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The antibody repertoire is a critical component of the adaptive immune system and is
believed to reflect an individual’s immune history and current immune status. Delineating
the antibody repertoire has advanced our understanding of humoral immunity, facilitated
antibody discovery, and showed great potential for improving the diagnosis and treatment
of disease. However, no tool to date has effectively integrated big Rep-seq data and prior
knowledge of functional antibodies to elucidate the remarkably diverse antibody
repertoire. We developed a Rep-seq dataset Analysis Platform with an Integrated
antibody Database (RAPID; https://rapid.zzhlab.org/), a free and web-based tool that
allows researchers to process and analyse Rep-seq datasets. RAPID consolidates 521
WHO-recognized therapeutic antibodies, 88,059 antigen- or disease-specific antibodies,
and 306 million clones extracted from 2,449 human IGH Rep-seq datasets generated
from individuals with 29 different health conditions. RAPID also integrates a standardized
Rep-seq dataset analysis pipeline to enable users to upload and analyse their datasets. In
the process, users can also select set of existing repertoires for comparison. RAPID
automatically annotates clones based on integrated therapeutic and known antibodies,
and users can easily query antibodies or repertoires based on sequence or optional
keywords. With its powerful analysis functions and rich set of antibody and antibody
repertoire information, RAPID will benefit researchers in adaptive immune studies.
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INTRODUCTION

Antibodies (Abs), specialized immunoglobulins secreted by B
cells, play a pivotal role in antigen recognition and
neutralization. An antibody is composed of two identical heavy
chains (IgHs) and two identical light chains (IgLs), each of which
consists of variable and constant regions. The variable region of
IgH, which constitutes the primary antigen-binding site, is
generated by somatic recombination of variable (V), diversity
(D), and joining (J) gene segments. During this joining
procedure, nontemplated (N) and palindromic (P) nucleotide
addition and exonuclease-mediated deletion occur at both the V-
D and D-J junctions (1). Furthermore, specific antibodies
undergo somatic hypermutation (SHM) in the germinal center
upon antigen activation (2). These complex molecular
mechanisms diversify antibodies substantially and enable the
adaptive immune system to defend against a seemingly infinite
array of pathogens. Theoretically, more than 1013 antibodies can
be generated by the human adaptive immune system (3) and the
entire collection of antibodies in a given individual is known as
that individual’s antibody repertoire.

Traditional studies of antibodies focused on the isolation and
characterization of antigen-specific monoclonal antibodies
(mAbs), which are essential to understand immune responses,
discover conserved epitopes, and design therapeutic agents (4).
Several traditional approaches have been developed to detect
mAbs, including hybridoma technology (5) , B cel l
immortalization (6), single-cell PCR (7), and antibody display
(8, 9). For example, the first fully human therapeutic antibody
(adalimumab) with low immunogenicity compared to humanized
and chimeric antibodies was discovered by phage display in 1997
(10). To bypass the laborious screening procedure to determine
antigen specificity, Reddy et al. isolated mAbs by pairing the most
abundant variable regions of IgH and IgL captured from high-
throughput antibody repertoire sequencing (termed Rep-seq) (11).
In contrast to traditional technologies, Rep-seq can capture
millions of antibodies in a single run and allows researchers to
elucidate the antibody repertoire in a comprehensive and
quantitative manner. Recently, Rep-seq has shown striking
potential in investigating humoral immunity (12), isolating
mAbs (13, 14), evaluating vaccines (15, 16), exploring disease
pathogenesis (17), diagnosing disease (18, 19), and
immunotherapy approaches (20).

These previous efforts have generated a wealth of data
comprising antibodies and Rep-seq datasets, representing an
invaluable resource that could be leveraged to investigate the
tremendously diverse antibody repertoire. Indeed, several
databases and platforms have been developed to meet the needs
of antibody repertoire researchers. For example, HIV-DB (21),
bNAber (22), abYsis (23), EMBLIG, IMGT/LIGM-DB (24) and
Thera-SAbDab (25), have been developed to catalogue particular
functional antibodies, such as broadly neutralizing HIV antibodies
and therapeutic antibodies. In addition, iReceptor and OAS, which
focus on unifying Rep-seq datasets, enable researchers to query
sequences of interest across institutions or studies (26, 27). PIRD
allows researchers to compare repertoires for annotated Rep-seq
datasets with a limited number of published datasets (28).
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There are also several Rep-seq dataset analysis platforms,
including ARGalaxy, which can process raw reads and extract
repertoire features online (29), BRepertoire, which concentrates on
statistical analysis (30), SONAR, which is focused on inferring
antibody ontogenies (31), and IgBLAST and IMGT/HighV-
QUEST, which allow V(D)J gene annotation (32, 33). However,
while all these previous tools are helpful, there was no platform
that integrates all known antibodies, a large number of repertoires,
and a feature-rich comprehensive analysis pipeline.

Here, we present a comprehensive web-based platform,
named Rep-seq dataset Analysis Platform with Integrated
antibody Database (RAPID, https://rapid.zzhlab.org/), that can
process Rep-seq datasets online automatically and in
conjunction with systematic repertoire feature comparison and
antibody clone annotation. RAPID contains 2,449 Rep-seq
reference datasets comprising of more than 306 million clones,
521 therapeutic antibodies, and 88059 published functional
antibodies. RAPID integrates a standardized Rep-seq dataset
analysis pipeline, a comparative analysis module for repertoire
features, an antibody annotation module, and a powerful
antibody and repertoire query module. RAPID displays results
in text and image formats that can be viewed online expediently
and downloaded freely. As a user-friendly Rep-seq dataset
analysis platform, RAPID will assist researchers in identifying
distinct repertoire signatures and antigen-specific clones in the
context of various health conditions on a large scale and thus
accelerate the applications of Rep-seq.
MATERIALS AND METHODS

Rep-Seq Dataset Collection
Rep-seq datasets included as references were either generated by
our laboratory or curated from the NCBI Sequence Read Archive
(SRA) database. In all, we included 592 in-house datasets
produced following protocols described in the Supplementary
Materials and 1,857 high-quality public Rep-seq datasets
downloaded from the SRA database (Supplementary
Materials). These datasets were generated via different
amplification strategies and include samples representing
different sexes, tissues, health conditions, and ages
(Figure 1A). We processed the 2,449 Rep-seq datasets using a
uniform pipeline implemented with MiXCR and in-house scripts
(Supplementary Materials). Antibodies with the same V, J, and
C genes and CDR3 nucleotide sequence (CDR3 nt) were
clustered together and defined as an antibody clone. High-level
features of the antibody repertoire, such as gene usage, CDR3
length, junction diversity, SHM pattern, and clone diversity were
determined following the methods below (see Repertoire Feature
Extraction) and stored in RAPID (Figure 1A). Thus, RAPID
provides a rich source of references for the comparison of
antibody repertoire features.

Repertoire Feature Extraction
Repertoire features including V/D/J gene usage, CDR3 length
distribution, junction diversity, SHM pattern, top 100 clone
composition, and clone diversity for 2,449 reference Rep-seq
August 2021 | Volume 12 | Article 717496
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datasets and users submitted datasets online are extracted
following methods described in Yang et al. (12). Specifically,
gene usage was defined as the number of clones assigned to a
gene divided by the total number of clones. Similarly, the CDR3
length frequency was calculated as the number of clones of a
particular length divided by the total number of clones. All
clones with V/D/J assignments were included in the analysis of
junction diversity. Insertion and deletion information was
extracted from the column “refPoints” reported by MiXCR.
Only the portions of the V gene and J gene that form the
CDR3 region, (the 3’ end of V and the 5’ end of J) are
included in the analysis. Both the 5’ end and 3’ end of the D
gene are included. Insertions and deletions are considered
mutually exclusive events, and clones containing insertions will
be set to 0 when calculating deletions and vice versa. For the
SHM pattern, an approach based on a position-weighted matrix
is used. Firstly, clones were classified into six categories (i.e.
IGHM, IGHD, IGHG, IGHA, IGHE, and NA) according to the
“CHitsWithScore” output by MiXCR for each dataset. If C gene
was not found, the isotype would be annotated as “NA”. The
SHM pattern was calculated for each isotype separately and then
all qualified nonredundant reads within each clone were taken
into consideration. Because each clone is a basic unit in the
somatic hypermutation analysis, the mutation frequency for a
specific position is calculated as the sum of mutation frequencies
for all mutation events (at most 3 kinds of mutation events for
each position, i.e., A->C, A->G, and A->T if the germline
nucleotide is “A”) observed within reads supporting this clone.
For this study, we only considered the region from FR1 to FR3
when measuring the mutation frequency. We investigated motif/
nucleotide mutation frequencies and nucleotide transition
frequencies at three different types of loci: silent loci,
replacement loci, and composite loci, an approach similar to
Yarri et al. (34). The mutations that happen at silent loci can only
result in silent mutations; the mutations in replacement loci can
Frontiers in Immunology | www.frontiersin.org 3
only result in replacement mutations, and the composite loci
contains both possibilities depending on the mutant nucleotides.
The motifs we investigated in this study represent the canonical
hotspots (WRCY/RGYW and WA/TW) and coldspots (SYC/
GRS) reported in previous literature. The top 100 clone
composition indicates the fraction of clones within top 100,
which can be used to infer the clonal expansion. Clone diversity
was measured using three indices: the Shannon index (Equation
1), the Simpson index (Equation 2), and D50. D50 indicates that
the percentage of unique clones with accumulative reads makes
up for 50% of the total. The formulas to calculate the Shannon
index and Simpson index are listed below.

Shannon index = �SR
i=1piln

pi (1)

Simpson index = SR
i=1pi

2 (2)

where R represents the total number of clones, i represents the
rank of a clone, and pi represents the frequency of a clone.

Antibody Collection
The antibody collection comprises clones from the Rep-seq
dataset, known antibodies, and therapeutic antibodies
(Figure 1B). The clones in the Rep-seq dataset were derived
from 7.12 billion reads representing more than 306 million
clones. The dataset also includes 88,059 sequences identified
from seven databases, namely: abYsis (23), bNAber (22),
EMBLIG (http://acrmwww.biochem.ucl.ac.uk/abs/abybank/
emblig/), HIV Molecular Immunology Database (21),
IMGT/LIGM-DB (24), European Nucleotide Archive (ENA) of
EMBL-EBI (35), and National Center for Biotechnology
Information (NCBI) Nucleotide database (https://www.ncbi.
nlm.nih.gov/nucleotide/) (Supplementary Figure S1).
Sequences were aligned to the V/D/J germline reference by
IgBLAST (32). Productive sequences were retained when they
A B

FIGURE 1 | Schematic of the datasets and related features in RAPID. (A) Rep-seq datasets and their metadata (top) and repertoire (bottom) features. Metadata is
linked with “Dataset ID” and can be obtained by it. The “Clones” in repertoire features was generated after the process of RAPID pipeline (Materials and Methods).
(B)The antibody collections included in RAPID consist of three data sources: Rep-seq datasets, known antibodies, and therapeutic antibodies. All available
information was extracted from these sources and stored. In addition, antibody sequences were analysed, and related information (such as VDJ gene usage and
CDR3) were extracted and recorded. nt, nucleotide; aa, amino acid.
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met the following two conditions: i) both V and J gene hits were
obtained, and ii) unambiguous CDR3 sequences were extracted.
Disease information for antibodies from EMBLIG, ENA,
IMGT/LIGM-DB, and NCBI was identified using TaggerOne
(version 0.2.1) (36) based on sequence descriptions and related
literature titles and abstracts. The related disease for antibodies
from HIV-DB and bNAber was annotated as HIV infections.
The included therapeutic antibodies include 521 antibodies that
were recognized by the World Health Organization (WHO) and
downloaded from the Therapeutic Structure Antibody Database
(Thera-SAbDab) (25). Only amino acid sequences are available
for therapeutic antibodies, and regions from FR1 to FR4 and V/J
genes were determined by ANARCI (37).

Enrichment Analysis of
Disease-Related Antibodies
Enrichment analysis of overlapping antigen- or disease-related
antibodies was performed using a hypergeometric model
implemented with the stats.hypergeom.cdf function within the
Python package scipy (version 1.2.1). The false discovery rate was
corrected via the Benjamini-Hochberg method implemented
with a Python script.

Development of the RAPID Web Interface
The RAPID web interface is implemented using Hyper Text
Markup Language (HTML), Cascading Style Sheets (CSS), and
JavaScript (JS). It is a single-page application based on the JS
framework React.js while using the React component library Ant
Design to unify the design style. The back end of the website uses
Nginx as the HTTP and reverse proxy server, develops business
logic based on Node.js, uses MySQL to manage data, and uses
RabbitMQ to process the analysis task queues. Real-time
notifications of task progress use WebSocket technology.
RESULTS

The RAPID platform builds from the availability of large Rep-seq
datasets and a variety of functional antibody sequences to provide
three main functionalities, including a Rep-seq dataset analysis
platform (low-level analysis and high-level analysis), antibody
annotation, and antibody and repertoire query (Figure 2).

Rep-Seq Dataset Analysis Platform
To allow users to analyse their Rep-seq datasets rapidly, we
developed a web-based automatic human IGH Rep-seq dataset
analysis platform that can perform both low-level (Figure 2A)
and high-level (Figure 2B) analyses. Low-level analyses, such as
read alignment and clone clustering, are implemented using
MiXCR because of its superb performance (38). Read
alignment can identify the V/D/J/C genes and variable regions
from FR1 to FR4 of each read. The isotype for each uploaded
dataset can be set by users and reads aligned to this isotype would
be reserved for subsequent analysis. Reads sharing the same V
and J genes and CDR3 nt are clustered together as an antibody
clone. Users of the RAPID platform can also customize germline
Frontiers in Immunology | www.frontiersin.org 4
reference by uploading FASTA files of V/D/J genes instead of
using the platform default. High-level analyses implemented in
the RAPID platform include repertoire feature extraction,
comparative analysis, and public clone detection. RAPID can
extract several antibody repertoire features, including V/D/J gene
usage, CDR3 length, junction diversity, SHM pattern, top 100
clone composition, and clone diversity for each sample (see
Repertoire Feature Extraction). The repertoire features of
submitted samples (hereafter named the experimental group)
can then be compared to references (the reference group)
selected from 2,449 datasets by users. As these datasets were
generated by different experimental procedures and were from
heterogeneous samples, many factors might affect the repertoire
comparison. For example, the location of 5’-primers used in
Multiplex PCR together with read length might cause
elimination of long CDR3s. To ensure users make fair
comparisons and draw accurate conclusions, RAPID supports
users to select references based on location of 5’- and 3’-primers,
read length, sequencing platform, isotype, health condition, age,
gender, and more (Supplementary Table 2). This is
advantageous for exploring disease-associated or dynamic
antibody repertoire features between different groups. Finally,
clones shared by more than two samples are detected as
intragroup public clones (where samples come only from the
experimental group) or intergroup public clones (where samples
come from both the experimental and reference groups). By
virtue of these large-scale datasets, RAPID provides a powerful
framework for discovering public clones that may be invaluable
in pathogen clearance, disease therapy, and vaccine design. Users
only need upload either single-/pair-end FASTQ or single-end
FASTA files for sequencing reads, FASTA files for germline
reference, and select metadata for the reference group. All of the
results supplied by low-level and high-level analyses are
presented in plain tabular file and image formats that can be
browsed online and downloaded to a user’s local machine. The
uploaded files and output results will be removed after
one month.

To demonstrate an example usage of the Rep-seq analysis
platform, we analysed the antibody repertoires generated in
response to Coronavirus disease 2019 (COVID-19), which results
from infection with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Since the start of the COVID-19 outbreak, many
studies have been conducted to discover SARS-CoV-2-neutralizing
antibodies (39) and to characterize the convergent signatures of T
and B cell receptor repertoires for diagnosis and therapy (40, 41).
We downloaded five Rep-seq datasets containing B cell receptor
repertoires from COVID-19 patients from the NCBI SRA database
(SRR12190252, SRR12190293, SRR12326739, SRR13518454,
SRR13518456) and compared their features to those of 32
references whose Rep-seq datasets were obtained before the
COVID-19 pandemic. RAPID users can select the references used
in this analysis by selecting Amplification strategy as Multiplex,
Tissue as PBMC, Health Condition as Healthy, 5’-primer location as
FR1, 3’-primer location as CH1, Read length as 2×300 bp, and
Isotype as IGHG. Although only five COVID-19 samples were
analysed, the RAPID platform still identified some disease-
August 2021 | Volume 12 | Article 717496
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associated repertoire signatures (Figure 3). For V gene usage,
IGHV4-34, IGHV4-59, and IGHV4-61 increase in SRR13518454,
SRR12190252, and SRR12190293. In addition, IGHV3-7 (42) and
IGHV3-74 are decreased in SRR12190252 and SRR12190293
relative to the reference group (Figure 3A). CDR3s, as the most
variable region in antibody, play important roles in determining
antigen specificity. The RAPID output indicates that SRR12190252
and SRR12190293 have longer CDR3s compared to the reference
groups (Figure 3B) (42). In addition, the COVID-19 samples have
shorter deletions and longer insertions (Figures 3C, E) (43). SHM
in the germinal center is the key process for antibody affinity
maturation. In addition, we observed a higher rate of SHM in the
functional region of COVID-19 samples except for SRR12190252
Frontiers in Immunology | www.frontiersin.org 5
compared to the reference group (Figure 3D). Furthermore, SHM
rates in SRR12326739, SRR13518454, and SRR13518456 who
suffered more severe clinical pictures are strikingly higher than
the other two samples. These data suggest that the SHM rate is
associated with disease severity in individual patients, as has been
described previously (40). Moreover, COVID-19 samples have
lower D50, with obvious clonal expansion (Figure 3F).
Importantly, 283 CDR3aa from COVID-19 samples were shared
by at least one reference (Figure 3G). One of these CDR3aa
(CARDLDYW) are shared by 13 references. Another CDR3aa,
CARGFDYW, occurs in five COVID-19 samples and was shared
by 10 references. Apart from the short public CDR3s, RAPID also
found 20 public CDR3s whose length are longer than 48 bp. Among
A B

C D

FIGURE 2 | Functionalities of RAPID. (A) Low-level analysis. Germline genes and the antibody sequence derived from the recombination are shown schematically
on top. CDR3s were identified using the RAPID bioinformatics pipeline, and clonalities of antibodies were defined according to sequence similarity and V/J gene
segments (bottom). (B) High-level analysis of Rep-seq dataset. Repertoire features were extracted from the Rep-seq datasets (top). The features of the experimental
and reference groups were compared and shown (middle). Public clones, if available, were extracted and displayed (bottom). (C) Antibody annotation based on
CDR3 aa. Antibodies having the same amino acid CDR3 as known or therapeutic antibodies were extracted and annotated based on their matches in the database
(middle). Enrichment of the annotated antibodies were analysed, and a p value was calculated. (D) Antibody and repertoire query function. The top panel shows
several antibody queries and the schematics of the result. The bottom panel shows the visualized results of a repertoire query.
August 2021 | Volume 12 | Article 717496
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A

B C

D E

F G

FIGURE 3 | Repertoire features of COVID-19 patients compared with 32 references. (A) The distribution of V gene usage. The V-gene usage of the reference group
is shown in the boxplot, and that of COVID-19 patients is indicated by the dots. (B) Length of CDR3nt sequences. The median fraction from the reference is
indicated by the gray bars. The length of deletions (C) and insertions (E) at V3, D5, D3, and J5. (D) Mutation rates in each functional region. (F) The distribution of
D50. (G) Number of shared clones. The X-axis indicates the number of references, and the Y-axis shows the number of COVID-19 samples.
Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 7174966
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them, two CDR3s (CARYCSGGSCYGYYYYGMDVW,
CARAGYSSSWYLDYYYGMDVW) from SRR13518456 and
SRR13518454 were shared by one reference, respectively. This
example demonstrates that RAPID is capable of supporting huge
reference datasets and allows users to explore disease-associated
repertoire signatures without resorting to expensive tools.

Antibody Annotation
Although Rep-seq can assist researchers in capturing millions of
antibody sequences at a time, it is not practical for verifying the
binding specificity and functions for all of them. Thanks to advances
in computational biology, several tools have been built to predict
epitopes and track antibody-antigen interactions (44–46). However,
these approaches are usually time-consuming and require huge
computational resources, making it difficult to analyse large datasets.
CDR3, as the most diverse region in antigen-binding fragments
(Fabs), can serve as the primarily determinant of an antibody’s
binding specificity (47). Thus, it is an ideal criterion to screen
potential mAbs efficiently by searching the amino acid sequence of
CDR3 (CDR3aa) from therapeutic and known antibodies
(Figure 2C). RAPID will automatically report clones with CDR3
aa that are the same as those of therapeutic or known antibodies.
The disease information of these annotated clones will also be
provided. Finally, RAPID performs an enrichment analysis (see
Materials and Methods) to discover clones whose related antigens/
diseases are enriched in user-submitted samples. It should be noted
that only enriched antigens/diseases whose adjusted P values are less
than 0.05 will be shown.
Frontiers in Immunology | www.frontiersin.org 7
To demonstrate an example usage of Antibody annotation,
clones identified from five COVID-19 patients were inputted.
There are 3, 3, 8, and one annotated clones for SRR13518456,
SRR12326739, SRR13518454, and SRR12190293, respectively
(Figure 4A). Among them, two clones are related to
Respiratory syncytial virus infections and five clones are
associated to HIV infection, which suggests that these clones
may be polyreactive for virus infection. Interestingly, clones
related to Respiratory syncytial virus infection and
Opportunistic infections were enriched in SRR13518456 and
SRR13518454 (Figure 4B). Taken together, this annotation
module can provide potential candidates for broadly
neutralizing and therapeutic antibodies discovering.

Antibody and Repertoire Query
RAPID supports online antibody and repertoire queries
(Figure 2D). The antibody query consists of three modules:
“Sequence query”, “Antigen/Disease query” and “Free text query”.
The “Sequence query” module is implemented using BLAST
(version 2.2.30) and search for clones from the Rep-seq dataset,
therapeutic antibodies, and known antibodies. Sequence Query can
output records with near-exact (identity ≥ 90%) nucleotide and
exact amino acid sequence matches for the variable region and
CDR3. The “Antigen/Disease query” and “Free text query”modules
search for known and therapeutic antibodies. Antigen/Disease
query allows users to find antigen/disease-related antibodies by
directly selecting antigen/disease in the online drop-down list. Free
text query enables users to query antibodies of interest by inputting
A

B

FIGURE 4 | Output of Antibody annotation module. (A) The number of annotated clones for each sample. The pink circle represents the total clone identified in each
sample and the green one indicates the number of heavy chain with detailed annotation in RAPID. (B) The distribution of diseases which are enriched in samples.
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source ID, title of literature, PMID, or description. For the antibody
query, detailed information on resultant sequences such as V/J/C
gene composition, related literature, and metadata can be accessed
online by clicking hyperlinks and downloading freely. The
repertoire query allows users to investigate the high-level features
of repertoires by querying the Rep-seq dataset collection. Users can
select samples according to metadata, and all selected samples are
treated as a group. High-level features, including gene usage, CDR3
length, junction diversity, SHM pattern, clone diversity, and public
clone, can be visualized online and downloaded. Several valuable
signatures of the antibody repertoire can be observed by repertoire
query, and these results can be used to direct subsequent work; this
is analogous to conducting a pilot before an experiment is
carried out.

To demonstrate an example usage of Antibody query, we
queried a therapeutic antibody. The first therapeutic antibody
(Muromonab) was approved by United States Food and Drug
Administration (US FDA) in 1986 (48). Since then, 94
therapeutic antibodies have been approved by US FDA and
Frontiers in Immunology | www.frontiersin.org 8
have become best-selling drugs (49). However, antibody
discovery by experimental methods is time-consuming and
difficult. The RAPID Platform allows researchers to leverage a
massive antibody database to find potential therapeutic
antibodies using the “Sequence query” functionality. We used
Evolocumab as an example. We entered the CDR3aa of
Evolocumab (CARGYGMDVW) into the text box using the
cdr3 and amino acid options (Figure 5A). RAPID returned a
total of 583 CDR3 aa with the same amino acid sequence
(Figure 5B). For each CDR3aa, users are able to obtain details
such as nucleotide sequence, V/J/C recombination, amino acid
and nucleotide sequences of variable region, and accession
number of dataset by clicking subject id (Figure 5C). The
metadata of dataset, including accession number of SRA and
BioProject, age, gender, tissue, stimulation, and reference, and so
on can be acquired by clicking dataset id (Figure 5D). The
information shown in Figures 5B–D can also be downloaded
in . t sv format and used for therapeut i c an t ibody
screening experiments.
FIGURE 5 | “Sequence Query” schematic. (A) Input options for “Sequence Query”. Selected options are marked with blue dots. (B) Sequence query result. The
subject ID filled in blue is a hyperlink and can be clicked to see details. Hit sequences can be sorted according to any column by clicking the marker at the end of
each column. (C) Details for subject CDR3_0010989842. (D) Metadata of dataset with such a subject. The accession number of SRA, BioProject, and pubmed id
can be clicked to visit their original websites.
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DISSUSSION

B cells are an important part of the adaptive immune system, and
they generate extremely diverse receptors to defeat invading
pathogens. Understanding how B cell receptors recognize and
neutralize antigens in humoral immunity can advance the
development of clinical diagnostics and immunotherapies. Rep-
seq enables immunologists to explore the entire set of these
receptors—known as antibody repertoires—at unprecedented
resolution, and the increased throughput of Rep-seq approaches
has significantly accelerated the application of antibody repertoires.
However, extracting significant characteristics from the Rep-seq
dataset is crucial and challenging. To streamline the analysis of Rep-
Seq datasets and advance the use of public datasets, we developed
RAPID, a comprehensive Rep-Seq dataset analysis platform with an
integrated antibody database. This platform has several important
advantages over prior analysis tools. First, RAPID provides a user-
friendly automatic analysis pipeline, incorporating low-level and
high-level analyses for the Rep-Seq dataset. Second, to the best of
our knowledge, RAPID contains the largest human BCR Rep-Seq
database, consisting of 2,449 datasets processed by a standardized
pipeline. This large reference database allows users to flexibly
perform comparative analysis for their dataset. Third, it
incorporates a large antibody database including 306 million
clones, 521 therapeutic antibodies, and 88,059 antibodies targeting
specific antigens or arising in patients with particular diseases. Based
on such an expansive antibody database, RAPID supports robust
antibody annotation and query services with diversified outputs.

With these rich functionalities, the RAPID platform has many
practical applications. For example, it provides abundant reference
datasets for comparative analysis, allowing users to examine dynamic
changes in the immune repertoire between different groups. This
functionality is essential for discovering biomarkers for disease
diagnosis (19, 50) and for evaluating the efficacies of vaccines (15,
16). Furthermore, identifying antigen-specific neutralizing antibodies,
such as those against HIV-1 (13) and SARS-CoV-2 (39), is
demanding but essential for immunotherapies. With its antibody
annotation and query modules, RAPID can increase efficiency and
reduce the workload of antigen-specific antibody screening. Finally,
public clones, which serve as ideal biomarkers of antibody
convergence reflecting the canonical features of immunogens, are
valuable for non-invasive disease diagnosis or prognostic surveillance
(51) and for monitoring the immune response to infection or
vaccination (52). RAPID provides 306 million highly reliable clones
to ensure public clone detection, even if researchers conduct
experiments with limited sample sizes.

Constructing an encyclopaedic atlas of human and model
organism (such as mice) immune repertoires could complete the
infrastructure for investigating the adaptive immune system and
contribute to its applications in rational vaccine design and
immunotherapies. Therefore, we will continue to collect Rep-
seq datasets and antibody sequences including but not limited to
(i) antibody Rep-seq datasets of light chains; (ii) antibody Rep-
seq datasets from model organisms; and (iii) TCR Rep-seq
datasets from humans and model organisms.

We believe that RAPID, with its elaborate Rep-seq datasets
and antibody collections, could be a vital tool for assisting
Frontiers in Immunology | www.frontiersin.org 9
immunologists in exploring the immune repertoire and
hastening its application.
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