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Autism, a neurodevelopmental disorder that affects boys more than girls, is often associated with altered levels of monoamines
(serotonin and catecholamines), especially elevated serotonin levels. The monoamines act as both neurotransmitters and signaling
molecules in the gastrointestinal and immune systems. The evidence related to monoamine metabolism may be summarized as
follows: (i) monoamine neurotransmitters are enzymatically degraded/inactivated by three mechanisms: oxidative deamination,
methylation, and sulfation. The latter two are limited by the supply of methyl groups and sulfate, respectively. (ii) A decrease in
methylation- and sulfation-mediated monoamine inactivation can be compensated by an increase in the oxidative deamination
catalyzed by monoamine oxidase, an X-linked enzyme exhibiting higher activity in females than in males. (iii) Vitamins can, on
one hand, facilitate the synthesis of monoamine neurotransmitters and, on the other hand, inhibit their inactivation by competing
for methylation and sulfation. Therefore, we postulate that excess multivitamin feeding in early infancy, which has become very
popular over the past few decades, may be a potential risk factor for disturbed monoamine metabolism. In this paper, we will focus
on the relationship between excess multivitamin exposure and the inactivation/degradation of monoamine neurotransmitters and
its possible role in the development of autism.

1. Introduction

Autism is a neurodevelopmental disorder that appears in the
first three years of life, affecting boys more than girls in a
ratio of approximately 4 : 1 [1]. One of the most consistent
abnormalities in autism in the published literature since 1961
is elevated blood serotonin (see [2] for review). Autism may
also be associated with altered metabolism of catecholamines
(dopamine, norepinephrine, and epinephrine), for exam-
ple, elevated plasma levels of dopamine and epinephrine
[3]. The monoamines (serotonin and catecholamines) are
known to act not only as neurotransmitters, but also as
signaling molecules in the gastrointestinal tract and immune
system. Moreover, neurotransmitters may play a role in
neurogenesis during brain development [4]. Thus, abnormal
monoamine metabolism may have a profound impact on
immune responses and gastrointestinal activities [5–7] aswell

as on neurodevelopment [8, 9]. From this point of view,
it seems that disturbed monoamine metabolism, which is
known to be caused by a variety of factors (e.g., drugs [9]
and diet [10]), may play a crucial role in the development
of autism. Thus, a better understanding of the mechanism of
disturbed monoamine metabolismmay provide insights into
the etiology of autism.

Evidence suggests that the etiology of autismmay involve
both genetic and environmental factors [11, 12]. However,
exactly what those environmental factors are remains to
be determined. Notably, there were no significant pollution
events in the United States from the 1980s and through the
1990s, but why was there a sudden increase in the incidence
of autism among the 1987–1992 birth cohorts [13, 14]? If
disturbed monoamine-neurotransmitter metabolism plays
a role in the development of autism, factors accounting
for the increased prevalence of autism could be those that
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candirectly or indirectly affectmonoamine-neurotransmitter
metabolism. Some vitamins are known to increase the levels
of monoamine neurotransmitters (see below). Excess vita-
mins are also known to have side effects like neurotoxicity
[15]. Most significantly, over the past few decades, there
has been a significant increase in multivitamin exposure in
infancy due to high vitamin feeding and supplementation [16,
17]. Thus, the possibility exists that the increased incidence
of autism may be related to excess multivitamin exposure. In
this paper, we will focus on the relationship between excess
multivitamin exposure and the inactivation/degradation of
monoamine neurotransmitters and its possible role in the
development of autism.

2. Monoamine-Neurotransmitter Inactivation

It is known that to ensure normal functioning of the
nervous, immune, and digestive systems, the monoamines
released from the nervous system and the gastrointesti-
nal tract must be inactivated/degraded and eliminated in
time. Monoamine-neurotransmitters, like xenobiotics (sub-
stances foreign to the body, such as pollutants, food addi-
tives, pesticides, and drugs), are metabolized through enzy-
matic phase I (oxidation, reduction, and hydrolysis) and
phase II reactions (conjugation, e.g., methylation, sulfa-
tion, acetylation, glucuronidation, and glutathione conju-
gation) [18]. The characteristics of monoamine degrada-
tion are as follows: (1) enzymatic degradation: the degra-
dation of all the monoamines and their precursor amino
acids is enzymatic multipathway and multistep processes
(Figure 1). The major enzymes involved in the degradation
of monoamine neurotransmitters are monoamine oxidase
(MAO), catechol-O-methyltransferase (COMT), acetylsero-
tonin O-methyltransferase, and sulfotransferases, which are
responsible for the oxidative deamination, methylation, and
sulfation of the neurotransmitters, respectively. Genetic
polymorphism of the enzymes has been demonstrated
to contribute to interindividual differences in the overall
metabolism of monoamines [19, 20]. In the degradation
of monoamines and their precursors, when one pathway
is interrupted, another pathway can partially compensate.
For example, when the phenylalanine-tyrosine pathway is
blocked by phenylalanine hydroxylase deficiency, phenylala-
nine is converted to phenylpyruvate, resulting in phenylke-
tonuria [21].

(2) Need for methyl groups and sulfate: as shown in
Figure 2, methyl groups and sulfur amino acids (e.g., methio-
nine and cysteine) are required for the body’s detoxification
and antioxidant activities (Figure 2). An adequate supply of
methyl groups and sulfate is prerequisite formethylation- and
sulfation-mediated monoamine-neurotransmitter inactiva-
tion. Since both the biotransformation of exogenous chem-
icals and the degradation of monoamine neurotransmitters
share the same pool of methyl groups [22] and sulfate [23], in
theory, any chemicals (such as vitamins, see the following)
that consume methyl groups and/or sulfur amino acids
in their biotransformation may competitively inhibit the
methylation and sulfation of monoamine neurotransmitters.

(3) Gender differences in monoamine-neurotransmitter
inactivation: as mentioned above, monoamine neurotrans-
mitters can be inactivated either by deamination, by methy-
lation, or by sulfation. The redundant nature of monoamine-
neurotransmitter metabolism enables one pathway to com-
pensate for blockade of the other. For example, reduced
or absent activity of MAO leads to a decrease in the
production of deaminated metabolites and an increase in
that of O-methylated amine metabolites [24, 25], while
inhibition of COMT increases the production of 3,4-
dihydroxyphenylacetic acid [25], a deaminated metabolite
of dopamine (Figure 1). Thus, if methylation and sulfation
cannot take place (e.g., due to depleted methyl-group and
sulfate pools by exogenous chemicals) [22, 23], the inacti-
vation of monoamine neurotransmitters will depend mainly
on the activity of MAO. Importantly, the genes encoding the
two isoforms of MAO are X-linked [26], and their activity
is lower in males than in females [27, 28], suggesting a
biological basis of sex differences inmonoamine degradation.
Such a sex difference in MAO activity also suggests that
males might have less ability to compensate for blockade of
methylation- and sulfation-mediated monoamine inactiva-
tion than females. Therefore, it is conceivable that similar
levels of exogenous chemical exposure may disturb the
inactivation of monoamine neurotransmitters in males more
than in females.

3. Effect of Vitamins on
Monoamine-Neurotransmitter Metabolism

Excess vitamins, like xenobiotics and monoamine neuro-
transmitters, are also degraded through phase I and phase
II reactions and thus may increase the consumption of
labile methyl-groups and sulfate. Moreover, some vitamins
are known to play a role in the synthesis of monoamine
neurotransmitters. For example, vitamin B

6
is a cofactor

for aromatic L-amino acid decarboxylase that catalyzes
the formation of serotonin and dopamine (Figure 1), while
5-methyltetrahydrofolate, the active form of folate, also
stimulates the synthesis of monoamine neurotransmitters
[29]. Therefore, excess vitamins can increase the levels
of monoamine neurotransmitters either by competing for
the same biotransformation system or by facilitating the
synthesis, or by both. Indeed, evidence shows that high
doses of vitamin C decrease plasma-conjugated dopamine
and norepinephrine levels by competing for sulfation [30],
whereas nicotinamide increases the levels of plasma of nore-
pinephrine [31], serotonin, and histamine [32], presumably
due to a decrease inmethylation-mediated degradation of the
monoamines. Vitamin B

6
supplementation can increase the

blood serotonin levels of newborn babies [33]. Interestingly,
Berman and colleagues [34] found that maternal supple-
mentation with vitamin B

6
during the last 3 to 5 weeks of

pregnancy increased the maternal blood levels of serotonin
at parturition but did not increase the cord blood serotonin
level or urinary 5-hydroxyindoleacetic acid output in the
newborn infants, suggesting that the placenta may protect
the fetus from the risk of excess vitamin exposure. Although
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Figure 1: The synthesis and degradation of serotonin and catecholamines. Oxidative deamination and methylation are two key mechanisms
for inactivating monoamine neurotransmitters. Note that without labile methyl groups, methylation-mediated degradation of serotonin
and catecholamines cannot take place, even though the methyltransferases involved are normal. 1, monoamine oxidase; 2, aldehyde
dehydrogenase; 3, aldehyde reductase; 4, acetylserotonin O-methyltransferase; 5, catechol-O-methyltransferase. AADC: aromatic L-
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little is known about the effect of excess vitamin exposure
on the neurotransmitter metabolism in the human infant
brain, evidence from animal studies has shown that some
vitamins can affect the metabolism of central monoamine
neurotransmitters. For example, vitamin C [35] and vitamin
B
6
[36, 37] increase the levels of serotonin in the brain of

rats. Recently, Tekes and colleagues [38] found that neonatal
vitamin A or vitamin D treatment has significant influence
on the metabolism of monoamine neurotransmitters in the
adult rat brain. Therefore, excess vitamin exposure may
be a potential risk factor for neurotransmitter metabolism
disorders.

4. Toxicity of Excess Vitamins

It has been known for over a century that the dose-response
curve for many micronutrients is nonmonotonic, having
an initial stage of increasing benefits with increased intake,
followed by increasing costs as excesses become toxic [39].
Both vitamin deficiency and vitamin excess are known to
cause toxicity, including neurotoxicity [15, 40]. A meta-
analysis of randomized trials of antioxidant supplements

for primary and secondary prevention suggests that supple-
mentation of vitamin A and E may increase mortality [41].
Supplemental folic acid (the synthetic form of folate) was
also found to be associated with increased mortality [42, 43].
Davis and colleagues [44] found an association between high
serum thiamine levels and sudden infant death syndrome
(SIDS, a sudden and unexplained infant death most likely
to occur between 2 and 4 months of age), and they further
demonstrated that high doses of thiamine could cause death
in rabbits andmice due to respiratory failure.Moreover, there
is evidence suggesting an association between early infant
vitamin supplementation and an increased risk of allergic
diseases later in life [45, 46]. Although these data are not
conclusive, they at least suggest the possibility that excess
vitamin exposure may lead to serious health outcomes.

To date, little is known about the relationship between
early infant exposure to excess vitamins and autism, except
a recent hypothesis that suggests that excess folic acid supple-
mentation may be a risk factor for autism [47]. There are two
studies that examine the relationship between early vitamin
exposure and learning development in rats. One found that
neonatal vitamin A exposure may induce a long-lasting
defect in learning [48], and the other showed that niacin
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5-phosphate; R-OH: alcohols; ROOH: organic peroxides (which generate free radicals); THF: tetrahydrofolate.

supplementation induced spatial learning impairment in rats
[49]. These observations suggest that early excess vitamin
exposure may have adverse effects on neurodevelopment.
It should be noted that the neurological effects of vitamin
deficiency and vitamin excess may be similar [15]. Such a
similarity could be a common cause for a wrong diagnosis.
For example, SIDS was initially suggested to be related to
a thiamine deficiency. To test this hypothesis, Davis and
colleagues [44] compared serum thiamine levels between 233
SIDS infants and 46 control infants dying from other causes.
Unexpectedly, they found that most of the SIDS infants
had significantly higher serum thiamine levels. Therefore, to
avoid making a wrong diagnosis, the levels of vitamins and
their metabolites should be monitored.

It should be pointed out that some cofactors, although
not belonging to vitamins, may also play an important
role in the synthesis of monoamine neurotransmitters. As
shown in Figure 1, tetrahydrobiopterin, which is synthesized
from guanosine triphosphate, is an essential cofactor for
dopamine and serotonin biosynthesis. Thus, it is conceivable
that excess tetrahydrobiopterin can increase monoamine-
neurotransmitter levels and may contribute to monoamine-
related mental disorders. Indeed, evidence has shown that
tetrahydrobiopterin may cause preferential death of cate-
cholaminergic cells, presumably due to increased dopamine

levels [50]. However, it is unlikely that tetrahydrobiopterin
may play a role in the rapidly increased prevalence of
autism in the past few decades, since there is no evidence
suggesting an increase in the synthesis of tetrahydrobiopterin
in the early infancy of autistic patients, or in the content of
tetrahydrobiopterin in infant foods.

5. High Multivitamin Exposure and
Increased Autism Prevalence

For decades, since it was first described by Kanner in 1943
[52], the prevalence of autism in the United States was low.
Autism prevalence studies published before 1985 showed
prevalence rates of 4 to 5 per 10,000 children for the broader
autism spectrum and about 2 per 10,000 for the classic autism
definition [53]. Since 1985, there have been higher rates of
autism, with the greatest annual increases occurring between
the 1987 and 1992 birth cohorts [14]. During this period,
there were no significant national environmental events but
a significant event related to infant feeding. In 1988, US
formula companies removed the realm of infant feeding
from the exclusive supervision of the medical profession and
targeted an advertising campaign for their formula products
at the general public [51]. If formulas played a role in
increased autism prevalence, the campaign should have been
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followed by several consecutive years of rapid increase in
autism cases. In fact, the sharp increase in autism prevalence
in annual cohorts born from 1987 to 1992 in California
(Figure 3) and the whole of the United States [14] occurred
simultaneously with the initiation of the direct advertising
of infant formula. The prevalence of autism among 6-year-
old children increased from 4.6 per 10,000 in the 1986 birth
cohort to 19.1 per 10,000 in the 1992 birth cohort in the
United States [14]. Moreover, there are studies showing that
premature weaning and suboptimal breast-feeding practices
are associated with increased risk of autism [54, 55]. Thus, it
appears that the risk factor(s) for autism may be present in
infant foods.

Among the possible risk factors in infant foods, such as
nutritional imbalances (deficiencies and excesses) and food
additives and contaminates, excess multivitamin exposure
may be the most common and important. In order to
insure the safety of formulas, the United States implemented
the Infant Formula Act of 1980, which sets a lower limit
of vitamins in infant formulas but does not set an upper
limit for most vitamins [56]. This has caused concern
that, without upper limits, super-fortified formula could
be produced [57] and may have a direct toxic effect [58].
In fact, infant formulas, especially those for premature
infants, generally contain much higher levels of vitamins.
For example, the content of niacin, folic acid, vitamin B

6
,

thiamine, and vitamin C in a premature infant formula (see,
http://abbottnutrition.com/products/similac-special-care-
20-with-iron) is about 20 (5,000 versus 250 𝜇g/100 kcal), 9
(37 versus 4 𝜇g/100 kcal), 7 (250 versus 35 𝜇g/100 kcal), 6 (250
versus 40 𝜇g/100 kcal), and 4 (37 versus 8mg/100 kcal) times
the lower limit value, respectively. The level of thiamine in

some manufactured milk-based formulae (2160 𝜇g/L) was
found to be about 20 times that of human breast milk (mean
178𝜇g/L) [44]. In addition to the vitamin supplementation
of infant formula, multivitamin use in infants and tod-
dlers is very common [16]. Thus, high-vitamin feeding may
increase the risk of vitamin overload. Indeed, many studies
have shown that formula-fed infants have higher levels
plasma/serum of vitamins than human milk-fed infants [59–
62]. Unmetabolized folic acid, a sign of folic acid overload, is
observed in the serum of 4-day-old infants fed with formula
[63]. Porcelli and colleagues [62] found a several times
increase in the plasma levels of riboflavin and pyridoxine and
a more than 10 times increase in the urine riboflavin and
pyridoxine concentrations in very low-birth-weight neonates
after being fedwith preterm infant formula. Baeckert and col-
leagues [64] showed that very low-birth-weight infants who
received the recommended parenteral vitamin supplement
as part of their total parenteral nutrition developed elevated
plasma riboflavin concentrations during their first postnatal
month with peak concentrations 100-fold above baseline
umbilical cord plasma vitamin concentrations. Moreover,
there are two studies finding high plasma levels and urinary
excretion of methylated metabolites of niacin in autistic
patients [65, 66], which suggests a niacin overload, because
excess niacin is rapidly degraded after ingestion, but its
methylated metabolites remain longer in the circulation [31,
67]. Given that excess vitaminsmay lead to neurotoxicity and
disturbances in monoamine neurotransmitter metabolism,
as mentioned earlier, it is possible that high multivitamin
exposure may play a role in the increased prevalence of
autism.

6. Critical Window of Vulnerability for Autism

Brain overgrowth has been noted among children with
autism [68]. An understanding of the timing of brain enlarge-
ment in autism may be particularly helpful in identifying the
window of vulnerability for autism. Hazlett and colleagues
[69] observed generalized cerebral cortical enlargement in
individuals with autism at both 2 and 4 to 5 years of age,
but they found that there was no significant difference from
controls in the rate of brain growth for this age interval,
indicating that brain enlargement in autism results from
an increased rate of brain growth before age of 2 years. A
recent study using diffusion tensor imaging showed that there
have been significant brain differences at age of 6 months
between high-risk infants who later develop autism and those
who did not [70], clearly indicating that autism develops
over time during infancy. Moreover, studies found that
premature weaning and suboptimal breast-feeding practices
may increase the risk of autism [54, 55]. The above two lines
of evidence suggest that the first fewmonths after birth could
be a critical window of vulnerability for autism.

Current understanding of the rates of maturation of
metabolic capability indicates that human infants up to
approximately 6 months of age are typically more sensitive to
chemical toxicity than adults due to their immature detox-
ification systems [71]. This suggests that newborn infants,

http://abbottnutrition.com/products/similac-special-care-20-with-iron
http://abbottnutrition.com/products/similac-special-care-20-with-iron
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especially premature infants, may have a low tolerance to
excess vitamins. Indeed, available evidence, although limited,
has shown an association between high levels of some vita-
mins (thiamine [44] and vitamin C [72]) and apparent life-
threatening events and SIDS in infancy. A randomized con-
trolled trial on vitamin C supplementation in very preterm
infants also showed that infants who died during the trial
were those who had significantly higher vitamin C concen-
trations before randomization than surviving infants [73].
Evidence from animal studies suggests that high exposure to
vitamin A [48] and niacin [49] in the early life has adverse
effects on the behaviors of adult rats. Thus, it appears that
high multivitamin feeding in the first few months of life may
be particularly harmful. Although there is little information
on the role of excess vitamins in infant brain injuries, it is
common knowledge that chemical exposure-induced neuro-
logical injurymayhave a variety ofmanifestations, depending
on the length and degree of exposure [74]. Notably, preterm
birth is associated with increased risk for both autism and
other neurological conditions, such as cognitive, visual, and
hearing impairments; and there is considerable cooccurrence
of autism with other neurological and cognitive disorders
[75]. We therefore postulate that autism might be one
of chemical/excess-vitamin exposure-induced neurological
sequelae (which may range from neurological deficits to
death) in early infancy. What is worthy of note is that with
thematuration ofmetabolic function and age-related changes
in feeding foods, the causal exposure present in infancy
and resultant metabolic and neurological manifestationsmay
no longer exist. This may account for why there is lack of
consistent biological markers in autism. Even elevated blood
serotonin, the most consistent serotonin-related finding in
autism, may not be observed in adolescent autistic patients
[76].

7. Conclusion

Given that (1) high multivitamin feeding is very common
in early infancy, (2) excess vitamins may cause neurotoxi-
city and disturb monoamine-neurotransmitter metabolism,
and (3) autism is often associated with abnormal levels of
monoamine neurotransmitters, it seems that excess multi-
vitamin exposure in early infancy may be a potential risk
factor for autism. Further studies are needed to confirm this
hypothesis.
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[42] M. Ebbing, K.H. Bønaa,O.Nygård et al., “Cancer incidence and
mortality after treatment with folic acid and vitamin B12,” The
Journal of the AmericanMedical Association, vol. 302, no. 19, pp.
2119–2126, 2009.

[43] N. Roswall, A. Olsen, J. Christensen et al., “Micronutrient
intake in relation to all-cause mortality in a prospective Danish
cohort,” Food & Nutrition Research, vol. 56, article 5466, 2012.

[44] R. E. Davis, G. C. Icke, and J. M. Hilton, “High serum thiamine
and the sudden infant death syndrome,” Clinica Chimica Acta,
vol. 123, no. 3, pp. 321–328, 1982.

[45] J. D. Milner, D. M. Stein, R. McCarter, and R. Y. Moon,
“Early infant multivitamin supplementation is associated with
increased risk for food allergy and asthma,” Pediatrics, vol. 114,
no. 1, pp. 27–32, 2004.

[46] E. Hyppönen, U. Sovio, M. Wjst et al., “Infant vitamin D sup-
plementation and allergic conditions in adulthood: Northern
Finland birth cohort 1966,” Annals of the New York Academy of
Sciences, vol. 1037, pp. 84–95, 2004.

[47] C. M. Beard, L. A. Panser, and S. K. Katusic, “Is excess folic acid
supplementation a risk factor for autism?”Medical Hypotheses,
vol. 77, no. 1, pp. 15–17, 2011.

[48] T. Kihara, T. Matsuo, M. Sakamoto, Y. Yasuda, and T. Tanimura,
“Effects of the neonatal vitamin A exposure on behaviors of
adult rats,” Journal of Toxicological Sciences, vol. 20, no. 2, pp.
93–101, 1995.

[49] G. S. Young, E. L. Jacobson, and J. B. Kirkland, “Water
maze performance in young male Long-Evans rats is inversely
affected by dietary intakes of niacin and may be linked to levels
of the NAD+ metabolite cADPR,” Journal of Nutrition, vol. 137,
no. 4, pp. 1050–1057, 2007.

[50] H. J. Choi, S. W. Kim, S. Y. Lee, and O. Hwang, “Dopamine-
dependent cytotoxicity of tetrahydrobiopterin: a possiblemech-
anism for selective neurodegeneration in Parkinson’s disease,”
Journal of Neurochemistry, vol. 86, no. 1, pp. 143–152, 2003.

[51] F. R. Greer and R. D. Apple, “Physicians, formula companies,
and advertising: a historical perspective,” American Journal of
Diseases of Children, vol. 145, no. 3, pp. 282–286, 1991.

[52] L. Kanner, “Autistic disturbances of affective contact,” Nervous
Child, vol. 2, pp. 217–250, 1943.



8 Autism Research and Treatment

[53] J. Merrick, I. Kandel, and M. Morad, “Trends in austism,”
International Journal of Adolescent Medicine and Health, vol. 16,
no. 1, pp. 75–78, 2004.

[54] Y. Tanoue and S. Oda, “Weaning time of children with infantile
autism,” Journal of Autism and Developmental Disorders, vol. 19,
no. 3, pp. 425–434, 1989.

[55] Y. M. Al-Farsi, M. M. Al-Sharbati, M. I. Waly et al., “Effect
of suboptimal breast-feeding on occurrence of autism: a case-
control study,” Nutrition, vol. 28, no. 7-8, pp. e27–e32, 2012.

[56] United States Congress, “Infant formula act of 1980,” in Public
Law, pp. 96–359, United States Capitol Health Documents
Room, Washington, DC, USA, 1980.

[57] D. A. Cook, “Nutrient levels in infant formulas: technical
considerations,” Journal of Nutrition, vol. 119, supplement 12, pp.
1773–1778, 1989.

[58] B. A. Wharton, “An approach to setting maxima in infant
formulas,” Journal of Nutrition, vol. 119, supplement 12, pp. 1768–
1772, 1989.

[59] A. M. Smith, M. F. Picciano, and R. H. Deering, “Folate intake
and blood concentrations of term infants,” American Journal of
Clinical Nutrition, vol. 41, no. 3, pp. 590–598, 1985.

[60] R. E. Davis, G. C. Icke, J. M. Hilton, and E. Orr, “Serum
thiamin, pyridoxal, cobalamin and folate concentrations in
young infants,” Acta Paediatrica Scandinavica, vol. 75, no. 3, pp.
402–407, 1986.
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