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a b s t r a c t

Viral pathogens have evolved a wide range of tactics to evade host immune responses and thus prop-
agate effectively. One efficient tactic is to divert host immune responses toward an immunodominant
decoy epitope and to induce non-neutralizing antibodies toward this epitope. Therefore, it is expected
that the amount of decoy epitope in a subunit vaccine can affect the level of neutralizing antibody in an
immunized animal. In this study, we tested this hypothesis by generating an antibody specific to the
decoy epitope on the capsid protein of porcine circovirus type 2 (PCV2). Using this antibody, we found
that two commercial vaccines contained statistically different amounts of the decoy epitope. The vaccine
with lower levels of decoy epitope induced a significantly higher level of neutralizing antibody after
immunization. This antibody can be used as an analytical tool to monitor the quality of a vaccine from
batch to batch.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Viral pathogens have evolved a wide range of tactics to evade
host immune responses and propagate effectively [1]. One such
tactic is to divert the host immune response with a decoy. Decoy
epitopes have been reported in a wide variety of viruses, including
human immunodeficiency virus (HIV) [2], feline immunodeficiency
virus (FIV) [3], hepatitis C [4], foot and mouth disease [5], middle-
east respiratory syndrome coronavirus [6], severe fever with
thrombocytopenia syndrome virus [7], porcine reproductive and
respiratory syndrome virus (PRRSV) [8], murine
gammaherpesvirus-68 (MHV-68) [9], and porcine circovirus type 2
(PCV2) [10]. Because a recombinant mutant capsid protein (CP)
with a deleted decoy epitope induced a higher level of virus-
neutralizing antibody than wild type proteins [11], it was ex-
pected that higher levels of decoy epitope in a prepared batch of
subunit vaccine would decrease its efficacy. However, it was not
possible to test this hypothesis by measuring levels of decoy
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epitope in a vaccine because an antibody specific to the decoy
epitope was not readily available.

PCV2 has a spherical structure with icosahedral symmetry [12].
The only structural protein of this virus is a 28-kD CP, which in-
cludes major antigenic determinants that can be used in subunit
vaccines [13]. A previous study showed that an epitope composed
of amino acid residues 169e180 (CP169e180) is the most immuno-
dominant among these antigenic determinants [11]. Because this
epitope is buried inside the virus-like particle (VLP) structure
(Fig. 1A), antibodies to this epitope cannot react with the intact
virus, and therefore are non-neutralizing [14]. As expected, PCV
infection elicited a humoral response to the CP169e180 epitope and
drove the production of non-neutralizing antibodies [15]. There-
fore, previous infection with PCV decreased the vaccines preven-
tion of the future infections.

Since the first vaccine against PCV2 was introduced to the global
market in 2006, nine PCV2 subunit vaccines have become available
[16]. However, they were expected to contain differing amounts of
incomplete VLPs, which are non-uniformly aggregated CPs with an
exposed CP169e180 epitope [17]. Incomplete VLPs can induce pro-
duction of non-neutralizing antibodies and reduce vaccine efficacy
[14,18]. As there was no analytical tool to measure the amount of
CP169e180 epitope in a prepared batch of vaccine, it was not possible
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. A novel PCV2 antibody is specific to the CP169e180 epitope. (A) The three-dimensional structure of PCV2 (PDB: 3JCI) was visualized by PyMOL 1.3. One capsid protein (CP)
and the immunodominant CP169e180 decoy epitope are marked in green and red, respectively. (B) Enzyme immunoassay using the anti-CP169e180 antibody. The amount of antibody
bound to antigens coated on microtiter plate was detected by HRP-conjugated goat anti-human Ck antibody. The results are the means ± standard deviations from experiments
conducted in triplicate; **p < 0.01, ***p< 0.001 by two-tailed unpaired Student's t-test. (C) Immunoblot analysis using the anti-CP169e180 antibody. After the gel electrophoresis,
antigens were transfected to nitrocellulose membrane. The membrane was probed with anti-CP169e180 antibody.
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to correlate epitope levels with neutralizing activity after
vaccination.

In this study, we developed an antibody specific to the CP169e180
epitope, determined the relative amounts of CP169e180 epitope in
two commercially available vaccines, and analyzed the influence of
the epitope level on the induction of neutralizing antibody.
2. Materials and methods

2.1. Preparation of VLP, PCV2 recombinant proteins, and peptide
conjugates

PCV2 CP (amino acids [aa] 1e233)was expressed in baculovirus-
infected Sf9 insect cells, as previously described [19]. The PCV2
ORF2 gene (GenBank no. EU747125) was cloned into the pFastBac
expression vector (Invitrogen, Carlsbad, CA, USA) and transfected
into Sf9 cells. The culture supernatant containing the recombinant
baculovirus was harvested and used to infect a separate batch of Sf9
cells. After 3 days, VLPs were purified from culture supernatant by
sucrose gradient ultracentrifugation.

Recombinant CP with a deletion of the N-terminal region of the
protein (delN CP, aa 44e233) was expressed in Escherichia coli and
purified, as described previously [12,20,21]. A synthetic CP169e180
peptide (STIDYFQPNNKRC) was chemically synthesized using Fmoc
solid-phase peptide synthesis (Peptron, Inc., Daejeon, South Korea)
and conjugated to bovine serum albumin (BSA) or keyhole limpet
hemocyanin (KLH) [10].
2.2. Generation of recombinant chicken anti-CP169e180 antibody

White leghorn chickens were immunized with KLH-conjugated
CP169e180 peptides. A phage-displayed chicken single-chain vari-
able fragment (scFv) library was constructed using total RNA iso-
lated from the bone marrow, spleen, and bursa of Fabricius of
immunized chickens, as previously described [22]. A positive clone
was enriched by biopanning and screened in a phage enzyme
immunoassay, as described previously [23,24].

The gene encoding the selected scFv clone was subcloned into a
modified mammalian expression vector encoding the Ck domain of
human IgG at the 30 region [25]. The scFv-Ck fusion protein (anti-
CP169e180 antibody) was purified from the culture supernatants of
transiently transfected HEK293F cells using KappaSelect resin (GE
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Healthcare, London, UK), according to the manufacturer's
instructions.

2.3. Enzyme immunoassay

The wells of a 96-well microtiter plate (Corning) were coated
with BSA-conjugated CP169e180 peptides, delN CP, and purified VLP
in coating buffer (0.1M NaHCO3, pH 8.6) and then blocked with 3%
(w/v) BSA in phosphate-buffered saline (PBS). After incubationwith
1 mg/mL of anti-CP169e180 antibody, horseradish peroxidase (HRP)-
conjugated goat anti-human Ck antibodies (Chemicon-Millipore,
Billerica, MA, USA) were added to each well. After washing with
0.05% (v/v) Tween 20 in PBS (PBST), 3,30,5,50-tetramethyl benzidine
(TMB) (GenDEPOT, Barker, TX, USA) substrate solution was added
and the absorbance was measured at 650 nm with a Multiskan
Ascent microplate reader (LabSystems, Helsinki, Finland) [26].

2.4. Immunoblot analysis

Dissolved proteins and BSA-conjugated CP169e180 peptides were
boiled for 10min in lithium dodecyl sulfate sample buffer with
reducing agents (Invitrogen). The samples were then electropho-
retically separated on a NuPage 4e12% Bis-Tris gel (Invitrogen) and
transferred to a nitrocellulose membrane [27]. After blocking with
5% (w/v) skim milk in Tris-buffered saline, the membrane was
incubated with 1 mg/mL of anti-CP169e180 antibody and probed with
HRP-conjugated goat anti-human Ck antibodies (Chemicon-Milli-
pore). The blot was visualized using SuperSignal West Pico
chemiluminescent substrate (Thermo Fisher Scientific, IL, USA).

2.5. Competition enzyme immunoassay using PCV2-infected pig's
sera

All animal experiments were performed under the approval of
the Institutional Animal Care and Use Committee of the BioPOA
(permit no. BP-2015-030-2). After the collection of sera from PCV2-
infected pigs and pigs with no infection history, the competition
enzyme immunoassay was performed as described previously with
the following appropriate modifications [25]. After pre-incubating
non-infected and infected porcine sera (n¼ 3/group) with serially
diluted anti-CP169e180 antibody, the mixtures were added to mi-
crotiter plate coated with BSA-conjugated CP169e180 peptide. An
irrelevant scFv fused with a Ck domain was used as an isotype-
matched control. The amount of bound porcine IgG was deter-
mined by HRP-conjugated goat anti-porcine IgG antibodies (Santa
Cruz Biotechnology, TX, USA) and TMBwas used for the substrate of
HRP.

2.6. Enzyme immunoassay using two commercial vaccines

We randomly designated two of out nine commercial vaccines
(Ingelvac CircoFlex [Boehringer Ingelheim Vetmedica], Porcilis
PCV-one [MSD Animal Health], Circumvent PCV [Merck Animal
Health], Fostera PCV [Zoetis], Suvaxyn PCV [Fort Dodge Animal
Health], Circovac [Merial], CircoShield [Green Cross Veterinary
Products], SuiShot Circo-ONE [ChoongAng Vaccine Laboratory] and
DS Circo PigVac [Daesung Microbiological LABS]) as vaccine A or
vaccine B. Then vaccine A and B were diluted four-fold in coating
buffer. After vigorous vortexing for 10min, microtiter plates were
coated with vaccines at 37 �C for 2 h and blocked with 3% BSA in
PBS.

The level of total PCV2 antigen in prepared VLP, delN CP, and the
two commercial vaccines was measured by enzyme immunoassay
using an anti-PCV2 polyclonal antibody (Veterinary Diagnostic
Laboratory, Iowa State University, Iowa, USA) [28] and HRP-
conjugated goat anti-rabbit IgG antibodies (Bethyl Laboratories,
Montgomery, TX, USA), as described previously.

To monitor the CP169e180 epitope levels, we performed the
enzyme immunoassay using the anti-CP169e180 antibody and HRP-
conjugated goat anti-human Ck antibodies (Chemicon-Millipore),
as previously described.

2.7. Immunization and the analysis of immune sera

Twenty guinea pigs were randomly divided into four groups
(n¼ 5/group). Each guinea pig was immunized intradermally with
200 mL of VLP, delN CP, or commercial vaccine. Four weeks after
immunization, whole blood was collected and sera were prepared.

An indirect fluorescence assay (IFA) was performed using the
sera and PCV2-infected PK-15 cells, as previously described [18,29].
To monitor the reactivity of sera to the CP169e180 epitope, enzyme
immunoassays, using BSA-conjugated CP169e180 peptides and HRP-
conjugated anti-guinea pig IgG antibodies (Bethyl Laboratories),
were performed as described previously. We performed serum vi-
rus neutralization assays using PK-15 cells, as described previously
[30,31].

2.8. Statistical analysis

Statistical analysis was conducted using GraphPad Prism (v5.0;
GraphPad Software Inc., San Diego, CA, USA). Results are expressed
as means and standard deviations of the indicated number of in-
dependent measurements. Statistical significance was determined
using two-tailed unpaired Student's t tests and non-parametric
Mann-Whitney's u test. Two-way analysis of variance (ANOVA)
was used to analyze the relationship between the two independent
factors. For all statistical analyses, p values of <0.05 were consid-
ered statistically significant.

3. Results

3.1. Novel PCV2 antibodies are specific to the CP169e180 epitope

A phage display library of combinatorial scFv was prepared us-
ing chickens immunized with KLH-conjugated CP169e180 peptides.
The complexity of the library exceeded 1.2� 109. To enrich for scFv
clones with specific reactivity to the CP169e180 epitope, six total
rounds of biopanning were performed. For each round of bio-
panning, monomeric delN CP and CP169e180 peptides were alter-
nately used as antigens. The N terminus of CP plays a key role in the
assembly of the VLP structure. Thus, deletion of the N-terminal
region exposes the CP169e180 epitope (del CP).

After biopanning, the reactivity of individual clones to CP169e180
peptide, delN CP, and PCV2 VLPs was tested by phage enzyme
immunoassay. A clone was selected, and its recombinant scFv-Ck

fusion protein prepared using amammalian expression system. The
recombinant scFv-Ck fusion protein reacted to CP169e180 peptide
and delN CP, but not to VLPs (Fig. 1B). In immunoblot analysis, the
recombinant scFv-Ck fusion protein was reactive not only to the
CP169e180 peptide and delN CP, but also to VLPs, because the
CP169e180 epitope on VLP was exposed by the denaturation that
occurs during sample preparation (Fig. 1C).

Although the CP169e180 segment is too short to harbormore than
one antigenic determinant, we further confirmed a number of
antigenic determinants using the polyclonal sera of pigs infected
with PCV2. In a competition enzyme immunoassay employing a
microtiter plate coated with BSA-conjugated CP169e180 peptide and
HRP-conjugated anti-porcine IgG antibody, the recombinant anti-
CP169e180 antibody almost completely inhibited the binding of
naturally occurring anti-CP169e180 antibody to the peptide in a
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PCV2-infected pig's sera (Fig. 2). From these results, we concluded
that there is only one antigenic determinant in CP169e180 residues.

3.2. Amounts of CP169e180 epitope differ in two commercial vaccines

The relative amount of PCV2 antigen in two commercially
available vaccines was determined in an enzyme immunoassay,
using purified VLP and the recombinant delN CP protein. The
amount of coated antigen was then determined by anti-PCV2
polyclonal antibody. Because the quantity of bound antibody was
not statistically different between the vaccines, we concluded that
they contained similar amounts of the recombinant CP (Fig. 3A).We
then determined the relative amount of CP169e180 epitope in these
two vaccines with an enzyme immunoassay employing anti-
CP169e180 antibody (Fig. 3B). Because we found a higher amount of
anti-CP169e180 antibody bound to vaccine A-coated wells than in
vaccine B-coated wells, we concluded that vaccine A contained a
higher amount of CP169e180 epitope.

3.3. Humoral immune responses to two commercial vaccines
corresponded to CP169e180 epitope levels

Tomonitor the humoral response, we collected sera from guinea
pigs (n¼ 5/group) that were immunized with vaccines. For control
sera, we also immunized with VLPs and the recombinant delN CP in
parallel. To confirm successful vaccination, we performed IFA as
described previously using PCV2-infected PK-15 cells [18,29]. There
was no statistical difference between the antibody titer of sera
obtained from animals immunized with the two vaccines. As ex-
pected, the sera of animals immunized with delN CP showed a
statistically lower antibody titer compared to other groups
(p< 0.05) (Fig. 3C). In an enzyme immunoassay employing a mi-
crotiter plate coated with BSA-conjugated CP169e180 peptide, sera
from animals immunized with vaccine A had a significantly higher
antibody titer than vaccine B-vaccinated animals (p< 0.01)
(Fig. 3D). Additionally, the sera of delN CP-immunized animals had
a significantly higher antibody titer than those of VLP-immunized
animals (p< 0.01). Then we measured and compared the neutral-
izing activity of sera in an in vitro infection experiment employing
PCV2 virus and PK-15 cells. The sera from vaccine B-immunized
animals had a significantly higher neutralizing antibody titer than
sera from vaccine A-immunized animals (p< 0.001) (Fig. 3E). Also,
the sera of VLP-immunized animals showed significantly higher
neutralizing activity than sera of VLP-immunized animals
(p< 0.01).
Fig. 2. Recombinant anti-CP169e180 antibody inhibited the binding of naturally occurrin
(B) with anti-CP169e180 antibody (n¼ 3/group), the mixtures were added to a CP169e180 pep
HRP-conjugated anti-porcine IgG antibody. Absorbance was measured at 650 nm. The result
triplicate using the sera from three pigs (P1, P2, and P3 in each group).
4. Discussion

Since the emergence of PCV2, there has been considerable effort
to produce an effective vaccine [32]. For some time, themain hurdle
was efficient overexpression of CP [19,33]. Later, it was found that
the immunodominant CP169e180 epitope of PCV2 is buried during
viral capsid assembly and that the antibodies targeting this epitope
are non-neutralizing, which is a common viral immune-evasion
mechanism [14]. PCV2 infection inevitably provokes exposure to
the decoy epitope and therefore is less effective at generating a
protective humoral response than immunization of the subunit
vaccine with a minimal amount of exposed decoy epitope [18].

Researchers had predicted that incomplete VLPs with an
exposed immunodominant CP169e180 epitope can be contaminated
during the preparation of subunit vaccine and drive the humoral
response to produce non-neutralizing antibodies, but could not
quantify the exposed immunodominant CP169e180 epitope in the
subunit vaccines because of the lack of proper analytical tools
[33e36]. To rectify this, we generated a monoclonal antibody
specific to the immunodominant CP169e180 epitope from an anti-
body library generated using chickens immunized with CP169e180
peptide. This recombinant anti-CP169e180 antibody preferentially
reacted to delN CP with an exposed CP169e180 epitope compared to
VLP in an enzyme immunoassay (Fig. 1B). Because the length of
linear B-cell epitopes can vary widely from 3 to 38 amino acids [37],
we confirmed that CP169e180 peptides behave as a single epitope in
a competition enzyme immunoassay. The recombinant CP169e180
antibody almost completely inhibited the binding of PCV2-infected
pig sera to CP169e180 peptide.

We then used this antibody to quantify the relative amount of
CP169e180 epitope in two commercially available vaccines and found
that vaccine A contained significantly more decoy epitope than
vaccine B. After immunization, vaccine A induced a significantly
higher antibody response to decoy epitope than vaccine B, which
supported the finding that vaccine B induced a higher amount of
neutralizing antibody.

In summary, our research demonstrated that the amount of
immunodominant decoy epitope present in PCV2 vaccine can be
measured by an epitope-specific antibody. From themeasured level
of decoy epitope, we could predict the efficacy of a vaccine for the
induction of neutralizing antibody titer. We believe that anti-
CP169e180 antibody can be used tomonitor the varying quality of the
subunit vaccine from batch to batch.
g antibody. After pre-incubation with sera from the non-infected (A) and infected pigs
tide-coated microtiter plate. The amount of bound porcine antibody was measured by
s are the means ± standard deviations from the experiments, which were conducted in



Fig. 3. Levels of CP169e180 in vaccines corresponded with humoral responses. (A) PCV2 antigen level was measured in an enzyme immunoassay using anti-PCV2 polyclonal
antibody. (B) CP169e180 epitope level was measured in an enzyme immunoassay using the anti-CP169e180 antibody. (C) Anti-PCV2 antibody in the immunized sera was determined by
an indirect fluorescence assay using PCV2-infected PK-15 cells (n¼ 5/group). (D) The amount of anti-CP169e180 antibody in the immunized sera was measured in an enzyme
immunoassay using a CP169e180 peptide-coated microtiter plate. (E) Neutralizing activity of the immunized sera was measured with a virus neutralization assay. Results are the
means ± standard deviations; *p < 0.05, **p < 0.01, ***p < 0.001 by two-tailed non-parametric Mann-Whitney's u test.
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