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Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder
characterized by deficits in social communication, social interaction, and repetitive
restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral
patterns characterized by repetition, inflexibility, invariance, inappropriateness, and
frequent lack of obvious function or specific purpose. To date, the classification of
RRBs is contentious. Understanding the potential mechanisms of RRBs in children
with ASD, such as neural connectivity disorders and abnormal immune functions, will
contribute to finding new therapeutic targets. Although behavioral intervention remains
the most effective and safe strategy for RRBs treatment, some promising drugs and new
treatment options (e.g., supplementary and cell therapy) have shown positive effects
on RRBs in recent studies. In this review, we summarize the latest advances of RRBs
from mechanistic to therapeutic approaches and propose potential future directions in
research on RRBs.
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INTRODUCTION

Autism spectrum disorder (ASD) is a common, heritable, and heterogeneous neurodevelopmental
disorder characterized by deficits in social communication, social interaction, and repetitive
restricted behaviors (RRBs). Kanner (1943) first described the autistic symptoms. The latest study
has shown that the prevalence of ASD among American children aged 8 years was 1/44 or 2.27%
(Maenner et al., 2021). RRBs are purposeless behavior patterns that interfere with normal behaviors
and were confirmed as the core symptom of ASD in the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5) released by the American Psychiatric Association (2013).

Compared with social communication impairment, RRBs have gained less attention in ASD
studies. RRBs occur in the early developmental stage and may interfere with the acquisition of
essential life skills in the future. Furthermore, RRBs severely affect the quality of life and impose
additional burdens on the family (Leekam et al., 2011; Wolff et al., 2014). Although behavioral
intervention has achieved positive effects on RRBs (Boyd et al., 2012), the evidence of medication
for RRBs remains insufficient. In this review, we summarize the latest studies on RRBs in ASD and
suggest future directions in research on RRBs.
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REPETITIVE RESTRICTED BEHAVIORS

As an independent predictor of the prognosis of ASD (Troyb
et al., 2016), the term “RRBs” is used to describe various
behaviors and activities characterized by repetition, inflexibility,
invariance, inappropriateness and frequent lack of obvious
function and specific purpose, and highly restricted, fixated
interests distinguished from the peers (Turner, 1999; Langen
et al., 2011a). RRBs are thought pathological symptoms when
they interfere with social relationships and impede daily
activities. RRBs are non-specific symptoms observed in many
other psychiatric disorders and developmental disabilities (Moss
et al., 2009; Flores et al., 2011; Oakes et al., 2016; Evans,
2017). Moreover, RRBs also occur as common behaviors in
typically developmental (TD) children, such as ritual behavior
(Leekam et al., 2007; Arnott et al., 2010). In the section of
ASD in DSM-5 (American Psychiatric Association, 2013), RRBs
are divided into four subtypes: (a) Stereotyped or repetitive
motor movements, use of objects, or speech. (b) Insistence on
sameness, inflexible adherence to routines, or ritualized patterns
of verbal or non-verbal behavior. (c) Highly restricted, fixated
interests that are abnormal in intensity or focus. (d) Hyper- or
hyporeactivity to sensory input or unusual interests in sensory
aspects of the environment. Despite a lack of specific criteria
to define different subtypes of RRBs, we can also identify the
abnormal manifestation of repetitive behaviors depending on
their characteristics and contexts in which they occur. For
example, just turning lights and radios on or off is not considered
RRBs, yet doing these repetitively without any specific purpose
is recognized as abnormal RRBs. Because of the heterogeneity
of RRBs, there are great challenges of deep understanding and
completely assessing RRBs.

Firstly, there is rarely a consensus on the classification
of RRBs by clinicians. In 1999, Turner classified RRBs into
two types: “low-order” RRBs characterized by repetitive body
movements (dyskinesia, convulsion, motor stereotypy, repeated
manipulation of objects, and repetitive self-injury behavior)
and “high-level” RRBs characterized by procedural and ritual
behavioral patterns (insistence on sameness, resistance to change,
repetitive language, and limited interest) (Turner, 1999). More
studies divided RRBs into repetitive sensory motor (RSM)
behaviors and insistence on Sameness (IS) behaviors (Cuccaro
et al., 2003; Georgiades et al., 2010; Bishop et al., 2013). This
two-factor model was consistent with the above classification
described by Turner. However, the two-factor model has not
been adopted in all studies. To date, many factor analysis
studies have further examined the subtypes of RRBs by
questionnaires designed for RRBs. The factor analysis based on
repetitive behavior scale–revised (RBS-R) proposed a six-factor
model: stereotyped behavior, self-injurious behavior, compulsive
behavior, ritualistic behavior, sameness behavior, and restricted
behavior (Bodfish et al., 2000; Esbensen et al., 2009). At present,
based on the six-factor model of RBS-R, other researchers have
also developed five-factor and three-factor models (Lam and
Aman, 2007; Mirenda et al., 2010; He et al., 2019). The five-
factor model merged the original subscales of ritualistic behavior
and sameness behavior into one (ritualistic/sameness behavior

subscale). This model seemed reasonable because both behaviors
showed the same invariance and consistency needs and was more
stable and reproducible than the original RBS-R (Lam and Aman,
2007). The three-factor model comprised compulsive ritualistic
sameness behaviors, self-injurious behaviors, and restricted
stereotyped behaviors. Mirenda et al. suggested that five- and six-
factor models showed a better statistical fit than the three-factor
model. However, the three-factor model also had advantages
in genetic quantitative trait locus (QTL) analyses (Mirenda
et al., 2010). He et al. (2019) considered the five-factor model
preferable because the five-factor model had good psychometric
characteristics and was more concise than the six-factor model.
In addition, Leekam et al. (2007) obtained the four-factor model
via repetitive behavior questionnaire-2 (RBQ-2). In a word, the
classification criteria of RRBs are controversial. The variability
of classification of RRBs may impact the consistency of results
in different studies. That is to say, different measurement tools
may divide a certain type of RRBs into different subcategories.
For example, the item, arrange toys or other things in rows or
patterns, was loaded into the subscale of preoccupation with
restricted patterns of interest in RBQ-2, but the same-meaning
item was allocated to the compulsive behavior subscale in RBS-R.
This inconsistency may lead to the wrong conclusion regarding
the more specific RRBs classification. Thus, it is necessary to
compare various scales to confirm unified classification criteria
and develop recognized assessment tools. These ensure results are
comparable in different studies and further help to reveal more
differences of RRBs in different populations, such as more severe
self-injurious behavior in girls with ASD that cannot be found in
studies using the two-factor model (Antezana et al., 2019).

Secondly, typically developing children also manifest some
ritualistic, repetitive behaviors during early development (Evans
et al., 1997; Leekam et al., 2007; Arnott et al., 2010). Then
how can we differentiate RRBs between children with ASD
and TD children? Usually, the RRBs in children with ASD
are more excessive and diverse than those in TD children and
result in severe impairments (Bodfish et al., 2000; Richler et al.,
2007; Mandy et al., 2011; Harrop et al., 2014). Furthermore,
following up repetitive behaviors across the developmental
course is essential to determine whether it is aberrant. In TD
children, repetitive behaviors are more common in toddlers
than preschoolers (Kim and Lord, 2010). In early infancy, the
stereotyped motor is considered a developmental manifestation
of intrinsic central motor programs (Thelen, 1981). Repetitive
behaviors may weaken with age in TD children (Larkin et al.,
2017; Uljarevic et al., 2017; Sifre et al., 2021). However, the RRBs
in children with ASD remain or aggravate with age (Leekam et al.,
2007; Richler et al., 2010; Joseph et al., 2013).

ASSESSMENT OF REPETITIVE
RESTRICTED BEHAVIORS

Early specific RRB symptoms predict the severity and outcome of
ASD (Troyb et al., 2016; Miller et al., 2021). Moreover, two early
studies indicated that preschool children with ASD displaying
RRBs tended to have worse school-age language outcomes than
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those who did not exhibit RRBs (Charman et al., 2005; Paul
et al., 2008). These findings emphasize the importance of early
evaluation of all subtypes of RRBs.

There are three main methods to assess RRBs: parent
interview, observation, and questionnaire. The autism diagnostic
interview-revised (ADI-R), a semi-structured, standardized
interview, is an acknowledged diagnostic tool of ASD (Lord
et al., 1994). However, the items related to RRBs are scarce
and concentrated in the dimension of restricted interest and
behavior. Thus, some researchers contended that ADI-R was
insufficient to cover all relevant RRBs occurring in children with
ASD. The autism diagnostic observation schedule, 2nd edition
(ADOS-2) combined with ADI-R, has been regarded as the gold
standard for assessing children with ASD (Lord et al., 2012;
McCrimmon and Rostad, 2014). Although some items about
RRBs are included in the ADOS-2 algorithm, it is worth noting
that this assessment may not find children’s RRBs in a limited
time and single environment, thereby affecting the accuracy of
assessment (Hus et al., 2014).

In addition, questionnaire is an excellent supplement to
parent interview and observation. We summarize frequently
used RRBs questionnaires and their relative strengths and
weaknesses in Panel 1.

NEUROPSYCHOLOGY OF REPETITIVE
RESTRICTED BEHAVIORS

Cognition
In the early stages, executive function (EF) impairment was
thought an explanation for RRBs, starting with Turner (1997,
1999). EF first develops in the early stages of development,
approximately the end of the first year of life, and develops rapidly
at the age of 2–5, which is in line with alterations of RRBs with age
(Leekam et al., 2011). Numerous studies have supported a close
connection between elevated RRB levels and EF impairments
in children with ASD (Lopez et al., 2005) and TD children
(Iversen and Lewis, 2021), such as set-shifting (Miller et al., 2015),
inhibitory control (Mosconi et al., 2009), cognitive flexibility,
and working memory (Van Eylen et al., 2015). An alternative

view suggested that impaired EF was another manifestation
of RRBs rather than an independent causative force driving
RRBs. For example, the impairment of inhibitory control and
set shifting seemed to be more related to the “high-order” RRBs,
indicating that it might be that we were looking at the same
general phenomenon (i.e., behavioral inflexibility or cognitive
inflexibility) through different lenses (Mosconi et al., 2009;
Van Eylen et al., 2015; Schmitt et al., 2018; Faja and Nelson
Darling, 2019). Overall, RRBs can be indexed in many ways,
including direct observations of behaviors, standardized rating
scales, and neuropsychological tests of, for example, set-shifting
or cognitive flexibility.

Reinforcement and Habit
Organisms are motivated to seek reward stimuli (e.g., pleasant
experiences or positive outcomes) or achieve specific goals, which
increases the probability that specific behavior will be repeated
(Wenzel and Cheer, 2018). This process is called reinforcement.
Initially, ASD studies of reinforcement focused on social stimuli
(Dawson et al., 1998; Klin et al., 2009). However, more attention
has been given to the social motivation theory of autism in
recent years (Chevallier et al., 2012). Children with ASD show
diminished social motivation and a preference for non-social
stimuli. This imbalance of motivations between non-social and
social stimuli reflects the dysfunction of reward system (Dichter
et al., 2012; Kohls et al., 2013), which may be the neurobiological
basis of restricted interests (a subtype of RRBs) (Cascio et al.,
2014; Clements et al., 2018; Kohls et al., 2018). Imaging studies
revealed that the ventromedial prefrontal cortex (vmPFC) –
ventral striatum (VS) – amygdala circuitry related to reward
system seemed to be dysfunctional in ASD and underlay atypical
reward responsiveness in individuals with ASD in part (Kohls
et al., 2012; Langen et al., 2014). The activation of striatal regions
increased in response to restricted interests in ASD (Clements
et al., 2018). Similarly, Kohls et al. (2018) reported the stronger
responsiveness of reward system to restricted interests rather
than social rewards in children with ASD than TD children.
Generally speaking, some types of RRBs may reflect, at least to a
degree, reward-based processes (e.g., strong interest, motivation,
and pleasure in response to unusual behaviors, objects, and

Panel 1 | Currently used RRB questionnaires.

• Repetitive Behavior Scale-Revised (RBS-R): This scale is the most frequently used to measure the severity of RRBs. The 43 items were compiled into six subscales:
stereotyped behavior, self-injurious behavior, restricted behavior, compulsive behavior, ritualistic behavior, and sameness behavior (Bodfish et al., 2000). RBS-R has a
good psychometric criterion. Some researchers have also developed five- and three-factor models (Lam and Aman, 2007; Mirenda et al., 2010; He et al., 2019), but
their applicability needs to be proven in future studies. Considering comprehensive items and convenient use, RBS-R has a wide range of clinical applications (Lam
and Aman, 2007; Mirenda et al., 2010; Bishop et al., 2013; He et al., 2019).

• Aberrant Behavior Checklist (ABC): This is a caregiver rating scale used to assess behavioral problems in ASD (Aman et al., 1985; Kaat et al., 2014). Compared with
other tools, ABC includes more comprehensive behavioral problems. Besides RRBs, it also investigates other aspects, such as emotional stability, attention, and
hyperactivity. Currently, ABC applies to children and adults and is used for measuring the results of drugs and behavioral interventions in individuals with ASD (Owen
et al., 2009; Bearss et al., 2013). Nevertheless, a potential disadvantage is that the stereotypic behavior subscale contains only seven items mainly describing
stereotyped motor and limb movements.

• Repetitive Behavior Questionnaire (RBQ): The RBQ is created for the sole purpose of assessing RRBs and includes 33 items (Honey et al., 2012). Twenty-nine items
examine four subtypes of RRBs, including repetitive movements, sameness behaviors, repetitive use of language, and circumscribed interests. The four additional
items consist of a summary item, which examines children’s overall interests or hobbies, and three open questions: the earliest repetitive activity, the most marked or
noticeable behaviors, and the problematic repetitive behaviors. Based on RBQ, some researchers have developed RBQ-2 (Leekam et al., 2007) and RBQ-2A (Barrett
et al., 2015) suitable for adults and children, respectively. RBQ checks the frequency of specific RRBs. Thus, it is very suitable to study the frequency or prevalence of
RRBs. Moreover, three open questions also provide more information. So far, RBQ is not widely used in clinical practice.
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activity) (Kohls et al., 2018). However, there is a lack of studies
on the relationship between reward system and other subtypes
of RRBs. Moreover, a part of individuals with ASD described
that they felt pleasure when RRBs occurred, which urged them
to do it again (Joyce et al., 2017). On the contrary, facing
social communication, children with ASD had to confront the
changing environments and unexpected events (Dawson et al.,
1998). Thus, it is reasonable to presume that the preference for
non-social stimuli reduces unpredictability and brings pleasant
experiences to compensate for the anxiety and aversion of
social communication in individuals with ASD. However, the
contention is speculative and in need of empirical testing beyond
a subjective sense of function (e.g., feeling pleasure).

In addition, reward-guided behaviors usually start as goal-
directed actions that are controlled by the anticipation of the
outcome. However, these behaviors can become stimulus-driven
habits under certain conditions, which are not controlled by
outcome expectancy (Yin and Knowlton, 2006). After achieving
the same results via repetitive behaviors multiple times, we
may focus less on the outcomes of actions, and goal-directed
actions become automatized and habitual (Simmler and Ozawa,
2019). That is to say, goal-directed actions are controlled
by their consequences, habits by antecedent stimuli (Yin and
Knowlton, 2006). Alvares et al. (2016) found reduced goal-
directed action control in individuals with ASD, which promoted
habitual actions in an anxiety-inducing environment (e.g.,
social encounters). However, Geurts and De Wit (2014) did
not find a disruption in the balance between goal-directed
and habitual behavioral control in children with ASD. This
inconsistency may be due to the age difference in the two
studies (Alvares et al., 2016). Moreover, the corticostriatal
connectivity is the neurobiological basis of the balance between
habitual and goal-directed action control (Yin and Knowlton,
2006; Wit et al., 2012). Augustine et al. showed the reduced
functional connectivity between the prefrontal and striatal
regions (i.e., regions associated with goal-directed behaviors).
However, the functional connectivity between motor/premotor
cortex and striatal regions (i.e., regions critical for developing
and regulating habitual behaviors) had no difference in children
with motor stereotypies (a type of RRBs) compared to TD
children (Augustine et al., 2021). A speculative contention was
decreased prefrontal – striatal connectivity altered the balance
between habitual and goal-directed action control, which resulted
in enduring motor stereotypies. To sum up, it is unclear whether
RRBs can be considered persistent and habitual actions based
on a functional imbalance hypothesis referring to habitual and
goal-directed action control. The notion is largely needed to be
supported by empirical evidence.

Habituation
Habituation is defined by an increasing reduction in behaviors
and neural responses to repetitive stimuli, not caused by
adaptation of sensory receptors or motor fatigue (Thompson
and Spencer, 1966; Schmid et al., 2014). For example, repetitive
affective and facial expression stimuli resulted in the habituation
of automatic nervous systems and amygdala responses (Klorman
et al., 1977; Klorman and Ryan, 1980; Breiter et al., 1996;
Knight et al., 2005; Hare et al., 2008). In addition, habituation,

in turn, facilitates children to pay more attention to the
unknown from something acquainted, which promotes learning
and adaptive responses to environmental changes (Groves and
Thompson, 1970; Lloyd et al., 2014). Current studies supported
the abnormal habituation in ASD (Guiraud et al., 2011; Swartz
et al., 2013). Due to the abnormal habituation to normal input
of sensory signals, individuals with ASD exhibited abnormal
hyperresponsivity to environmental stimuli. Green et al. (2015)
found that youth with ASD and sensory overresponsivity had
attenuated neural habituation to stimuli in sensory cortices
and the amygdala compared to the control and showed
that this hyperresponsivity was due to failure to habituate.
Hyperresponsivity to environmental stimuli was related to
negative emotional reactions (e.g., anxiety) and highly uncertain
perception of the environment (Uljarevic, 2013; Black et al., 2017;
Vasa et al., 2018; Pickard et al., 2020). In addition, there is an
apparent correlation between anxiety and RRBs. RRBs play a
potential role in alleviating anxiety, and anxiety is an intrinsic
motivator for repetitive behaviors (Joosten et al., 2009; Leekam
et al., 2011; Rodgers et al., 2012; Spiker et al., 2012; Lidstone et al.,
2014). Thus, we speculate RRBs may diminish the unpleasant
emotional reactions due to the sensory hyperresponsivity and
environmental uncertainty by some behaviors related to escape
or avoidance in part. In conclusion, it is proposed that RRBs are
coping strategies of hyperresponsivity to sensory stimuli caused
by abnormal habituation. However, this contention is speculative
and also lacks empirical support. It is essential to conduct more
studies to explore the relationship between RRBs and habituation.

MECHANISM OF REPETITIVE
RESTRICTED BEHAVIORS

Autism spectrum disorder (ASD) is primarily caused by multiple
genetic mutations that affect the structure and function of
neural circuits. Various abnormities of brain regions and circuits
are related to repetitive behaviors. In addition, the latest
neurobiological and immunological findings suggest complex
and diverse mechanisms of RRBs. Further understanding
the mechanisms of RRBs helps to find more potential
therapeutic targets.

Cortico-Striatal-Thalamo-Cortical Circuit
Autism spectrum disorder (ASD) has been conceptualized as
a brain network connectivity disorder (Just et al., 2004). The
aberrant circuits predicted distinct RRBs in children with ASD
(Supekar et al., 2021). Many studies focused on the role of
the cortico-striatal-thalamo-cortical (CSTC) circuit in RRBs
because this circuit is closely related to the execution of goal-
oriented behavior. Interruptions or abnormalities (e.g., neuronal
alterations and aberrant projections) in the CSTC circuit caused
dysfunctional motor control (Lewis and Kim, 2009; Graybiel and
Grafton, 2015). Previous and more comprehensive reviews have
summarized neuroimaging (Wilkes and Lewis, 2018; Hiremath
et al., 2021) and neurobiological studies (Gandhi and Lee, 2020;
Vicente et al., 2020) of the role of CSTC in RRBs. In this section,
we will review new findings of RRBs.
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Neuroimaging of Cortico-Striatal-Thalamo-Cortical
Circuit
Structural magnetic resonance imaging (MRI) studies found
some abnormalities of the CSTC circuit with corresponding
changes in RRBs. The orbitofrontal cortex (OFC) gray matter
volume was positively associated with the severity of RRBs
(Hegarty et al., 2020). However, right caudal anterior cingulate
U-fiber volume was negatively associated with RRBs (Hau et al.,
2019). Interestingly, sex differences in brain structure were
associated with RRBs symptoms in autism. The female twin
with more severe RRBs had increased thickness of the right
intraparietal sulcus and decreased volume of the right orbital
gyrus. However, increased volume of the bilateral pallidum was
related to more severe RRBs in males (Van’t Westeinde et al.,
2020). In addition, structural covariance describes the anatomical
association in brain regions, which partially recapitulate networks
of synchronized brain activity and is connected with the
coordinated rates of developmental change in co-varying regions
(Alexander-Bloch et al., 2013). Aberrant structural covariance in
subcortical regions, such as thalami and basal ganglia, occurred
in children with ASD and predicted the severity of RRBs,
which suggested that abnormities of coordinating development
of subcortical regions played an essential role in RRBs (Duan
et al., 2020). Similarly, Mei et al. (2020) also reported that the
structural covariation in brain areas associated with the CSTC
circuit was significantly correlated with RRBs in individuals
with ASD. A latest preclinical neuroimaging study on RRBs
showed that reduced volume in key cortical and basal ganglia
regions, including the motor cortex, striatum, globus pallidus,
and subthalamic nucleus, was associated with repetitive behaviors
in C58/J mice (Wilkes et al., 2020).

There were some new reports of functional connectivity
changes of the CSTC circuit in recent years. For example, the
over-connectivity pattern primarily in networks involving the
fronto-temporal nodes related to RRBs occurred in individuals
with ASD (Conti et al., 2017). Ma et al. (2021) showed the
increased cortico-striatal intrinsic functional connectivities (iFC)
with age in ASD and significant correlations between ADOS-
RRB scores and iFC of the dorsal attention network-posterior
cingulate cortex/precuneus. Furthermore, Akkermans et al.
(2019) showed that increased functional connectivity between
the left nucleus accumbens (NAcc) and a cluster in the right
premotor cortex/middle frontal gyrus was correlated to more
severe RRBs in children with ASD.

Langen et al. suggested the cortico-striatal circuit could be
functionally divided into three “macro-circuits.” Each circuit was
comprised of discrete, essentially non-overlapping subcortical
structures, such as the striatum, globus pallidus, and thalamus,
and received multiple inputs from functionally related and
interconnected cortexes (Langen et al., 2011b). The CSTC circuit
mainly included the sensorimotor circuit (comprising the motor
and oculomotor loops), the associative circuit (dorsolateral
prefrontal loop), and the limbic circuit (lateral orbitofrontal
and anterior cingulate loops) (Groenewegen et al., 2003; Langen
et al., 2011a). The abnormities of any circuit could give rise to
different RRBs types. Some studies focused on these discrete
loops. For example, Abbott et al. reported that the individuals

with ASD and high RRBs showed depressed frontoparietal/limbic
and motor/limbic circuit ratios. In other words, RRBs seemed
to be linked to the imbalance of cortico-striatal connectivity,
which showed increased connectivity of limbic circuits, but
reduced connectivity of frontoparietal and motor circuits (Abbott
et al., 2018). Moreover, complex motor stereotypies (CMS) were
rhythmic, repetitive, fixed, and purposeless movements (Oakley
et al., 2015). Augustine et al. (2021) found reduced functional
connectivity between the prefrontal cortex and striatal regions
in children with CMS. However, functional connectivity between
motor/premotor cortex and striatal regions was no different from
the control group. In a word, these findings offered evidence of
the role of discrete loops in RRBs.

Neurobiology of Cortico-Striatal-Thalamo-Cortical
Circuit
How this circuit regulates repetitive behaviors, here we describe
the underlying neurobiological mechanisms of RRBs. Based on
the neurobiological studies, the CSTC circuit is composed mainly
of the direct pathway (cerebral cortex-striatum-internal segment
of the globus pallidus/substantia nigra-thalamus-cerebral cortex)
and indirect pathway (cerebral cortex-striatum-external segment
of the globus pallidus-subthalamic nucleus-internal segment of
the globus pallidus/substantia nigra-thalamus-cerebral cortex)
(Figure 1) (Kim et al., 2016). There are two major classes
of medium spiny neurons (MSNs) in the striatum [i.e., D1R-
expressing direct pathway MSNs (dMSNs) and D2R-expressing
indirect-pathway MSNs (iMSNs)], and MSNs respectively project
to different brain areas (Figure 1). The behavioral result of
activation of the direct pathway is motor activation/movements.
However, activating the indirect pathway will reduce motor
activity and movement (Calabresi et al., 2014). There was
abundant evidence of dysfunction of direct and indirect pathways
in ASD. Either of dysfunctions gave rise to the imbalance of
both pathways (Kim et al., 2016; Gandhi and Lee, 2020), which
might underlie RRBs (Lewis and Kim, 2009; Burguière et al., 2015;
Monteiro and Feng, 2016).

Recently, some studies reported abnormal activation of the
direct pathway in RRBs. In conditional knockout mice, the
overactivation of dMSNs caused excessive self-grooming (a
pathological repetitive behavior in mice), which suggested the
role of direct-pathway deficiency in RRBs (Shonesy et al., 2018).
Similarly, optogenetic activation of dMSNs also resulted in
sustained and chronic repetitive behaviors (Bouchekioua et al.,
2018). Engeln et al. (2021) found chemogenetic inhibition of
dMSN can reduce repetitive rotations. In addition, the increased
RRBs related to aberrant dMSNs have been found in Neuroligin
1 and Neuroligin-3 mutant mice (Rothwell et al., 2014; Espinosa
et al., 2015).

Other studies revealed the indirect pathway role in RRBs.
Shank3 deletion preferentially caused synaptic defects in iMSNs
in Shank3B-KO mice, which provided direct evidence that a
primary dysfunction of indirect pathway brought about the RRBs
in ASD mice (Wang et al., 2017). In addition, Brandenburg
et al. (2020) reported the increased dopamine type 2 gene
expression in the dorsal striatum in postmortem brain tissue
from an individual with ASD, which implied the alteration of
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FIGURE 1 | Schematic drawings of the direct pathway, indirect pathway, and hyperdirect pathway. GPe, external segment of the globus pallidus; GPi, internal
segment of the globus pallidus; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus; MSN, medium spiny neuron.

indirect pathway in ASD. When it comes to the indirect pathway,
STN, a vital part of the indirect pathway, has to be mentioned
(Tanimura et al., 2011; Wilkes et al., 2020). In C58/J mice,
reduced volume in STNs was associated with repetitive behaviors
(Wilkes et al., 2020). The pharmacological studies on the indirect
pathway also implied the indirect-pathway role in RRBs. For
example, sub-chronic drug treatment targeting the indirect
pathway reduced repetitive behavior in C58 mice and improved
the STN dysfunction (Muehlmann et al., 2020). Similarly,
adenosine A2A receptor agonist treatment attenuated increased
grooming behaviors in BTBR mice (Amodeo et al., 2018).
Selectively enhancing the indirect striatal pathway activation also
corrected the RRBs in Shank3B-KO mice (Wang et al., 2017).
Moreover, exposure to environmental enrichment retarded the
development of stereotypy and recovered the decreased STN
activation related to RRBs in high-stereotypy mice (Tanimura
et al., 2010). Subsequently, the same team reported that this effect
was based on the increased neuronal activation and dendritic
spine densities in STN (Bechard et al., 2016). Besides, high-
frequency stimulation at STN significantly alleviated RRBs in
rodents (Aliane et al., 2012; Chang et al., 2016) and primates
(Baup et al., 2008). However, there was a lack of neuroimaging
studies that revealed the relation between RRBs and STN in
humans. To sum up, the activations of direct and indirect
pathways determine behavioral responses, and the imbalance of
activations will give rise to RRBs.

The hyperdirect pathway, an integral component of the CSTC
circuit, may be involved in the occurrence of RRBs (Figure 1).
The STN is considered to receive fast monosynaptic projections
from motor areas of the cortex via the hyperdirect pathway
(Nambu et al., 2002). This pathway has been verified in humans

(Brunenberg et al., 2012; Kelley et al., 2018) and animal models
(Haynes and Haber, 2013; Averbeck et al., 2014). Activation
of hyperdirect pathway will inhibit ongoing motor movements
(Bahuguna et al., 2015). Increasing studies on the role of the
hyperdirect pathway in inhibitory control have been reported
in humans and animals (Eagle et al., 2008; Rae et al., 2015;
Pasquereau and Turner, 2017; Jahfari et al., 2019). Cai et al. (2019)
showed that the hyperdirect pathway predicted the inhibitory
control in children. As mentioned earlier, inhibitory control
may be another manifestation of RRBs. Thus, we suggested the
hyperdirect pathway is related to RRBs, although there is a lack of
direct evidence for the correlation between hyperdirect pathway
and RRBs in ASD.

Moreover, the CSTC circuit is modulated by endogenous
neuropeptides, including cannabinoids, opioids, and several
other neurotransmitters. Shonesy et al. (2018) found that
regulating endocannabinoid signaling in the direct pathway
influenced the level of RRBs. Endogenous opioids in the frontal
cortex (i.e., the starting site of projections in direct and indirect
pathways) were negatively correlated to RRBs (Augustine et al.,
2020). In addition, some studies have found abnormalities in the
CSTC circuit in genetically mutated mice with particular signal
transduction deficits, such as Dlg2 deletion mice (Yoo et al., 2020)
and xCT −/− mice (Bentea et al., 2020). These studies gave
support to the importance of the CSTC circuit in RRBs.

Cerebellum
The cerebellum is related to sensorimotor processing and motor
control (Bostan et al., 2010; Mosconi et al., 2015a). Increasing
evidence suggests cerebellar connection dysfunction in ASD
(Mosconi et al., 2015a,b), and these structural and functional
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alterations of the cerebellum are associated with RRBs (Rojas
et al., 2006; Cheung et al., 2009; D’Mello et al., 2015; Wolff
et al., 2017). The loss of Purkinje cells in the cerebellum may
be the biological basis of RRBs (Al Sagheer et al., 2018). In
this section, we summarize the new findings based on previous
reviews (Wilkes and Lewis, 2018; Gandhi and Lee, 2020; Vicente
et al., 2020).

Alteration of cerebellum structure related to RRBs has been
reported in ASD. Srivastava et al. (2019) showed that cerebellar
vermis volume reduced with high RRBs score and may predict
severity of RRBs in Phelan-McDermid syndrome. However, a
study of children at high risk of ASD found that high-risk infants
have larger cerebellar at 4–6 months of age, and alterations in
the volume are positively correlated with repetitive behaviors
at 36 months. The study suggests that early cerebellar and
subcortical volumes predicted repetitive behaviors in children
(Pote et al., 2019). These inconsistent results may be due to
the different ages of participants. Previous studies of younger
children with ASD found larger total cerebellum (Sparks et al.,
2002) and cerebellar white matter volume (Courchesne et al.,
2001). In addition, RRBs were related to the volume of the crus
II of the cerebellum in C58/J mice (Wilkes et al., 2020). All
above data supported the cerebellum volume to be a potential
biomarker for predicting RRBs severity.

Functional magnetic resonance imaging (fMRI) studies
indicated aberrant connectivity between the cerebellum and
cerebral cortex. Lidstone et al. collected resting-state fMRI
from 105 children with ASD and found that elevated RRBs
were associated with low right posterior cerebellum-left inferior
parietal lobule (IPL) connectivity and high right posterior
cerebellar-right IPL connectivity (Lidstone et al., 2021). Kelly
demonstrated disrupted functional connectivity between the
cerebellum and the medial prefrontal cortex (mPFC) in multiple
mouse models of ASD-linked genetic mutations and individuals
with ASD. Modulating the circuit from the right cerebellum crus1
area to the mPFC can lead to repetitive behaviors in Tsc1 mutant
mice (Kelly et al., 2020).

Recently, the connection between the basal ganglia and
cerebellum has increased attention. Two-way communication
between the basal ganglia and cerebellum has also been
proved in primates (Bostan et al., 2010). In addition, Chen
et al. found a disynaptic pathway between striatum and
cerebellum in mice. This short-latency pathway allowed rapid
communication between the cerebellum and the basal ganglia.
Thus, cerebellum can regulate the corticostriatal plasticity. Under
pathological conditions, abnormal activity from the cerebellum
was transmitted to the basal ganglia, which led to dysfunctional
behaviors (Chen et al., 2014). Other studies also provided
evidence of a powerful, short-latency pathway that connected
the cerebellar dentate nucleus with the dorsolateral striatum
(Bareš et al., 2015). The above reports were based on animal
models. This connection also appears in humans. Milardi et al.
found a direct route linking the dentate nucleus to the internal
globus pallidus and the STN in healthy people (Milardi et al.,
2016). Moreover, the basal ganglia and cerebellum were involved
in different learning systems (i.e., reward-based learning and
developing specific conditioned responses). Dasgupta et al.

suggested their complementary roles in behavioral learning and
the substantial bidirectional communication between these two
brain structures. The combination of learning systems based
on the basal ganglia and cerebellum allows for more stable
and faster learning of goal-directed behavior than individual
systems (Dasgupta et al., 2014). The imbalance between the two
systems may lead to aberrant motor and non-motor functions
(Subramanian et al., 2017). Based on these studies, the interaction
between the cerebellum and basal ganglia may play an important
role in RRBs. However, there is a lack of direct evidence to clarify
the correlation between this connectivity and RRBs.

The cerebellar Purkinje cell (PC) dysfunction in the
cerebellum may be the biological basis of RRBs (Mejias et al.,
2019; Winkler et al., 2020). For example, the Shank3 mutant
mouse exhibited significantly stereotyped behavior with fewer
PC in cerebellar sub-regions (Matas et al., 2021). PC activation
improved RRBs in PC-TSC1 mutant mice (Kelly et al., 2020).
In addition, increased oxidative stress resulted in cerebellum
dysfunction, which is associated with RRBs. Nadeem et al.
(2019a,b) found that the deficiency of an adaptive antioxidant
response in the cerebellum was related to increased repetitive
behaviors in BTBR mice, and sulforaphane can restore this
deficiency to improve the RRBs.

Abnormal Immune Functions
Abnormal immune functions are related to ASD symptoms
(Moradi et al., 2021). The immune dysfunction in ASD directly
affects various neurodevelopmental and neurological processes,
resulting in behavioral abnormality (Mead and Ashwood, 2015).
In primate models of maternal immune activation (MIA), rhesus
monkey offspring exposed to MIA in utero exhibited an increased
frequency of motor stereotypies (Bauman et al., 2014; Rose et al.,
2017). It has been demonstrated that the increased level of
maternal autoantibody was associated with more severe RRBs.
For example, exposure to endogenous maternal anti-Caspr2
antibody in utero led to robust RRBs in male mice (Bagnall-
Moreau et al., 2020). Similarly, constant exposure to the autism-
specific maternal autoantibodies throughout gestation result in
apparent RRBs in C57BL/6J mice (Jones et al., 2020). In addition,
offspring mice received a single intraventricular injection of
IgG from two mothers of children with ASD on embryonic
day 14 displayed RRBs (Camacho et al., 2014). Martin et al.
(2008) found treatment with IgG from mothers of children with
ASD induced offspring to exhibit whole-body stereotypies in
rhesus monkeys. However, Bauman et al. (2013) did not find
any alterations of repetitive behaviors in rhesus monkeys injected
with human IgG isolated from mothers of children with ASD
six times during early and mid-gestation. The inconsistency of
offspring behaviors was probably due to the route and number
of injections administered, different animal models (Watson and
Platt, 2012), the pregnancy time of the injection, the alteration of
testing circumstances (Hutt and Hutt, 1965; Runco et al., 1986),
and most importantly, the source of IgG used (Salloum-Asfar
et al., 2019). Further studies are needed to determine the influence
of these factors. However, there was no doubt that maternal
antibodies played a role in RRBs. In addition, BTBR mice
exhibited increased oxidative stress and insufficient enzymatic
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antioxidant responses associated with autistic repetitive behaviors
(Nadeem et al., 2019a). In recent years, more clinical studies
have found that higher levels of proinflammatory factors, such
as IL-1β (Ashwood et al., 2011b) and IL-10 (Meyer et al., 2008),
were related to more severe RRBs (Ashwood et al., 2011a;
Careaga et al., 2017; Rose et al., 2017). Regulating immune
pathways in BTBR mice reduced RRBs with decreased levels of
proinflammatory cytokines (Zhang et al., 2019). In summary,
proinflammatory factors may be the mediator between immune
dysfunction and RRBs. Many pharmacological studies of RRBs
were based on immune abnormalities in ASD (Ahmad et al.,
2019). For example, Mirza and Sharma (2019b) found that
pioglitazone reduced oxidative stress and nerve inflammation
in related brain regions and improved propionic acid-induced
neurobehavioral and biochemical impairments in rats. Li et al.
(2020) found that aberrant eating behaviors and high food-
specific IgG antibody concentrations were related to more severe
RRBs in children with ASD. In addition, the ketogenic diet
could improve the high levels of repetitive behavior in male
C57Bl/6 mice affected by MIA (Ruskin et al., 2017). At present,
most studies were based on animal models with ASD, and a
few measured the indicators of proinflammatory factors (Bryn
et al., 2017). Moreover, more scholars focused on the relationship
between immune dysfunction and abnormal gut microflora in
individuals with ASD (Moradi et al., 2021). Based on the above
findings, related immune pathways may become one of the
therapeutic targets of RRBs.

Other Potential Neural Mechanism
Most studies of the mechanism of RRBs were conducted in
animal models with related genetic mutations. Researchers
observed the typical core symptoms of ASD in various mutated
mice (Satterstrom et al., 2020). Neurotransmitters, such as
glutamate and γ-aminobutyric acid (GABA), regulated the
balance of excitation and inhibition (E/I) in the brain (Cai et al.,
2017). The increased excitatory signals and decreased inhibitory
interneurons would induce RRBs in ASD animals (Rinaldi et al.,
2007; Gogolla et al., 2009). Moreover, modulating the level of
transmitters could change RRBs (Rhine et al., 2019). Abnormal
neurotransmitter systems of brain areas related to RRBs would
give rise to RRBs (Peca et al., 2011; Bentea et al., 2020), such
as glutamate receptor-interacting proteins 1/2 (Grip1/2) (Mejias
et al., 2019), metabotropic glutamate receptor 5 (mGluR5)
(Silverman et al., 2010; Luo et al., 2018), and GABAA receptor
(Yoshimura et al., 2017). Yang et al. (2021) reported that acute
administration of GABA-A or/and GABA-B receptor agonists
could palliate repetitive behaviors in ASD mice.

Serotonin (5-hydroxytryptamine, 5-HT) plays a complex role
in regulating neural circuits during prenatal and postnatal
development (Whitaker-Azmitia, 2001; Veenstra-VanderWeele
et al., 2012; Wirth et al., 2017). The alteration of the 5-HT
neurotransmitter system in the brain has been reported in animal
models and individuals with ASD (Muller et al., 2016). The
studies of treatment with selective serotonin reuptake inhibitors
(SSRIs) produced inconsistent results on RRBs (Costa et al.,
2018; Reddihough et al., 2019; Herscu et al., 2020). Diverse
5-HT receptors have different effects on RRBs. For example,

the blockades of 5-HT2A receptor (Amodeo et al., 2017) and 5-
HT6 receptor (Amodeo et al., 2021) reduced RRBs. Decreased
activation of 5-HT1A also achieved the same effect (Chugani et al.,
2016). However, activating the 5-HT7 receptor reversed repetitive
behaviors in Fragile X syndrome (Costa et al., 2018). The
current studies on serotonin were based on animal models, and
more complete studies in humans will confirm the relationship
between 5-HT and RRBs.

Increasing studies related to RRBs focused on other neural
signalings, such as dopaminergic signaling (Lee et al., 2018b;
Venkatachalam et al., 2021), cannabinoid signaling (Marco et al.,
2011; Fyke et al., 2021; Nezgovorova et al., 2021), mammalian
target of rapamycin (mTOR) signaling (Burket et al., 2014;
Chugani et al., 2016; Wu et al., 2017), adenosine signaling (Ansari
et al., 2017; Lewis et al., 2019), and histamine signaling (Eissa
et al., 2018; Eissa et al., 2020b; Venkatachalam et al., 2021).
These signal molecules may play a role in regulating synaptic
transmission in brain regions related to RRBs, and multiple
signaling pathways might be involved in the pathological process
simultaneously (Eissa et al., 2019; Eissa et al., 2020a; Muehlmann
et al., 2020; Eissa et al., 2021; Venkatachalam et al., 2021).

TREATMENT AND INTERVENTION OF
REPETITIVE RESTRICTED BEHAVIORS

In recent years, the number of studies on RRB treatment
and intervention has increased. There is no recognized drug
intervention for RRBs at present, and behavioral intervention
remains the most effective and safe strategy for RRBs treatment.
This section reviews the recent advance in drug intervention,
supplementary therapy, and other potential therapies.

Drug Treatment
Although no evidence-based effective medicine for RRBs
in ASD has been proposed, some drugs based on new
psychopharmacological mechanisms or molecular targets have
shown potential benefits in early studies. Given the substantial
individual differences in clinical response and side effects
observed in current studies, more studies are needed to
verify these findings.

Antipsychotic Drug
Risperidone and aripiprazole, the atypical antipsychotic drugs
acting on the D2 dopamine receptor, have been approved to
reduce irritability, agitation, aggression, and self-harm in ASD
by the Food and Drug Administration (FDA) (McCracken
et al., 2002; Owen et al., 2009). Although risperidone has been
reported to reduce RRBs in salt-induced kinase 1 (SIK1)-mutant
mice via attenuating neural excitability and excitatory synaptic
transmission (Badawi et al., 2021), a meta-analysis published in
2020 showed that antipsychotics were not beneficial to RRBs
in clinical trials (Yu et al., 2020). Subsequently, another meta-
analysis including more RCTs pointed out a slight improvement
in RRBs after administration of antipsychotics (Zhou et al., 2021).
This finding has no practical value because clinicians must weigh
these moderate benefits of antipsychotics against the considerable
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side effects (Correll et al., 2006). Compared with other clinical
pharmacological trials of ASD, the studies of antipsychotics have
a smaller sample size and more significant heterogeneity in
estimated treatment effect.

Oxytocin
A great number of studies reported the critical role of oxytocin
in human social interaction (Insel et al., 1999; Yatawara et al.,
2016). Intranasal administration of the neuropeptide oxytocin
(IN-OT) has been regarded as a potential therapy for the core
symptoms of ASD. However, its effect in RRB has received less
attention. An early study revealed oxytocin infusion reduced
RRBs in adults with autism and Asperger syndrome (Hollander
et al., 2003). This invasive method is not ideal and replaced
by IN-OT for researchers and clinicians (Guastella et al., 2013).
After 4 weeks of daily oxytocin administration (24 IU/day), RRBs
were significantly reduced in 40 adult men with high-functioning
autism (Bernaerts et al., 2020). Interestingly, a preliminary trial
showed that 6 weeks of IN-OT had a significant effect on
social communication rather than RRBs in 18 men with ASD
(Watanabe et al., 2015). However, the same research team found
that oxytocin reduced ADOS-RRB score in a larger sample
(n = 106), which applied the same study design (Yamasue et al.,
2020). This difference may be caused by sampling error and less
placebo effect on RRBs related to less expectation for effects.
In the same year, another randomized controlled trial (RCT)
study also verified the benefits of oxytocin to RRBs (Alaerts
et al., 2020). Regarding the underlying neural mechanism of
the IN-OT effect, Alaerts et al. (2020) suggested that IN-OT
might cause long-term alterations in the internal functional
connectivity of the amygdala to the OFC, which was related
to RRBs improvement. In addition, Watanabe et al. (2015)
reported that the improvement of the core social symptoms in
ASD was accompanied by oxytocin-induced enhancement of
task-independent resting-state functional connectivity between
the anterior cingulate cortex (ACC) and dorsomedial prefrontal
cortex. As an increasing number of trials have evaluated the
clinical response of multiple doses of IN-OT in ASD, Peled-Avron
et al. (2020) conducted a meta-analysis that showed that IN-OT
was well tolerated and supported that oxytocin could improve
RRBs in ASD, although the effect size was small. However, some
studies with small sample sizes have not found the benefits of
oxytocin to RRBs (Anagnostou et al., 2012; Dadds et al., 2014;
Guastella et al., 2015; Kosaka et al., 2016), it is necessary to
conduct multi-center RCT studies with a larger sample and focus
on the improvement of RRBs.

Bumetanide
Bumetanide is an effective diuretic. As mentioned above,
GABAergic signals play a vital role in regulating RRBs (Cellot
and Cherubini, 2014). Convincing evidence has shown that
defects in inhibitory GABAergic signals led to ASD, and the
level of GABAergic inhibition depended on the concentration of
intracellular chloride [(Cl-)i] (Schulte et al., 2018). NKCC1 (Na-
K-Cl cotransporter 1) is the primary transporter responsible for
regulating (Cl-)i, and its activity controls the level of chloride
in neurons, which further affects the post-synaptic effect of

GABAergic transmission (Schulte et al., 2018). Bumetanide, a
selective NKCC1antagonist (Ben-Ari, 2017; Kharod et al., 2019),
could restore GABAergic inhibition and weaken behavioral and
electrophysiological characteristics in various diseases (e.g., ASD
and Fragile X syndrome) by regulating the concentration of
neuronal chloride (Payne et al., 2003; He et al., 2014; Kaila et al.,
2014; Tyzio et al., 2014; Juarez-Martinez et al., 2021). However,
there is a lack of reports on the effects of bumetanide on RRBs
in animal models. Increasing studies exhibited a positive effect
of bumetanide in children with ASD or Fragile X syndrome
(Lemonnier et al., 2013; Du et al., 2015; Zhang et al., 2020;
Dai et al., 2021). After a pilot study reported the benefits of
bumetanide to RRBs (Lemonnier and Ben-Ari, 2010), Lemonnier
et al. conducted two RCT studies to test bumetanide in 60 and 88
patients. Both trials showed a significant reduction in scores of
RRBs (Lemonnier et al., 2012; Lemonnier et al., 2017). Similarly,
another Phase-2 Superiority Trial also revealed significant effects
on RRBs in children aged 7–15, despite no superior effects
on the primary outcome of social communication and social
interaction (Sprengers et al., 2021). Crutel et al. (2021) described
a design of two Phase III studies to evaluate the efficacy/safety
of bumetanide oral liquid in ASD, which will provide strong
evidence to support the benefits of bumetanide to RRBs. In
addition, bumetanide could improve emotional face perception
and increase the time spent in spontaneous eye gaze in ASD, with
alterations of the activation level in corresponding brain regions
(Hadjikhani et al., 2015; Hadjikhani et al., 2018). Current studies
were mainly conducted in children and adolescents under 18, and
this potential effect in adults should be further verified.

Other Drugs
Based on the possible neurobiological mechanism of RRBs,
some emerging treatment methods, such as pioglitazone
(Capano et al., 2018), pioglitazone (Chugani et al., 2016),
intranasal administration of vasopressin (Parker et al., 2019),
and IGF-1 injection (Kolevzon et al., 2014), could significantly
improve RRBs in individuals with ASD. Some anti-inflammatory
drugs targeting abnormal immune functions in ASD showed
the benefits to RRBs, such as memantine plus risperidone
(Ghaleiha et al., 2013), org 2766 (a synthetic analog of the
adrenocorticotrophic hormone) (Buitelaar et al., 1990; Buitelaar
et al., 1992), and celecoxib plus risperidone (Asadabadi et al.,
2013). In 2020, a meta-analysis of pharmacological interventions
for RRBs in ASD included 64 different trials conducted
before November 2019. Except for the drugs mentioned above,
divalproex sodium, leucovorin, and guanfacine as monotherapies
have a more significant positive effect on RRBs of ASD (Zhou
et al., 2021). Most findings of the above drugs were based on
studies with a small sample and required to clarify their effects
further. No pharmacological drug has shown significant clinical
benefits and a solid evidence base of effectiveness.

Preclinical Pharmacological Studies
More drug studies are in preclinical stage, and a variety of ASD
animal models have become the essential tools for preclinical
studies (Lewis et al., 2007), which provides the theoretical basis
for following clinical trials. Increasing drug trials in animal
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models are based on the hypotheses of potential mechanisms
in ASD, especially abnormal neurotransmitter/neuromodulator
systems. In SHANK3 mutant mice, acute administration of
tandospirone, a 5-HT1A receptor agonist, reduced self-grooming
behavior (Dunn et al., 2020). In addition, N-methyl-D-aspartate
(NMDA) receptor plays an important role in the balance
of E/I and postnatal low-dose MK-801, an NMDA receptor
blocker, improved ASD-related behaviors in valproic acid (VPA)-
treated rats (Kim et al., 2017; Mohammadi et al., 2020).
Another potential function mechanism of the NMDA receptor
antagonist was to ameliorate immune dysfunction. For example,
dextromethorphan rescued the impaired behavioral patterns in
VPA-induced autistic rats and decreased the levels of various
oxidative stress and inflammatory markers (Singla et al., 2021).

Another area that receives much attention is the drugs
targeting abnormal immune function. 5-aminoisoquinolinone
(5-AIQ) has the effects of neuroprotection and down-regulated
inflammatory responses (Alhosaini et al., 2021). In BTBR
mice, the 5-AIQ treatment significantly prevented self-grooming
and marble burying behaviors and ameliorated neuroimmune
dysfunctions (Ahmad et al., 2020). Similarly, the benefits to
RRBs were reported in the study of the administration of
catechin hydrate and pioglitazone in VPA-induced rats (Mirza
and Sharma, 2019a; Mehta et al., 2021) and sulforaphane in BTBR
mice (Nadeem et al., 2019b). They corrected immune dysfunction
and oxidant-antioxidant imbalance in periphery and brain in
mice. Beyond that, Zhang et al. (2019) showed that folic acid
reduced RRBs in BTBR mice via mitigation of oxidative stress,
inflammation, and ferroptosis. Another nutritional supplement
of gestational B-vitamin alleviated mitochondrial damage in the
hippocampus and PM2.5-induced autism-like behaviors in mice
offspring (Wang et al., 2019).

Since a large proportion of people with neurodevelopmental
disorders such as ASD are disturbed in their daily sleep/wake
cycles (Robinson-Shelton and Malow, 2016). In response to
this phenomenon, researchers tried melatonin treatment in
CNTNAP2 KO mice and found that it improved excessive
grooming in mice (Wang et al., 2020). Furthermore, MTHFR
polymorphism was associated with an increased risk of ASD,
and the offspring of Mthfr +/− mice (Pu et al., 2013), whether
wild-type or heterozygous, exhibited autism-like behaviors. It
is surprising that after 14 days of choline supplementation,
the characteristics of RRBs were offset (Agam et al., 2020).
In addition, other supplementary treatments showed promising
effects in ASD animals. For example, abnormally high levels of
homocysteine (Hcy) were considered to have a relation with ASD
(Kałużna-Czaplińska et al., 2013). Administration of betaine, a
methyl group donor in Hcy metabolism, significantly ameliorates
RRBs in VPA-induced autistic mice (Huang et al., 2019).
Furthermore, exposure to VPA might alter zinc metabolism
resulting in a transient deficiency of zinc. Cezar et al. (2018)
showed that zinc supplements reduced the transient zinc
deficiency and prevented VPA-induced RRBs in rats. Autistic
children with similar genetic or metabolic alterations would
benefit from similar supplementary treatment if these results are
replicated. Other drug studies showed initial outcomes of RRBs in
animal models (Bhandari and Kuhad, 2015; Luhach et al., 2021).

For example, treatment with medical cannabis alleviated RRBs
by over 70% in Shank3 mice (Poleg et al., 2021). Administration
of beta-carotene (Avraham et al., 2019; Avraham et al., 2021)
and curcumin (Zhong et al., 2020) reduced RRBs in BTBR
mice. However, the limitations are that these drugs have multi-
target effects and their specific mechanisms are unclear, hindering
their use in clinical trials. Moreover, some drugs approved to
treat other diseases revealed a new therapeutic effect on RRBs
(Román et al., 2021; Ryu et al., 2021; Wu et al., 2021). Chinese
herbal medicine also positively influenced RRBs in BTBR mice
(Park et al., 2021).

Behavioral Intervention
Behavioral intervention is still the most effective and safest
intervention for RRBs. The behavioral intervention for RRBs
has been comprehensively reviewed elsewhere (Odom et al.,
2010; Boyd et al., 2012; Harrop, 2015; Kodak and Bergmann,
2020). This section only reviews the latest reports about the
comprehensive treatment model (CTM) (Odom et al., 2010).

At present, the most widely used CTMs include the Denver
Model, Structured Teaching (TEACCH), and Early Intensive
Behavior Intervention (EIBI). Behavioral parent training (BPT)
is considered the first choice of treatment for young children
with disruptive behaviors (Kaminski and Claussen, 2017), and
parent-child interaction therapy (PCIT) is one of the most
supported evidence-based BPTs. After implementing PCIT, 16
individuals showed a significant improvement in RRBs compared
to the control group (Parladé et al., 2020). Besides, self-
management intervention and pivotal response treatment (PRT)
were implemented in three young children with ASD, and
results showed improvements in children’s higher-order RRBs
and interactions with parents (Lin and Koegel, 2018). However,
one limitation should also be considered: CTM is a multitarget
intervention, and most studies assessed RRBs as one of the
secondary results; therefore, limited high-quality research has
reported on its efficacy on RRBs.

Supplementary Therapy
Abnormal eating habits in children with ASD play a potential
role in exacerbating ASD symptoms (Peretti et al., 2019). In
recent years, increasing studies focused on the potential value of
nutritional supplements in ASD, but limited evidence supported
their effectiveness on RRBs.

Vitamin D
Studies have reported decreased vitamin D levels in the blood of
patients with ASD (Wang T. et al., 2016). Vitamin D3 seemed
to have therapeutic potential in ASD (Jia et al., 2015). After
3-month vitamin D3 supplementation, RRBs improved in 37
children with ASD, particularly in younger children (Feng et al.,
2017). Another study involving 83 children with ASD also found
an improvement in RRBs after 3-month treatment (Saad et al.,
2016). In contrast, Kerley et al. (2017) conducted an RCT study
including 38 children with ASD, which found that vitamin D3 did
not affect RRBs after 5-month supplementation.
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Folic Acid and Omega-3 Fatty Acid
The abnormal metabolism of folic acid is related to ASD
(Castro et al., 2016), and folic acid deficiency have been
found in the brains of individuals with ASD (Karin et al.,
2017). Supplementing high doses of folic acid in maternal mice
can significantly reduce RRBs of offspring (Di et al., 2021).
A recent RCT study evaluated the effect of high-dose leucovorin
supplementation in ASD. Forty-eight children with ASD and
language barriers were randomly given leucovorin or placebo,
and RRBs were significantly improved in the leucovorin group
(Frye et al., 2018).

Omega-3 fatty acid is associated with mood disorders.
Some preliminary studies suggested that Omega-3 fatty acid
could effectively treat various mental disorders, such as ASD
(Yehuda et al., 2005). Yui conducted a 12-week, 240 mg/day
DHA + 240 mg/day arachidonic acid (ARA) intervention on 13
individuals with ASD, and significant improvements in RRBs
were observed (Yui et al., 2012). However, the latest meta-
analysis, including six studies, suggested no significant effect of
omega-3 fatty acids (Zhou et al., 2021).

Other Supplements
Gastrointestinal problems and unique gut flora in individuals
with ASD are related to the development and severity of ASD
symptoms (Hughes et al., 2018). Changing gut flora is considered
a promising treatment for related behavioral disorders. Seventeen
children with ASD (3–16 years old) were supplemented with
Lactobacillus Plantarum WCSF1. After a 12-week intervention,
the behavioral score was significantly improved (Parracho
et al., 2010). Additionally, some dietary patterns have shown
advantages of RRBs in animal models (Castro et al., 2017; Lee
et al., 2018a). Gluten-free diets (Ghalichi et al., 2016), casein-
free diets (Lucarelli et al., 1995), and ketogenic diets (El-Rashidy
et al., 2017) have been verified to have positive effects on
ASD symptoms. However, another study reported no significant
differences in RRBs (Harris and Card, 2012; Navarro et al.,
2015). So, there are still uncertainties about the effects of dietary
approaches. Further investigations are needed to confirm these
dietary interventions’ specific efficacy and safety for RRBs with
a larger sample.

Other Treatment
Except for the above three intervention methods, many other
emerging non-drug treatments targeting RRBs have been
reported. Cell therapy indications have been expanded from
hematological malignancies to other diseases. Cell therapy has
shown preliminary safety and effectiveness in children with ASD.
Moreover, transcranial magnetic stimulation (TMS) is used in
various mental diseases with specific effects. Researchers began
to explore its effects on ASD symptoms in recent years.

Cell Therapy
The studies of epigenetics, neuroimmunology, and neurobiology
in ASD indicated that cell therapy was an effective approach
for treating the core symptoms of ASD (Vaccarino et al.,
2011; Siniscalco et al., 2012b; Liu et al., 2019; Zhang et al.,
2021). Two outstanding features of stem cells are the intense

immunosuppressive activity that allows them to be used in
autologous or heterologous transplantation (Siniscalco et al.,
2012a) and paracrine actions (Baraniak and McDevitt, 2010;
Siniscalco, 2012). Stem cells usually synthesize and release a
variety of cytokines, chemokines, and growth factors (Beyth
et al., 2005; Siniscalco et al., 2012b), which can reduce the
proinflammatory state observed in children with ASD (Gupta
et al., 2010) and activate endogenous repair mechanism to
recover the damaged function of related cells and tissues
(Siniscalco et al., 2012b).

Stem cell therapy has shown benefits to RRBs in various ASD
models. Intraventricular administration of mesenchymal stem
cells (MSCs) significantly improved core ASD-like symptoms in
BTBR mice, including social interaction and RRBs (Segal-Gavish
et al., 2016). In addition, intranasal administration of human
exosomes derived from mesenchymal stem cells (MSC-exos) was
effective on all core ASD behaviors in two different mice (BTBR
and SHANK3 KO) (Perets et al., 2018, 2020). Transplantation of
mesenchymal stem cells has been proven safe in many clinical
trials (Gupta et al., 2010), and whether mesenchymal stem cells
apply to individuals with ASD and clinically improve the ASD-
like symptoms deserves to be further explored. Regarding clinical
trials on cell therapy, Lv et al. conducted a single-center phase I/II
trial to assess the safety and efficacy of combined transplantation
of human cord blood mononuclear cells (CBMNCs) and
umbilical cord-derived mesenchymal stem cells (UCMSCs) in 37
children with ASD (3–12 years of age). Individual transplantation
of CBMNCs was demonstrated to remarkably decrease repetitive
behaviors compared to the control group. In addition, combined
transplantation of CBMNCs and UCMSCs showed better
therapeutic effects (Lv et al., 2013). Similarly, Nguyen Thanh et al.
(2021) found that transplantation of mononuclear cells of bone
marrow combined with educational intervention showed that
RRBs and hyperactivity were significantly reduced in children
with ASD. These stem cell trials were proved excellent safety,
with no safety issues noted during injection and the whole
follow-up period (Lv et al., 2013; Nguyen Thanh et al., 2021).
Significantly, the benefits of cell therapy to RRBs are necessary
to be clarified because most clinical studies in ASD focused on
social deficits rather than RRBs or regarded the alterations of
RRBs as a secondary result (Bradstreet et al., 2014; Chez et al.,
2018; Villarreal-Martínez et al., 2021).

There is still a long way before cell therapy becomes an
approved treatment for RRBs in ASD. More in-depth and
detailed studies on stem cell biology are necessary to understand
the mechanism in RRBs. In addition, the exact dose, time, and
site of stem cell infusion, as well as the fatal side effects and long-
term safety, need to be further determined. For example, some
researchers are concerned about intravenous administration
because animal models have shown that it was difficult for
transplanted cells to pass through organs (e.g., spleen and kidney)
via intravenous administration (Steiner et al., 2012). Moreover,
there is a correlation between the dose of transplanted stem cells
and the subsequent clinical improvement (Rocha et al., 2002),
which emphasized the importance of choosing the exact dose.
What should not be ignored is ethical issues in stem cell studies.
Such as the acquisition of stem cells, the safety of stem cell
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collection and administration, the tumorigenicity of stem cells,
and other ethical risks similar to other clinical studies (Siniscalco,
2012). The life expectancy of children with ASD is close to
normal, and potential risks of children’s medication are difficult
to define. Therefore, interventional stem cell therapy is morally
untenable unless more studies prove that the apparent benefits
outweigh the risks (Yeo-Teh and Tang, 2021).

Transcranial Magnetic Stimulation
Transcranial Magnetic Stimulation is a non-invasive brain
stimulation used to treat depression and other mental illnesses
via changing the excitability of neural circuits and reorganizing
the functions of cortex. Previous pilot studies reported positive
effects of repeated TMS (rTMS) in individuals with ASD
(Sokhadze et al., 2009; Casanova et al., 2012; Wang Y. et al.,
2016). Irritability, hyperactivity, and RRBs were decreased in 27
participants with ASD after 18-rounds rTMS on the dorsolateral
prefrontal cortex, and the latest study also drew a similar
conclusion (Sokhadze et al., 2014; Abujadi et al., 2018). In
addition, adults with autism and major depressive disorder
reported improvements in repetitive behaviors after 25-session
rTMS (Gwynette et al., 2020). A consensus statement of rTMS
for ASD showed that rTMS was a potential treatment for ASD
and suggested that existing studies have significant limitations,
and more definitive studies needed to be conducted to clarify the
safety and efficacy of rTMS in ASD (Cole et al., 2019).

PERSPECTIVE AND FUTURE
DIRECTIONS

Compared with studies targeting the social communication
deficits in ASD, current evidence of RRBs is limited. As the
core symptoms of ASD, the accurate assessment of RRBs is
crucial. Individuals with ASD show remarkable differences in
types and severity of RRBs, depending on different ages, genders,
and functional statuses. Because of the high heterogeneity of
RRBs, identifying additional subtypes of RRBs may be useful.
In addition, researchers developed assessment tools based on
male individuals with ASD and did not consider adequately
specific RRBs of the female sample, so it is urgent to develop
evaluation tools suitable for different clinical populations with
excellent sensitivity and applicability. Salloum-Asfar et al. (2019)
suggested that miRNA was a promising biomarker for ASD
diagnosis and core symptom assessment. For example, the level of
specific miRNA in saliva was positively correlated with the score
of repetitive restricted behavior (Hicks et al., 2020). Whether
miRNA can be used as a biomarker to assess the severity of RRBs
needs further exploring.

Moreover, with the development of new technologies and
methods, more specific mechanisms of RRBs will be discovered.
RRBs are mostly considered as a secondary outcome in current
studies. Thus, it is necessary to explore the relationship between
neural circuitry and subtypes of RRBs via more specific
assessment tools (e.g., RBS-R). Moreover, Van’t Westeinde et al.
(2020) found that RRB-related structural alterations of striatal
networks are more common in men, while abnormity of

frontoparietal networks was more observed in females, which
implied some differences in neural networks between male and
female were omitted in the studies without enough female
sample. Future studies of RRBs will include a larger female
sample to reveal possible gender differences in neural circuitry
related to RRBs. The related studies of the relationship between
hyperdirect pathway and RRBs are scarce. The increasingly
recognized importance of the hyperdirect pathway suggest it
may play an essential role in RRBs. In addition, the connectivity
between the basal ganglia and cerebellum is related to behavior
control, but how aberrant connectivity affects RRBs is unclear
in ASD. Therefore, there is a strong need to investigate
structural and functional connectivity related to RRBs. To
date, multiple RRBs-exhibiting ASD animal models have been
developed. Focusing on common pathophysiological changes
(e.g., abnormal immune function) in different animal models
may provide some crucial insights. Furthermore, future studies
on the potential neurobiology of reinforcement and habituation
will also contribute to a better understanding of RRBs. It is worth
noting that some conclusions are based on rodent models, and
translation of these findings to RRBs in humans with ASD is
difficult. So, the studies in primates may provide more evidence.

Lastly, how to intervene in the core symptoms of ASD is still
the most important and meaningful issue for individuals with
ASD. So far, behavioral intervention is still an essential part of
treatment for RRBs. There are still three significant obstacles
in psychopharmacology studies: (a) thus far, most trials have
not found significant differences in primary endpoint suggesting
insufficient effectiveness; (b) there are vast heterogeneities of
clinical effects and side effects in different people; (c) the
overlapping symptoms (e.g., anxiety and hyperactivity) and
uncertain mechanism of RRBs make it challenging to find a drug
aimed at specific targets. Even so, some medications, such as
oxytocin and budesonide, seemed to show benefits to RRBs. The
RCT studies with a larger sample are necessary to verify their
efficacy and safety. Due to the limited number of studies, the
specific efficacy and safety of supplementary therapy on RRBs
remain unclear. As a promising treatment, cell therapy faces
many scientific and ethical issues. In-depth and detailed studies of
stem cell biology are required to help understand the mechanism
of stem cells. The exact dose, time and site of stem cell infusion,
the fatal side effects, and long-term safety should be determined
in clinical trials.
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