM, and APL according to the bubble size of the test dataset. Here, the subscript 
refers to the IoU threshold as a percentage or the size range of the bubble. The ranges of bubble size (db) for the 
APS, APM, and APL were determined by classifying all bubbles in the test dataset into small (db < 22.6 pixels), 
medium (22.6 pixels ≤ db < 39.5 pixels), and large (db > 39.5 pixels), respectively, and they cover 36%, 38%, and 
26% of the total number of bubbles tested. This ratio was determined intentionally to evaluate the effect of the 
customized loss function on the model performance quantitatively, especially for detecting small bubbles. It is 
noted that each type of AP for each image was averaged over all corresponding images in the test dataset, and 
not just from a single test, while maintaining the same number of images for all types of data. This is because the 
accuracy of each image is also important to confirm the universality of the present model which works in vari-
ous complex two-phase flows; as mentioned above, each test image has different levels of bubble density, bubble 
locations, image background, and lighting conditions, which requires the development of a universal model.

Results and discussion
Bubble detection and mask extraction.  Figure 2 shows the accuracy (AP) of the present model depend-
ing on the IoU threshold value and object size range, evaluated using three test datasets, which are designated 
as set #1, #2, and #3, respectively. Each test set included all the test images, images from similar experimental 
conditions to the training set8,40, and images of different experimental conditions9 from the training dataset (see 
Table 1). The present model exhibits a high accuracy not only for test set #2, which has similar experimental 
conditions as the training set, but also for set #3, which was not included in the training set. While the accuracy 
variation among the test sets is not substantial in general, the difference in APS between test sets #2 and #3 is rela-
tively large. This is because the bubbles in the small size range of set #2 are smaller than the bubbles in the small 
size range of set #3. Even if the magnitude of the mask difference between the ground truth and the detected 
mask is the same for the large bubbles, the IoU is largely reduced for small bubbles, resulting in a significant 
decrease in the accuracy of detection.

The representative results of bubble edge (mask) detection by the present model (for an IoU threshold of 
0.5) are shown in Fig. 3. It is clear that the detected bubble shapes follow the actual bubble shadows quite well. 
Based on the results shown in Figs. 2 and 3, we deem it reasonable to represent the performance of the present 
model based on AP50, because the difference between AP50 and AP75 is small, and the IoU between the ground 

Figure 2.   Mask averaged precision based on the IoU threshold and object size range. set #1: all test dataset in 
Table 1, set #2: images with similar experimental conditions to the training set8,40, set #3: images with different 
experimental conditions from the training dataset9.

https://github.com/ywflow/BubMask
https://cocodataset.org/#detection-eval
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truth and predicted mask would increase due to human error relating to the process of labeling the ground truth 
mask (bubble edge). The AP50 for the entire test dataset (set #1) of the present model is 0.981 (it is 0.997 for set 
#3), which is a promising bubble edge detection performance.

Assessment of model performance depending on bubbly flow conditions.  In this section, we 
present the assessment of the present model’s performance in several ways to confirm its effectiveness under a 
wide range of experimental and/or flow conditions. First, we analyzed the dependency on the volume void frac-
tion (α) of the model performance, which is one of the most important parameters for characterizing the physics 
of bubbly flows. In Fig. 4(a), we plotted the variation of AP50 and AP75 depending on the void fraction. Because 
ground truth (separated bubble edges) for overlapped bubbles are required for a fair evaluation, the evaluation 
was performed using the synthetic bubble images. The results of 50 synthetic images were averaged for each void 
fraction. As expected, the accuracy tended to decrease as the void fraction increased, and AP50 and AP75 reached 
0.567 and 0.463, respectively, when the void fraction increased to 5%. Considering that the typical maximum 
void fraction in the experimental studies on bubbly flows using optical measurements is approximately 2–3% 
(mostly below 1%)5,41,42, the AP50 is higher than 0.71–0.8 (0.9 for void fraction below 1%), which is acceptable. 
Some representative result images for each void fraction are presented in Fig. 4(b)–(f), which qualitatively dem-
onstrate the operating range and performance of the present model.

Next, we test the model with experimental bubble-swarm flow data9, which includes a larger number of over-
lapped bubbles than the images used in the training dataset, to determine the effectiveness of the present model 
in two-phase flows with a moderate void fraction (up to approximately 2%). Unlike that for synthetic images, 

Figure 3.   Bubble detection examples (IoU threshold of 0.5) for (a) test set #2 and (b) #3. Here, the purple solid 
lines denote the extracted bubble shapes, and the images were cropped from original images and scaled for 
better visibility.
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obtaining the exact individual shape from all the overlapped bubbles is not feasible in this case; thus, the ratio 
of the number of bubbles detected by the model to the total number of bubbles was calculated depending on 
the volume void fraction (Fig. 5(a)). Here, the results of 10 images were averaged for each corresponding void 
fraction, and the representative result images were also presented to judge the operating range and performance 
of the present model qualitatively (Fig. 5(b)–(f)). More than 92% of the bubbles were detected for void fractions 
of up to 1%. The loss of detection slowly increased with the void fraction; however, more than 87% of the bub-
bles were detected (within 5% standard deviation), even for an intermediate void fraction of 2%. As shown in 
Fig. 5(f), the bubbles are severely overlapped, even with a void fraction of 2%. The capability of the present model 
to identify individual bubbles with corresponding masks among the overlapped bubbles is well demonstrated in 
bubble clusters without a clear bright core (highlighted with dashed boxes in Fig. 5(e,f)). It is noted that some 

Figure 4.   (a) Variation of AP50 and AP75 of synthetic images with volume void fraction (α). Representative 
bubble images with detection results (purple solid lines) are shown for α of (b) 0.0075; (c) 0.0125; (d) 0.0250; (e) 
0.0375; (f) 0.0500.
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image processing algorithms, as discussed previously, use the bright spot inside the bubble shadow to distinguish 
an individual bubble from the cluster.

Finally, we have shown the results of bubble detection and mask extraction achieved by the present model 
for different types of gas–liquid two-phase flows (Fig. 6), of which the visualization data came from our group 
(published and unpublished data). The tested two-phase flow includes the bubble plume (Fig. 6(a), unpublished), 
bubbly flow in a rod-bundle geometry in a nuclear power plant (Fig. 6(b), unpublished), pool boiling bubble 
(Fig. 6(c), unpublished), bubble-swarm flow (Fig. 6(d), Lee and Park9), and upward bubbly flow in an expansion 
pipe (Fig. 6(e), Kim and Park8). It should be noted that these data were not included in both the training and test 
dataset. As shown, it was qualitatively demonstrated that the present model can be universally applied to diverse 
two-phase flows, for the purpose of detecting and extracting an individual bubble. It is also promising to see that 
the bubbles in the interaction with the solid wall, such as adhesion, bouncing, and sliding, can also be detected 
(Fig. 6(b,c,e)). In the supplementary video, we further demonstrate how the extraction of exact bubble shapes 
can be used to track individual bubbles in the spatiotemporally varying bubbly flows.

Saving on mask extraction time.  When processing the optically obtained experimental data, computa-
tional speed is also an important issue as its accuracy. Because the conventional multiple-filter image processing 
technique is now being replaced with convolutional layers in the present model, it is expected that the time 
required for mask extraction would be reduced. When we use the same computing resources to test the same 
images, the calculation time of the present model is two to three times shorter than that of the conventional 
method. It should be noted that the bubble mask extracted by the present model is at least equivalent to or bet-
ter than the results from conventional image processing (Fig. 6). Figure 7 shows an example of the extraction 
of bubble masks and a time cost comparison between the present model and the conventional method. Here, 
the bubble-swarm flow9 of 0.9% void fraction was compared, and the Watershed transform was applied twice 
repeatedly as a conventional method. As shown, the extracted bubble masks are equivalent to each other, but the 
time cost (averaged for 10 images) significantly decreased to 4.4 s from 14 s taken by the Watershed transform.

Figure 5.   (a) Ratio of the number of detected bubbles (Ndetected) to the total number of bubbles in the bubble-
swarm flow images9 with volume void fraction (α). Representative bubble images with detection results (purple 
solid lines) are shown for α of (b) 0.003; (c) 0.006; (d) 0.009; (e) 0.011; (f) 0.02.
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Concluding remarks
In the present study, we successfully developed a fully automated and universal bubble detection and shape 
extraction tool by training the Mask R-CNN with an optimized dataset including experimental images of bubbly 
flows and realistic synthetic bubble images (produced by BubGAN). We customized the loss function to weight 
the effect of bubble size on the detection performance and enhanced the accuracy of detecting small bubbles 
(APS) by 4%, thereby improving overall accuracy as well. The present model shows good universality under a 
wide range of experimental conditions and high detection performance owing to dataset optimization and a 
unique loss weighting system according to bubble size, which was possible based on the physical understand-
ing of bubbly flows. We also applied randomized data augmentation such as adding noise and generating black 
bubbles, which helped to improve accuracy, as in other studies. As a result, the averaged precision (AP50) for the 
entire test dataset (which includes the bubble-swarm flow data not included in the training set) of the present 
model reached 0.981. Furthermore, we confirmed that the present model works well on a variety of experimental 
(optical setup) and flow conditions, even if the data were not included in the training dataset. Finally, the mask 
extraction time was significantly reduced compared to that of the conventional image processing method. What 
is remarkable here is that the present model no longer requires human intervention (trial-and-error) during the 
mask extraction process, thus reducing the overall processing cost. Based on our experience while training and 
testing the model, to improve the performance of the model, we suggest resizing the image to different scales 
and merging the obtained masks of multiple images adjusted to different scales.

In a future work, we plan to further improve the model by combining other deep-learning-based algorithms 
(e.g., deep learning optical flow) and using other bubble image features such that it can be readily applied to 

Figure 6.   Bubble detection and mask extraction results for various gas–liquid two-phase flow experiments: 
(a) bubble plume (JG = 0.033 × 10–3 m/s, de = 1.8 mm) (unpublished data); (b) bubbly flow in a rod-bundle of 
nuclear power plant (JG = 0.008 m/s, JL = 0, 0.68 m/s, de = 2.8 and 2.0 mm) (unpublished data); (c) pool boiling 
bubble (Tw = 104 ℃, Tl = 98 ℃, de = 3.1 mm) (unpublished data); (d) bubble-swarm flow9 (α = 0.021, de = 4.2 mm); 
(e) upward bubbly flow in an expansion pipe8 (α = 0.0072, de = 3.0 mm). JG: gas flow rate, JL: liquid flow rate, de: 
mean bubble equivalent diameter, Tw: wall temperature, Tl: liquid temperature, α: volume void fraction.

Figure 7.   Example of the comparison of mask extraction and corresponding time consumption: (a) raw image; 
(b) result of conventional image processing; (c) result of present model. The image was obtained from the 
bubble-swarm flow9 with void fraction of 0.9% and has a resolution of 1248 × 976 pixels.
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much wider experimental conditions (or harsh conditions in terms of optical configuration), such as low contrast 
images, multiple fluid layers with different refractive indices, and severely high void fraction flows. Although 
the present model was developed focusing on gas–liquid two-phase flows, we believe that it can be extended to 
other areas where the separation of objects in optically visualized images is required, as in studies on droplet 
(particle)-laden flows.

Methods
Preparing data for training.  For the training and evaluation of the model, we need raw images of bubbles 
with ground truth masks for each bubble. We followed the conventional image processing method for optical 
gas–liquid two-phase flow experiments that our group has established5,8,9 to create the ground truth mask of the 
experimental images. First, the images were binarized using a median filter and Sauvola binarization43. Then, 
the bright bubble core was filled using the morphological image reconstruction algorithm44 and denoised using 
a size filter5. Next, each object in the binarized image was identified to determine whether it was an overlapped 
bubble cluster or solitary bubble using a roundness criterion14 based on the relationship between the perimeter 
and area of the bubble. After the overlapped bubble clusters were identified, they were removed from both the 
raw and binarized images using an in-house MATLAB code. If any overlapped bubble cluster that was indistin-
guishable by a roundness criterion still remained, it was also removed manually using the MATLAB GUI tool. 
As a result, we obtained bubble images with only solitary bubbles and binary masks for each bubble in the image.

Weight for the loss function.  To increase the model accuracy for small bubbles as much as that for large 
bubbles, we apply the weight factor to the loss function to increase the contribution of small bubbles to the 
training losses (smooth L1 loss). The customized weights are given by Eq. (1), where size denotes the bubble 
equivalent diameter (db), and w is the weight effect factor, which is 0.3 in the present study.

To apply the global weights to the loss function rather than the local weights, which only work on each itera-
tion (image), the minimum and maximum bubble sizes of all the bubbles in the training set are used. We have 
empirically found that weighting only small bubbles is more effective than weighting small and large bubbles.
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