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Abstract: Several kinds of inotropes have been used in critically ill patients to improve hemodynamics
and renal dysfunction after cardiac surgery; however, the treatment strategies for reducing mortality
and increasing renal protection in patients who underwent cardiac surgery remain controversial.
Therefore, we performed a comprehensive network meta-analysis to overcome the lack of head-to-
head comparisons. A systematic database was searched up to 31 December 2020, for randomized
controlled trials that compared different inotropes on mortality outcomes and renal protective effects
after cardiac surgery. A total of 29 trials were included and a frequentist network meta-analysis was
performed. Inconsistency analyses, publication bias, and subgroup analyses were also conducted.
Compared with placebo, use of levosimendan significantly decreased the risks of mortality (odds
ratio (OR): 0.74; 95% confidence interval (CI): 0.56–0.97) and risk of acute renal injury (OR: 0.61;
95% CI: 0.45–0.82), especially in low systolic function patients. Use of levosimendan also ranked
the best treatment based on the P-score (90.1%), followed by placebo (64.5%), milrinone (49.6%),
dopamine (49.5%), dobutamine (29.1%), and fenoldopam (17.0%). Taking all the available data
into consideration, levosimendan was a safe renal-protective choice for the treatment of patients
undergoing cardiac surgery, especially for those with low systolic function.

Keywords: levosimendan; cardiac surgery; acute kidney injury; mortality; network meta-analysis

1. Introduction

Approximately 2 million cardiac surgeries are performed annually worldwide [1]. In
45% of patients undergoing cardiac surgery, renal failure, a major complication, occurs and
is strongly associated with increased morbidity [2–4] and mortality [5–8]. Postoperative
acute renal injury (AKI) is commonly due to inadequate tissue perfusion [9]. Besides low
cardiac output and cardiogenic shock, post-cardiac surgery can precipitate renal failure,
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sepsis, vasoplegic shock, and atheroembolic etiologies of shock that can also cause AKI.
However, treatments are different among low cardiac output syndrome (LCOS), sepsis,
vasoplegic shock, and atheroembolic etiologies of shock-caused AKI. Inotropic agents are
frequently administered in cardiac surgery patients to improve hemodynamic function to
avoid hypotension and LCOS [10]. Therefore, the potentially renoprotective function of
inotropes after cardiac surgery have been investigated [11,12].

Several types of inotropes are used clinically. Catecholamines remain the cornerstone
of treatment for low cardiac output [11,12]. Through enhancement of the adrenergic path-
way, they increase myocardial inotropy and chronotropy by binding to beta-1-adrenergic
receptors, and they increase systemic vascular resistance by binding to alpha receptors.
Unfortunately, a high degree of adrenergic stimulation can have pernicious effects during
critical illness [13,14]. Phosphodiesterase 3 (PDE3) inhibitors, which are not altered by
previous β-blockade, are indicated if catecholamines are ineffective. Because of their vasodi-
lation effects, PDE3 inhibitors are less likely than dobutamine, a catecholamine, to increase
heart rate and myocardial oxygen consumption [15]. Despite these advantages, myocardial
ischemia and hypotensive episodes have been observed following their use [16]. Levosi-
mendan, a calcium sensitizer and an ATP-sensitive potassium channel (KATP) opener,
has properties of positive inotropy, vasodilation, and cardiac cytoprotection [17]. The
cardioprotective effect of levosimendan and its active metabolite (OR1896) may be re-
lated to reductions in myocardial inflammation, remodeling, ischemia–reperfusion injury,
and myocyte apoptosis [18–21]. Some meta-analyses, including some that have pooled
the results of randomized controlled trials (RCTs), have concluded that levosimendan
improves survival rate and exerts renoprotective effects in patients undergoing cardiac
surgery [22–30]. By contrast, three large RCTs did not demonstrate these beneficial effects
in patients with cardiovascular dysfunction [31–33]. The lack of a head-to-head comparison
of inotropes may be a reason for the contradictory findings.

Network meta-analysis (NMA) is a robust statistical method that combines direct
and indirect comparisons to solve the problem of missing data for head-to-head com-
parisons [34,35]. Accordingly, to evaluate the safety and efficacy of inotropes in patients
undergoing cardiac surgery, we performed an NMA of RCTs to compare different pharma-
cological interventions in terms of mortality and renoprotective effects.

2. Materials and Methods
2.1. Search Strategy and Study Criteria

This protocol was registered and approved in the Prospective Register of Systematic
Reviews, PROSPERO (CRD42020159411).

All relevant randomized controlled trials were searched from PubMed, EMBASE,
Web of Science, and Cochrane Central Register of Controlled Trials (CENTRAL) up to
December 2020, while some unpublished data were searched from ClinicalTrials.gov
registers (clinicaltrials.gov, accessed on 31 December 2020). The keywords included the
medical subject headings (MeSH) and text words for cardiac surgery and each treatment
medication were as follows: cardiac surgery OR heart surgery AND levosimendan OR
dopamine OR dobutamine OR milirinone AND kidney OR renal AND trial.

The study abstracts were used to filter the results obtained from e-databases; relevant
studies were then collected as full-text articles. Eligible studies meeting the following
criteria were included: (1) randomized controlled trials reporting on mortality or renal-
related endpoints; (2) enrolled patients aged 18 years or older with acute preoperative
circulatory insufficiency requiring treatment with a positive inotrope or by mechanical
means (IABP or ECLS); (3) intervention group received any inotropic agents, such as
catecholamines, phosphodiesterase-3 inhibitors, or other calcium sensitizer drug, such as
levosimendan; (4) comparators were placebo or any inotropic agents other than the agent
used in the intervention group; (5) study reports were not limited by language; and (6) the
cardiac surgical procedure could be coronary artery bypass grafting (CABG), CABG plus
aortic valve surgery, isolated mitral valve surgery, or any combination of these procedures.

ClinicalTrials.gov
clinicaltrials.gov
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However, the exclusion criteria were as following: (1) patients with cardiogenic shock,
sepsis, vasoplegic shock, or atheroembolic etiologies of shock; (2) patients with severe
preoperative renal insufficiency (Scr > 1.5 mg/dL); and (3) studies that included cardiotonic
agents that were used less frequently, i.e., dopexamine, enoximone and amrinone.

2.2. Data Extraction and Risk of Bias Assessment

The primary outcome was the longest following-up mortality after cardiac surgery
with the treatment of inotropes. The secondary outcomes were established as renal-
related problems, such as the incidence of acute kidney injury (AKI), renal replacement
therapy (RRT)—including hemodialysis, peritoneal dialysis, or continuous venovenous
hemodialysis—and time in an intensive care unit (ICU) during the use of an inotropic agent
after cardiac surgery.

The information collected from each article included: primary outcome and secondary
outcomes, cardiac surgery setting details, sample size, the inotropic agent’s dosing regimen,
patients’ baseline heart and renal function, and acute kidney injury definition if data were
available. In addition, a Cochrane risk-of-bias tool (version 5.1.0, Cochrane, London, UK)
was applied to evaluate the risk of bias of included trials.

All of the above were performed by two independent investigators. Furthermore, if
any disagreement between them occurred, a consensus was reached with a third reviewer.

2.3. Statistical Analysis

Network meta-analysis, which is a multiple treatment analysis method that combines
direct and indirect evidence, makes it feasible to contrast treatments that would be unable
to be compared by a pairwise approach. In addition, our network meta-analysis used
a frequentist random effects model and reported results on the basis of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

For discrete data such as mortality, AKI, and RRT, we used an odds ratio (OR) with
95% confidence intervals (CIs) calculated by the Mantel–Haenszel method to measure the
endpoints of study. Mean difference (MD) with 95% CI was used with outcomes involving
continuous data, such as ICU length of stay. If the mean and standard deviation (SD) were
not given, other values such as the median and interquartile range (IQR) were converted to
means and SDs to obtain a mean difference [36].

Speculating on the heterogeneity among the intervention effects, we used a random
effects model on the inverse-variance weights according to the DerSimonian–Laird method
to achieve more unbiased statistics. Local inconsistency analyses were demonstrated by a
loop-specific approach that evaluated incoherence separately in each closed loop between
direct and indirect arms (p-values < 0.05 mean inconsistencies) to assure that there were no
discrepancies and to appraise the robustness of the network meta-analysis. A funnel plot
was used to assess the publication bias.

Rank probability, the probability that an intervention was at a specific rank when
compared with the other interventions, was applied in network as P-score. Between multi-
arm tests, the P-score enhanced the precise effect of comparisons and consideration of the
correlation. This rating estimated from highest to lowest the probability of each outcome
for each drug contrasted to placebo. A P-score can range from 0% (i.e., this treatment was
the lowest rank) to 100% (i.e., this treatment was the highest rank).

Pooled data using network meta-analysis were analyzed by R version 3.5.1 with
the netmeta package (https://CRAN.R-project.org/package=netmeta, accessed on 12
January 2021). In addition, if a network indicated that a specific drug had both safety
and renal-related efficacy, we performed a subgroup analysis (a p-value of the subgroup
difference less than 0.1 indicated a statistically significant subgroup effect) to elucidate the
exact clinical settings by Revman 5.3. (Cochrane collaboration, Copenhagen: The Nordic
Cochrane Centre, The Cochrane Collaboration, 2014, London, UK).

https://CRAN.R-project.org/package=netmeta
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3. Results
3.1. Study Enrollment

Finally, a total of 434 articles which were screened from 5279 references were evaluated
by two independent researchers. Papers were excluded for the following reasons: no
outcome data including mortality or renal end point (202 studies), non-cardiac surgery
(74 studies), multiple reports of the same trial (21 studies), non-randomized controlled
trials (28 studies), no use of an inotropic agent (20 studies), irrelevant papers (56 studies),
and renal dysfunction studies (4 studies). Therefore, 29 RCTs were included, with which
we conducted the network meta-analysis (Figure 1).
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram of randomized controlled trials included and excluded. Non-RCT: none randomized
controlled trials.

3.2. Characteristics of Included Trials

Characteristics of these trials are listed in Supplementary Table S1. This study analyzed
a total of five inotropic agents: levosimendan, milrinone, dobutamine, dopamine, and
fenoldopam.

In addition, 28 trials reported outcomes on mortality [31–33,37–61] (3641 patients), 16 tri-
als reported the incidence of acute kidney injury [32,33,37,39,40,44,47,49,51,52,54–56,58,61,62]
(2678 patients), 14 trials reported on the need of renal replacement therapy [31–33,40,41,44,
46,47,49,50,52–55] (2923 patients), and 15 trials reported on the length of ICU
stay [31–33,37,40,42,44,52,53,55,56,58,60–62] (2504 patients). Furthermore, we established
four networks, one for each endpoint under analysis (Supplementary Materials Figure S1).

3.3. Risk of Bias

Most of the studies were of moderate to high quality. A total of 23 (61%) studies were
judged to carry a low risk of bias [31–33,37,39,47,50–53,56,58–62], 10 (26%) a moderate risk
of bias [38,40,42,43,45,48,49,55], and 5 (13%) a high risk of bias [41,44,46,54,57]. The most
common bias was non-blinded study bias in about 32% of included studies with an open-
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label design. Detail on the quality assessment of each study is depicted in Supplementary
Figure S2.

3.4. Mortality

The network analysis showed that use of levosimendan significantly reduced mortality
compared to placebo (OR: 0.74; 95% CI: 0.56–0.97) (Table 1). On the other hand, use of
dobutamine significantly increased mortality compared to placebo (OR: 1.98; 95% CI:
1.01–3.91) and levosimendan (OR: 2.69; 95% CI: 1.44–5.01).

Table 1. Results from the multiple-treatment comparison analyses for mortality and acute kidney injury (AKI).

AKI OR (95% CI) #

Dobutamine 1.19 (0.04–35.96) 34.81 (1.49–811.85) * 5.72 (2.01–16.27) * 3.2 (0.63–16.33) 3.49 (1.17–10.34) *
1.36 (0.13–14.05) Dopamine 29.24 (0.37–2329.85) 4.8 (0.19–123.11) 2.69 (0.08–85.69) 2.93 (0.12–73.99)

0.46 (0.04–4.74) 0.34 (0.01–7.97) Fenoldopam 0.16 (0.01–3.21) 0.09 (0–2.27) 0.1 (0.01–1.92)

2.69 (1.44–5.01) * 1.98 (0.21–18.83) 5.88 (0.62–55.97) Levosimendan 0.56 (0.16–1.95) 0.61 (0.45–0.82) *
1.45 (0.39–5.32) 1.06 (0.09–13.05) 3.16 (0.26–38.78) 0.54 (0.17–1.69) Milrinone 1.09 (0.31–3.8)

1.98 (1.01–3.91) * 1.46 (0.16–13.66) 4.33 (0.46–40.61) 0.74 (0.56–0.97) * 1.37 (0.44–4.25) Placebo
Mortality OR (95% CI) #

Comparisons between treatments are read from left to right, and the estimate with 95% confidence interval for a given comparison is read
at the intersection of two treatments. # Numeric values of this outcome are presented as an odds ratio (OR) with 95% confidence interval
(CI). An OR smaller than 1 favors the column-defined treatment, while an OR higher than 1 favors the row-defined treatment. * Denotes
p-value < 0.05.

3.5. Acute Kidney Injury (AKI)

Pooled analysis of all studies found that use of levosimendan (OR: 0.61; 95% CI: 0.45–0.82)
was associated with significantly lower AKI incidence compared to placebo (Table 1). In
addition, use of dobutamine resulted in significantly higher AKI incidence compared to
fenoldopam (OR: 34.81; 95% CI: 1.49–811.85), levosimendan (OR: 5.72; 95% CI: 2.01–16.27),
and placebo (OR: 3.49; 95% CI: 1.17–10.34).

3.6. Renal Replacement Therapy (RRT)

The network analysis showed that use of dobutamine (OR: 3.65; 95% CI: 1.41–9.46)
was associated with significantly higher RRT risk compared to levosimendan (Table 2).

Table 2. Results from the multiple-treatment comparison analyses for renal replacement therapy (RRT) and intensive care
unit (ICU).

RRT OR (95% CI) #

Dobutamine − 3.65 (1.41–9.46) * 1.30 (0.04–39.54) 2.63 (0.96–7.21)
3.48 (0.61–6.36) * Dopamine − − −
3.83 (2.72–4.94) * 0.35 (−2.31–3.00) Levosimendan 0.36 (0.01–9.47) 0.72 (0.52–1.00)
3.37 (2.04–4.70) * −0.12 (−2.79–2.56) −0.46 (−1.20–0.27) Milrinone 2.03 (0.08–54.70)
3.28 (2.09–4.48) * −0.20 (−2.81–2.41) −0.55 (−1.00−0.09) * −0.08 (−0.66–0.50) Placebo

ICU MD (95% CI) +

Comparisons between treatments are read from left to right, and the estimate with 95% confidence interval for a given comparison is read
at the intersection of two treatments. # Numeric values of this outcome are presented as an odds ratio (OR) with 95% confidence interval
(CI). An OR smaller than 1 favors the column-defined treatment, while an OR higher than 1 favors row-defined treatment. + Values of
this outcome are presented as mean difference (MD) with 95% confidence interval (CI). An MD smaller than 0 favors the column-defined
treatment, while an MD higher than 0 favors the row-defined treatment. * Denotes p-value < 0.05.

3.7. ICU Stay

The network analysis showed that use of levosimendan significantly reduced ICU
stay time compared to placebo (MD: −0.55; 95% CI: −1.00 to −0.09) (Table 2), while use of
dobutamine significantly increased ICU length of stay compared to dopamine (MD: −3.48;
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95% CI: 0.61–6.63), levosimendan (MD: −3.83; 95% CI: 2.72–4.94), milrinone (MD:−3.37;
95% CI: 2.04–4.70), and placebo (MD: −3.28; 95% CI: 2.09–4.48).

3.8. Finding of Ranking

In a ranking analysis performed with P-scores, the use of levosimendan ranked
the highest in mortality (P-score: 0.90), RRT (P-score: 0.90), and ICU length of stay
(P-score: 0.87) among the included inotropic agents (Supplementary Table S2). Though
use of fenoldopam exhibited a superior P-score in AKI, it seemed to be associated with
an increase in death. The sum of ranking finding for safety (P-score mortality) and renal
protective efficacy (P-score AKI) is presented together in a bivariate ranking plot (Figure 2).
To sum up, the results demonstrate that levosimendan had a better effect than others.
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Figure 2. P-scores ranking plot. P-scores ranking plot represents the mortality and the acute kidney
injury (AKI) of interventions in a cardiac surgery population. Treatment with better efficacy should
be in the upper-right corner of the graph.

3.9. Inconsistency Analyses

According to the direct and indirect estimations, no further differences were found
(Supplementary Table S3).

3.10. Publication Bias

No significant publication bias (Egger’s test, p > 0.05) of any relevant outcomes were
identified (Supplementary Figure S3).

3.11. Subgroup Analyses

In addition to the principal network meta-analyses, we also performed subgroup
analyses to investigate specific clinical settings of levosimendan that had a significant effect
on reducing mortality and AKI. The following were the predefined subgroup analyses
for mortality and AKI: (1) Systolic function: Trials that administered levosimendan to
patients with preoperative systolic function (low left ventricular ejection fraction (LVEF),
cardiac index (CI), and low cardiac output syndrome (LCOS), or preserved LVEF and
CI); (2) Administration timing: Trials that administered levosimendan preoperatively
versus intraoperatively versus postoperatively; and (3) Operation method: Trials that
administered levosimendan under different operation method, CABG versus valve versus
all kinds of cardiac surgery.

Only on mortality outcome did use of levosimendan show a significant subgroup
effect (p-value of subgroup difference <0.1), meaning that systolic function significantly
modified the effect of levosimendan in comparison to control (Figure 3). Levosimendan
was significantly favored over control for low systolic function, while control was favored
over levosimendan for high systolic function; therefore, the subgroup effect was qualitative.
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Even though other subgroup analyses showed non-overlap of confidence intervals (os-
tensibly indicating a statistically significant difference), only specific tests of subgroup dif-
ference showed subgroup effects. Consequently, neither mortality nor AKI had a subgroup
effect for administration timing or operation method (Supplementary Figures S4–S8).

4. Discussion

The present NMA comprehensively compared the mortality and renoprotective effects
of all inotropes used in cardiac surgery. Levosimendan significantly reduced mortality,
length of ICU stay, and AKI risk. Although fenoldopam exhibited a superior P-score in
AKI, it also seemed to be associated with increased mortality.

Most meta-analyses have reported an integrated useful effect of levosimendan on sur-
vival rate [22–28] and renal protection compared with other treatment regimens in patients
undergoing cardiac surgery [29,30], but three recent large multicenter RCTs (LICORN [31],
CHEETAH [32], and LEVO-CTS [33]) found neutral or inconclusive results. This discrep-
ancy between the results of the three large RCTs and previous small trials may be due
to the following reasons [63]: (1) The patients in the three RCTs received a relatively low
dose of levosimendan without bolus, which may have prevented potent vasodilatation
and consequent hypotension but also caused loss of noticeable hemodynamic effects; (2) In
the LEVO-CTS [33] and LICORN [31] trials, levosimendan was started very shortly before
surgery, which may have limited the preconditioning effect; and (3) In the CHEETAH [32]
trial, pretreatment with high doses of beta-mimetic drugs may have reduced the inotropic
effect of levosimendan [64]. Although small-study effects are a known problem in meta-
analysis, small studies can also show larger treatment effects [65] because they have more
controlled situations than a multicenter trial does. In other words, our study evaluated
every trial equally regardless of its size [66].

In the present NMA, levosimendan use did not result in a reduction rate of RRT
in patients undergoing cardiac surgery, which was consistent with the three large RCTs.
Although the use of RRT constituted relatively clear criteria, this outcome occurred in
only 1–2% of patients, indicating that the choice of end point remained a critical challenge.
However, our data also indicated a benefit of levosimendan in terms of mortality and
AKI. Preclinical experiments have demonstrated the renoprotective effect of levosimen-
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dan [67–69]. Levosimendan may improve renal filtration by selective afferent arteriolar
vasodilation [70]. Furthermore, to optimize the safety and efficacy of levosimendan, the
specific patient groups that may benefit the most from its use must be determined. As
suggested in our study and in previous meta-analyses [26,33], patients with low baseline
systolic function exhibited a significant reduction in mortality rate compared with con-
trols. Moreover, in contrast to the on–off action of other inotropes, the prolonged effect of
levosimendan, which lasts for several days [42,71], might be a major reason for its use.

Our finding that dobutamine use is associated with poorer outcomes is consistent
with previous research. An observational study reported that dobutamine administration
was associated with major cardiac morbidity [72]. Postoperative inotrope use, including
epinephrine, milrinone, and dobutamine, is independently associated with increased in-
hospital mortality and renal dysfunction [73]. However, despite the potential harmful
effects of catecholamines, inotropes are routinely prescribed to patients with low cardiac
output syndrome after cardiac surgery, according to current practice guidelines [74].

Our study has several strengths. First, extensive literature searches were conducted
and related RCTs were included. Second, we included only RCTs in the NMA; thus, our
results are of reasonable quality. Furthermore, comprehensive indirect comparisons were
performed among different inotropes on subgroup sets of clinical and renal physiologic
outcomes. Nevertheless, our study also has several limitations. First, to address the hetero-
geneity of inclusion criteria, most included studies had patients with normal preoperative
renal function. Therefore, our results may not be generalizable to patients with preexisting
renal dysfunction. However, pooling data with similar but not identical renal outcome
criteria might have introduced bias, potentially influencing our results. Second, the co-
variate distribution was uneven in subgroup analyses. Because of inadequate number of
studies, subgroup analyses might result in confounding. Specifically, the selection of study
characteristics for subgroup analysis was challenging because of limited definitions in each
study. To maintain the original design of each study, we used inclusion criteria instead
of the average systolic function at baseline. Our data revealed a significant subgroup
difference only in systolic function on mortality outcome. However, the result should be in-
terpreted cautiously because a much smaller number of trials and participants contributed
data to the low systolic function subgroup than to the high systolic function subgroup.
Consequently, the limited number of articles in the subgroup analysis may have caused
broad eligibility criteria and imbalanced distribution of effect modifiers; further trials for
precise estimation are required. Third, many included studies had a moderate to high risk
of bias, the most common being lack of blinding. However, the influence of blinding varies
depending on the type of outcome. For instance, in our NMA, overestimation was unlikely
when the outcome was objectively measured (e.g., death). Some earlier studies might
have been judged as having unclear bias due to limited information. However, to evaluate
the holistic effects of inotropic agents, we did not rule out these early studies. Fourth,
we investigated a mixed population of patients who were undergoing different cardiac
surgical operations, including a few patients without cardiopulmonary bypass. Therefore,
we performed subgroup analysis to deal with this limitation. The results demonstrate
that there was no subgroup difference and suggest an equal benefit with levosimendan
treatment in different operation methods (Supplementary Figures S4–S7).

5. Conclusions

In summary, taking all the available network meta-analysis data into consideration,
levosimendan may be a safe renal-protective inotropic agent for the treatment of patients
undergoing cardiac surgery. Further in-depth evaluation of the use of levosimendan
requires additional trials in well-defined patient populations, and its study design should
minimize the impact of patient management.
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