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Introduction
The efficacy of intravenous thrombolysis in acute 
ischemic stroke (AIS) has been established for 
over 2 decades,1 yet <5% AIS patients world-
wide receive this therapy.2 Concern regarding 
symptomatic intracerebral hemorrhage (sICH) 
after thrombolysis is one of the factors limiting 
implementation.3 Multiple risk factors for sICH 
have been identified.4,5 Moreover, a variety of 

sICH risk scales6–8 has been developed in the 
past decade. However, these scales have not 
identified a subgroup with sufficient risk of sICH 
to justify withholding thrombolysis.

Machine-learning technologies are well suited to 
balancing the contributions of multiple variables, 
and have been applied in various medical fields 
with great success.9–11 However, there has been 
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prediction performance.
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transformation (4.56%). Finally, the three-layer neuro network was selected with the best 
performance on nominal test sets (AUC = 0.82). The probability of the model score was 
further categorized into three risk ranks (18.97%, 5.63%, and 0.81%) according to the risk 
distribution. Implementing our system in clinical practice was associated with reduced 
computed tomography (CT)-to-treatment time (CTT; 41 min versus 52 min, p < 0.001). All 
sICH patients were correctly predicted to be within the high-sICH risk rank.
Conclusions: The machine-learning-based modeling is feasible for providing personalized risk 
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to further optimize the model and improve the accuracy of prediction.
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little application in stroke. Two preliminary anal-
yses12,13 were based on single-center data with 
limited numbers and did not apply methods to 
deal with missing data or to prioritize the relevant 
data features for optimized prediction.

In contrast to previous studies, we aimed to 
explore a better way of applying machine learning 
to treatment of cerebrovascular disease through 
developing and validating a simple machine-
learning system that could assist clinicians to pre-
dict the risk of thrombolysis-related sICH in 
ischemic stroke patients.

Methods

Study population
We identified 2578 consecutive intravenous (IV) 
tissue plasminogen-activated (tPA)-treated AIS 
patients between January 2013 and December 
2016 from the multicenter Shanghai Stroke 
Service System (4S) database (indicated as multi-
center training and testing sets). Another 136 
consecutive tPA-treated patients between January 
2017 and December 2017 from Shanghai Sixth 
People’s Hospital were also included as inde-
pendent testing sets. The 4S database14 under-
pins a quality-improvement project for stroke 
care throughout Shanghai (population more than 
20 million). Clinical information is automatically 
extracted from electronic medical records and 
uploaded to the database with checks for data 
validity, and cases of eight different general hospi-
tals were included. The general characteristics of 
patients are collected, including age, sex, weight, 
past history, smoking status, alcohol consump-
tion, medication history, admission blood pres-
sure, admission blood glucose, baseline National 
Institute of Health Stroke Scale (NIHSS) score, 
onset-to-treatment time (OTT) and door-to-nee-
dle time (DNT). The Clinical Research Institute 
of Huashan Hospital served as the data analysis 
center and had local institutional review board 
approval to conduct the study.

Machine-learning process
Definition of sICH: considering the actual treat-
ment process of tPA-treated patients, thromboly-
sis-related sICH was defined as neurological 
worsening ⩾ 4 NIHSS points within 24 h of treat-
ment that was attributed to hemorrhagic 

transformation of the infarct evident on CT brain; 
slightly different to the ECASS II study.5 CT scan 
images were confirmed by investigators at each 
center.

Data preprocessing: imputation of missing fea-
ture values, normalization, and imbalanced 
processing (detailed in supplementary mate-
rial) had been sequentially applied in all data 
sets. The missing features were imputed using 
the missing-indicator method.15 For the cate-
gorized features, the one hot encoding was 
used to cover all the possibilities, and for the 
continuous type of features, Z score normaliza-
tion was applied. Oversampling and cost- 
sensitive adaptation were used because of the 
imbalanced distribution of sICH to no-sICH 
cases (102: 2135).16

Feature selection: we used the wrapper method,16 
correlation-based feature selection,17 and con-
servative-mean (CM) method12 to analyze the 
correlation of features with sICH. All cases were 
randomly partitioned into 70% training set and 
30% testing set with the same percentage of 
sICH in each set. Feature selection was only 
conducted in the training set with a 10-fold vali-
dation method.

Modeling: logistic regression, neural network, 
support-vector machine (SVM),18 random forest 
and adaptive boosting (AdaBoost) were devel-
oped on multicenter testing sets and compared to 
test their performance on multicenter testing sets 
and independent testing sets with area under the 
receiver-operating-characteristic curve (AUC).

Interpretation of output: the native output of the 
model is a float value. To allow clinical applica-
tion, we converted these outputs to three ranks 
of sICH possibilities. Unsupervised equal fre-
quency method and supervised method were 
used to rank the outputs. Wilcoxon rank-sum 
test was used to evaluate the performance of out-
put interpretation.

Details of the machine-learning processing pipe-
line are provided in the online supplement.

Traditional statistical analyses
Analyses were performed using IBM SPSS 
V17.0 statistical package (Shanghai, China). All 
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continuous variables were first tested for nor-
mality of distribution. Variables with normal 
distribution were expressed as mean ± standard; 
others were expressed as median ± interquartile 
range. Differences between groups were ana-
lyzed using the t test or Mann–Whitney U test 
as appropriate to distribution. Categorical vari-
ables were expressed as number (percentage) 
and Fisher’s exact test was used for comparison 
between groups. All p values were two tailed, 
and p < 0.05 was considered statistically 
significant.

Results
A total of 2237 of 2578 thrombolysis patients 
in a multicenter database were included for 
model development and test, where 61 cases 

had OTT longer than 4.5 h, 3 cases had blood 
glucose less than 2.7 mmol/l, 257 cases had 
more than 5% features missing, and 20 cases 
had no 24 h CT scan after thrombolysis (Figure 
1). For the independent test sets, all the 136 
consecutive tPA-treated patients between 
January 2017 and December 2017 from our 
institute were included.

Among the included 2237 patients in the multi-
center data sets, there were 102 sICH patients 
(4.6%). The baseline characteristics are shown in 
Table 1. The sICH rate ranged from 1.01% to 
6.95% among different hospitals in our database. 
Increased age, atrial fibrillation, elevated blood 
glucose, higher baseline NIHSS score and pro-
longed DNT were significantly associated with 
sICH (p < 0.05).

Figure 1. Flowchart of the data included in machine-learning process.
AIS, acute ischemic stroke; BG, blood glucose; BP, blood pressure; CT, computed tomography; IV, intravenous; NIHSS, 
National Institutes of Health Stroke Scale; OTT, onset-to-treatment time; tPA, tissue plasminogen activator.
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Model development and evaluation using 
multicenter sets
To discover the well-performed model with 
proper feature inputs, we used different feature-
selection methods and model architectures to 
select the best-performed model.

Without feature selection, the AUCs of five 
machine-learning technologies (logistic  regression, 
neural network, SVM, random forest and 

AdaBoost) were 0.69, 0.73, 0.58, 0.76, and 0.75 
in the multicenter test sets, respectively.

Among the used feature-selection methods, in the 
logistic regression model [Figure 2(a)] and SVM 
model [Figure 2(b)], AUC value rose to 0.76 
with a correlation-based feature selection (CFS) 
method and 0.79 with a CM method. In the neu-
ral network model [Figure 2(c)], the AUC value 
increased 20% with the CM method. In our 

Table 1. Baseline characteristics of the study population.

Characteristics No-sICH group
(n = 2135)

sICH group
(n = 102)

p value  
(two sided)

Male, n (%) 1378 (64.54) 60 (58.82) 0.246

Age, years (mean ± SD) 66.32 ± 12.67 69.54 ± 11.89 0.012

Medical history, n (%)

Hypertension 1361 (63.75) 71 (69.61) 0.247

Diabetes mellitus 506 (23.70) 32 (31.37) 0.096

Atrial fibrillation 436 (20.42) 39 (38.24) <0.001

Previous stroke 360 (16.86) 15 (14.71) 0.592

Myocardial infarction 119 (9.50) 5 (12.20) 0.585

Dyslipidemia 122 (12.02) 1 (2.70) 0.113

Prior medication, n (%)

Oral anticoagulants 13 (1.06) 0 (0.00) 1.000

Any antithrombotic 220 (15.40) 9 (16.67) 0.847

Admission information

Smoking, n (%) 735 (34.43) 35 (34.31) 1.000

Alcohol consumption, n (%) 270 (17.75) 12 (20.00) 0.609

Blood glucose, mmol/l (mean ± SD) 7.81 ± 3.30 8.44 ± 3.45 0.005

Diastolic pressure (mmHg, mean ± SD) 83.16 ± 13.49 83.73 ± 14.85 0.859

Systolic pressure (mmHg, mean ± SD) 149.90 ± 23.12 151.90 ± 26.32 0.443

Baseline NIHSS, median (IQR) 7 (4–12) 15 (10–19) <0.001

OTT (min, mean ± SD) 161.70 ± 52.02 166.07 ± 50.20 0.383

DNT (min, mean ± SD) 70.51 ± 35.29 79.81 ± 37.21 0.044

p value refers to the difference of participants’ characteristics between sICH group and no-sICH group.
DNT, door-to-needle time; IQR, interquartile range; NIHSS, National Institutes of Health Stroke Scale; OTT, onset-to-
treatment time; SD, standard deviation; sICH, symptomatic intracerebral hemorrhage.
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model, age, atrial fibrillation, glucose level, 
NIHSS score, and DNT were selected as the 
most important input factors in the feature-selec-
tion step, consistent with the results of traditional 
statistical analyses.

The ratio of patients with and without sICH  
was approximately 1: 21. We compared the 

effectiveness of three methods that aim to address 
this imbalanced distribution. The AUC of the 
logistic regression model [Figure 2(d)] did not 
change significantly using the three imbalanced 
data-processing methods. However, the AUC of 
the SVM model [Figure 2(e)] rose to 0.79 with an 
oversampling method, and 0.78 with multivariate 
SVM. The neural network model [Figure 2(f)] 

Figure 2. Results of feature selection and imbalanced data-processing methods.
(a) ROC curves for logistic regression; (b) ROC curves for SVM with linear kernel. Here, oversampling was conducted; (c) 
ROC curves for a three-layer neural network. None: without feature selection, (d) ROC curve for different imbalanced data-
processing methods in logistic regression. Here, the CFS method with symmetrical uncertainty was used (it was also used in 
the following SVM); (e) ROC curve for the different imbalanced data processing method in SVM; (f) ROC curve for the different 
imbalanced data processing methods in perceptron with the CM method. None: without feature selection for (a), (b), (c), and 
without imbalanced data processing for (d), (e), (f).
AUC, area under the (ROC) curve; CFS, correlation-based feature selection; CM, conservative mean; learning rate, 
cost-sensitive learning rate; MDL, minimum description length; RELIEF, relevant features; ROC, receiver operating 
characteristics; SVM, support-vector machine; symmetrical, symmetrical uncertainty.
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Figure 3. Evaluation of different classifiers in 
predicting sICH and ranking results.
(a) ROC curve for different classifiers, with appropriate 
modification and improvement made to cope with the 
inferior quality of some features, strong relevance between 
different features and imbalanced data; and (b) the bar chart 
records the ratio of sICH in each rank of different machine-
learning algorithms with different colors. Rank 1–3 suggests 
an ascending trend in the risk of sICH.
AdaBoost, adaptive boosting; AUC, area under the (ROC) 
curve; ROC, receiver operating characteristics; sICH, 
symptomatic intracerebral hemorrhage; SVM, support-
vector machine.

Table 2. Results of Wilcoxon rank-sum test of different machine-learning models and partition methods.

Model Random forest Logistic regression Neural network SVM AdaBoost

Unsupervised

Z value 3.293 3.385 4.123 3.752 3.391

p value (two tailed) <0.001 <0.001 <0.001 <0.001 <0.001

Supervised

Z value 3.404 3.108 4.670 3.852 3.301

p value (two tailed) <0.001 <0.001 <0.001 <0.001 <0.001

AdaBoost, adaptive boosting; unsupervised, unsupervised discretization methods; supervised, supervised discretization 
methods; SVM, support-vector machine; Z value, value of Z statistic used to compute the approximate p value of the test; p 
value, the difference of participants’ characteristics between the sICH group and no-sICH group (Wilcoxon rank-sum test).

AUC did not change significantly with the three 
imbalanced data-processing methods.

All of the classifiers achieved AUCs greater than 
0.70. Random forest and AdaBoost are ensemble 
learning approaches suited to large datasets and 
had AUCs of 0.76 and 0.77, respectively, in our 
study [Figure 3(a)]. A three-layer neural network 
using feature selection and oversampling had the 
highest AUC of 0.82, followed by SVM and logistic 
regression using corresponding data preprocessing 
methods with an AUC of 0.79 and 0.77, respec-
tively [Figure 3(a)]. Four-layer and five-layer neu-
ral networks were also constructed and produced 
results similar to the three-layer neural network.

We set three ranks based on the output from the 
neural network model, representing an sICH risk 
of 18.97%, 5.63% and 0.81% [Figure 3(b)]. In 
Wilcoxon rank-sum test, using a three-layer neu-
ral network and supervised discretization, we 
demonstrated a significant correlation between 
the actual sICH status after thrombolysis and the 
model-derived ranking of sICH rate (Z = 4.670, 
p < 0.001; Table 2).

Clinical usability evaluation in independent 
test sets
This sICH after stroke thrombolysis-risk predic-
tion model was tested in independent test sets to 
evaluate its clinical usability. Patient demographics 
were shown in Table 3. In 2017, the proportion of 
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Table 3. Patient characteristics from a single center.

Characteristics Patients in 2016
(n = 120)

Patients in 2017
(n = 136)

p value (two sided)

Male, n (%) 82 (68.3) 94 (69.1) 0.894

Age (year, mean ± SD) 63.47 ± 10.82 66.07 ± 12.32 0.247

Medical history, n (%)

Hypertension 77 (64.2) 85 (61.0) 0.689

Diabetes mellitus 26 (21.7) 29 (21.3) 1.000

Atrial fibrillation 20 (16.7) 24 (17.6) 0.869

Previous stroke/TIA 15 (12.5) 22 (16.2) 0.477

Ischemic heart disease 14 (11.7) 5 (3.7) 0.585

Prior medication, n (%)

Oral anticoagulants 2 (1.7) 1 (0.7) 0.601

Any antithrombotic 12 (10.0) 30 (22.1) 0.011

Statins 7 (5.8) 21 (15.4) 0.016

Admission information

Smoking, n (%) 22 (18.3) 33 (24.3) 0.287

Alcohol consumption, n (%) 10 (8.3) 16 (11.8) 0.412

Blood glucose (mmol/l, mean ± SD) 7.78 ± 3.501 7.75 ± 3.67 0.614

Diastolic pressure (mmHg, mean ± SD) 82.46 ± 12.18 80.47 ± 15.31 0.116

Systolic pressure (mmHg, mean ± SD) 150.34 ± 19.28 147.68 ± 20.55 0.389

Baseline NIHSS, median (IQR) 7 (4–12) 6 (2–14) 0.695

Dose of Alteplase, mg/kg, median (IQR) 0.88 (0.82–0.9) 0.89 (0.84–0.9) 0.194

OTT, min, median (IQR) 173 (132–230) 155 (124–191) 0.011

DNT, min, median (IQR) 70 (59–92)3 64 (56–83)3 0.062

OTD, min, median (IQR) 90 (60–147)3 89 (55–122)4 0.207

DTC, min, median (IQR) 25 (18–36)6 28 (22–36)11 0.025

OTC, min, median (IQR) 115 (83–165)3 112 (87–153)3 0.563

CTT, min, median (IQR) 42 (34–56) 34 (26–45) <0.001

The superscript numbers in the table represent the number of missing data.
p value refers to the difference of participants’ characteristics between the two groups.
CTT, CT-to-treatment time; DNT, door-to-needle time; DTC, door-to-CT time; IQR, interquartile range; NIHSS, National Institutes of Health Stroke 
Scale; OTC, onset-to-CT time; OTD, onset-to-door time; OTT, onset-to-treatment time; SD, standard deviation; sICH, symptomatic intracerebral 
hemorrhage; TIA, transischemic attack.
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oral antiplatelet and statin use was significantly 
higher than in 2016 (p < 0.05).There was a trend 
toward reduced OTT (median 155 min versus 173 
min, p < 0.05), largely driven by a significantly 
reduced CT-to-treatment time (median 34 min 
versus 42 min, p < 0.001).

There were eight sICH patients in 2017 (5.88%). 
This model was used to predict sICH after CT 
scan in the emergency room in 129 patients, with-
out interfering with the normal treatment process 
and decision making. There were 22 cases in rank 
3 (possible sICH rate 18.97%), 42 cases were 
classified as rank 2 (possible sICH rate 5.63%), 
and the remaining 65 cases were in rank 1 (pos-
sible sICH rate 0.81%). Of the 22 patients in the 
highest risk category, 4 developed sICH (actual 
sICH rate 18.18%). Another 4 sICH cases were 
in rank 2 (actual sICH rate 9.52%). About 50% 
of patients were classified as very low risk of sICH 
and none developed sICH.

Discussion
In this study, we identified clinical and laboratory 
characteristics that were readily available before 
thrombolysis and validated a semiautomated 
post-thrombolysis sICH prediction system by lev-
eraging machine-learning technologies. All the 
data used to derive the machine-learning process 
came from a real-world multicenter patient data-
base. As far as we knew, this is the first study 
using multicenter data to develop and evaluate 
the models and then test its clinical usability in 
independent sets.

Since sICH after thrombolysis is a complex phe-
nomenon, the machine-learning model processes 
weighs multiple parameters, which are routinely 
assessed before treatment in potential thromboly-
sis candidates, and so are immediately available 
for input into the model.

Clearly, certain parameters are more strongly 
associated with sICH than others. Traditional 
statistical analyses showed that patients having 
older age, atrial fibrillation, higher glucose level, 
higher NIHSS score, and longer DNT were more 
likely to have sICH in our database. By machine-
learning process, age, atrial fibrillation, glucose 
level, NIHSS score, and DNT were selected as 
the most important input features in the feature-
selection step, consistent with the results of tradi-
tional statistical analyses. However, there are 

some differences in independent risk factors 
related to sICH from different trials4–8,19 previ-
ously published. So, we have not discarded other 
features that currently seem to be less related to 
sICH in our model, hoping the selection of sICH-
related factors will be clarified with more data 
included, and to achieve personalized sICH risk 
prediction in tPA-treated stroke patients.

Specific methods were applied to solve missing 
data and imbalanced data problems. The high rate 
(>30%) of missing data may generate bias and 
affect the prediction performance of the sICH risk 
prediction model. We have applied various impu-
tation techniques as indicated in supplementary 
material and marked the missing data, but it is still 
not possible to guess the missing data based on the 
other information in the datasets. This might be 
the reason we did not achieve higher prediction 
accuracy. A large population with fewer missing 
features is expected to be established to further 
improve the accuracy of sICH risk prediction 
using machine-learning algorithms. Without data 
preprocessing, the AUCs of machine-learning 
models are not ideal enough. The three-layer neu-
ral network model combined with feature selec-
tion and imbalanced data processing was chosen 
for clinical implementation for the time being. As 
the data increase, other machine-learning tech-
nologies might perform better in the future. The 
model can be adjusted from time to time with 
increasing data. The most important point of this 
study is the idea of applying machine-learning 
model to predict personalized risk of sICH after 
stroke thrombolysis.

In general, the clinically useful sICH risk predic-
tion system must be simple to use, given the time-
critical nature of thrombolysis, where the clinician 
can put all the information (basic information 
about the patient, clinical information, IV tPA eli-
gibility checklist) into the system any time before 
thrombolysis. The average time to input the data 
and obtain risk-score prediction was within 
3–4 min.

Although IV tPA is recommended in Chinese AIS 
guidelines, informed consent from the patient or 
family usually costs time. Our study found that 
the CTT was significantly shortened after imple-
mentation of the prediction system. This is an 
indication that machine-learning decision sup-
port may assist clinicians to make faster throm-
bolysis decisions in future. Approximately 50% of 
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patients were classified in the low-risk group and 
none of these developed sICH in the prospective 
cohort which may offer some reassurance to the 
clinician considering thrombolysis. However, it is 
important to emphasize that the use of our system 
should not affect clinical decision making until 
further validation with a larger number of sICH 
cases is undertaken to improve the efficacy of the 
system.

One of the limitations of our study is the smaller 
population of sICH-after-thrombolysis patients 
due to the low incidence of sICH, which might 
mean that when applying this model to a new ter-
ritorial population, it should be recalibrated or 
even retrained. But, at least it means that the 
machine-learning model is feasible for making per-
sonalized risk prediction. Its generalization might 
be further improved using federal training policy, 
by exploring a more territorial population. Another 
limitation of our study is lacking the imaging fea-
tures of emergency-room CT scan.20,21 One of the 
biggest challenges is that of time-critical processing 
and interpretation processing. Recent progress on 
deep-learning techniques may provide the oppor-
tunity to further integrate the clinical aspects with 
imaging features to make automatic, time-critical 
processing to predict risk of sICH after stroke 
thrombolysis. However, it takes many more cases 
for training and evaluation.

In conclusion, we have demonstrated the feasibil-
ity and proof of principle that the machine-learn-
ing model can generate a clinical useful prediction 
of sICH risk using readily available clinical data in 
a very short time. The system has the potential for 
continuous improvement, with addition of fur-
ther sICH data and new parameters, and provides 
an illustration of how machine learning may ben-
efit clinical practice in the future.
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