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Background: Vessel recanalization is the main treatment for ischemic stroke; however,
not all patients benefit from it. This lack of treatment benefit is related to the accompanying
ischemia-reperfusion (I/R) injury. Therefore, neuroprotective therapy for I/R Injury needs to
be further studied. Paeonia lactiflora Pall. is a commonly used for ischemic stroke
management in traditional Chinese medicine; its main active ingredient is paeoniflorin
(PF). We aimed to determine the PF’s effects and the underlying mechanisms in instances
of cerebral I/R injury.

Methods:We searched seven databases from their inception to July 2021.SYRCLE’s risk
of bias tool was used to assess methodological quality. Review Manager 5.3 and STATA
12.0 software were used for meta-analysis.

Results: Thirteen studies, including 282 animals overall, were selected. The meta-
analyses showed compared to control treatment, PF significantly reduced neurological
severity scores, cerebral infarction size, and brain water content (p = 0.000). In the PF
treatment groups, the apoptosis cells and levels of inflammatory factors (IL-1β) decreased
compared to those in the control groups (p = 0.000).

Conclusion: Our results suggest that PF is a promising therapeutic for cerebral I/R injury
management. However, to evaluate the effects and safety of PF in a more accurate
manner, additional preclinical studies are necessary.

Keywords: preclinical evidence, potential mechanisms, paeoniflorin, cerebral ischemia-reperfusion injury, animal
studies

INTRODUCTION

Stroke is the second leading cause of death worldwide, and 84.4% of stroke cases are related to
ischemia (Collaborators, 2019). Although mechanical thrombectomy and intravenous thrombolysis
have been widely recommended and used in the treatment of acute ischemic stroke patients, the
treatments are not effective in all patients (Powers et al., 2018; Liu et al., 2020). Besides some known
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complications, subsequent ischemia/reperfusion (I/R) injury may
be the most important factor resulting in a poor prognosis
(Kalogeris et al., 2016). Cerebral I/R injury is characterized by
a biochemical cascade of ischemic reactions that result in brain
tissue deterioration, limiting the beneficial effects of vascular
recanalization (Hu et al., 2015). I/R injury is involved in some
complicated pathophysiological mechanisms, such as the release
of excitatory neurotransmitters, the acceleration of Ca2+ influx
into cells, free radical damage, neuronal apoptosis,
neuroinflammation, and fat decomposition (Siesjo, 1992;
Wang and Lo, 2003; Wu et al., 2018). Therefore, currently
used neuroprotective therapies aimed at I/R injury
management need further research.

Animal models of ischemic stroke are crucial for determining
the pathophysiology of ischemic stroke and creating novel stroke
therapies. In vivo stroke models are now predominantly mice and
rats, which is understandable given the lower costs of
procurement and maintenance, as well as the ease of
monitoring and tissue processing (Sommer, 2017). The
intraluminal suture middle cerebral artery occlusion (MCAO)
model, which does not need craniectomy, is the most commonly
used experimental model for ischemic stroke in rats (Alrafiah,
2021).

Paeoniflorin (PF, C23H28O11; Figure 1) is a natural
compound derived from Paeonia lactiflora Pall. (Family
Ranunculaceae, molecular mass: 480.5) (Sterne et al., 2019).
Traditional Chinese medicine (TCM) theory believes that
Paeonia lactiflora Pall. has the function of clearing heat and
cooling blood, promoting blood circulation and removing blood
stasis. As an important component of traditional TCM
compounds such as Buyanghuanwu Decoction and Huangqi
Guizhi Wuwu Decoction, Paeonia lactiflora Pall. is widely
used in stroke treatment in China (Chen et al., 2019; He et al.,
2021). The neuroprotective benefits of PF have received a lot of
attention in recent years. At present, the effects and mechanisms
of PF on the central nervous system mainly come from in vitro
experiments on nerve cells (such as primary cortical and
hippocampal neurons, PC12 cells, and microglia cells) and in
vivo investigations (Hu et al., 2018; Cong et al., 2019; Cheng et al.,
2021). Studies have confirmed that PF can cross the blood-brain
barrier, and its mechanism may be related to the mode of cell
death, inflammation, oxidative stress and epigenetics (Jiao et al.,
2021). Furthermore, PF has demonstrated its potential
therapeutic utility in preventing I/R damage in a variety of
tissues (Xie et al., 2018; Wen et al., 2019).Because of the
complexity of clinical medicine, many differences between
preclinical and clinical studies have prevented the further
application of PF. A systematic review can not only offer
reliable evidence but also facilitate the choice of an
appropriate medicine for clinical experiments (van Luijk et al.,
2013). However, no thorough examination of the effectiveness of
PF pooled in preclinical investigations has been done to date. For
this reason, we conducted a full systematic review and meta-
analysis to evaluate PF’s effects in small-animal research on brain
I/R Injury.

MATERIALS AND METHODS

This is a systematic review and meta-analysis based on Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA).

Search Strategy
We systematically searched the following seven databases: China
National Knowledge Infrastructure, Wanfang Database, VIP
Database, PubMed, Cochrane Library, Web of Science, and
EMBASE from their inception to July 2021. The search terms
used were as follows: (“Paeoniflorin” OR “Peoniflorin”) AND
(“Brain Ischemia” OR “Ischemic Encephalopathy” OR “Cerebral
Ischemia”) AND (“Reperfusion Injury” OR “Reperfusion
Damage” OR “Ischemia-Reperfusion Injury”). In addition, all
review articles, meeting abstracts, and their references were
examined thoroughly without language limitations. The search
target was research on animals.

Inclusion and Exclusion Criteria
The inclusion criteria were as follows: (1) establishment of I/R
experimental models through MCAO; (2) PF as the only
consistent therapeutic medication and the use of placebo or no

FIGURE 1 | Chemical structure of paeoniflorin.
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treatment in animals in the control group; and (3) animal
research. The exclusion criteria were as follows: (1)
establishment of I/R experimental models through other
means; (2) PF not being the only intervention; (3) treatment
of animals by using PF analogs; (4) literature with repetitive
content; and (5) in vitro studies.

Data Extraction
Two reviewers (Anzhu Wang and Pingping Huang)
independently selected literature per the abovementioned
criteria and resolved differences by discussion with assistance
from a third reviewer (Xiaochang Ma). The following
information was extracted from each study and is summarized
in a table: (1) study features (names of the first authors and
publication data); (2) animal characteristics including species,
sex, weight, and age; (3) key elements of the MCAO model—the
types of anesthetics used and duration of ischemia; (4)
information about interventions—administration route, dose,
and treatment time; and (5) mean and standard deviation
values of the results. When findings were recorded at different
time points, only those corresponding to the latest time point
were considered. When different doses of a medicine were
administered, the reviewers only record the highest dose. If
data was reported in the form of a figure, the reviewers used a
digital ruler, specifically the Adobe ruler, to determine the
numerical values. If there were several publications with
similar data, we only chose the earliest one or the one with
the most samples.

Quality Assessment
The included studies were assessed for bias by using the
SYRCLE’s risk of bias tool by two independent reviewers
(Anzhu Wang and Pingping Huang) (Hooijmans et al., 2014):
which are: selection bias (sequence generation, baseline
characteristics, and allocation concealment), performance bias
(random housing and blinding of investigators), detection bias
(random outcome assessment and blinding of the assessor to
outcomes), withdrawal bias (availability of incomplete outcome
data), selective reporting bias (selective outcome reporting), and
other bias (other sources of bias). When one required standard
was reached, one point was assigned. After evaluating 10
standards, each piece of literature was assigned a
comprehensive quality score. Two reviewers, Anzhu Wang and
Pingping Huang, resolved differences through discussion and
with assistance from Xiaochang Ma, the third reviewer.

Statistical Analysis
Reviewers adopted Review Manager 5.3 and STATA 12.0 for data
analysis. Outcomes were presented as standardized mean
differences with a 95% confidence interval. p < 0.05 indicated
statistically significant. There was statistical heterogeneity
between the Q test and I2 results for the literature assessed.
p < 0.1 and I2 >50% were regarded to indicate significant
heterogeneity; outcomes were assessed using a random-effects
model. p > 0.1 and I2 ≤ 50% were regarded as indicating no
heterogeneity; the outcomes were evaluated using a fixed-effects
model. Potential publication bias was examined and evaluated by

applying Egger’s test. Sensitivity and subgroup analyses for a
single study were performed using Metaninf.

RESULTS

Study Selection
We identified 452 studies in the database search, and 219 studies
remained after eliminating repeated studies. After reading titles
and abstracts, 44 studies are considered. Overall, 175 pieces of
literature were eliminated for the following reasons: (1) PF was
not the intervention drug, no animal experiment, or no MCAO
model; and (2) the articles were reviews or case reports. Finally, 13
were considered after reading the full text and 31 were eliminated.
The reasons for exclusion were: (1) non-continuous
administration; (2) redundant publications; (3) no ischemia-
reperfusion injury; and (4) non-availability of data. The
process of literature selection is shown in Figure 2.

Study Characteristics
A total of 13 studies (Xiao, 2005; Wang, 2008; Tang et al., 2010; He,
2014; Mao et al., 2014; Rao, 2014; Zhang et al., 2015; Liu, 2016; Chu
et al., 2017; Ko et al., 2018; Liao, 2018; Yu et al., 2018; Tang et al.,
2021), including five English studies (Tang et al., 2010; Zhang et al.,
2015; Chu et al., 2017; Ko et al., 2018; Tang et al., 2021) and eight
Chinese studies (Xiao, 2005; Wang, 2008; He, 2014; Mao et al., 2014;
Rao, 2014; Liu, 2016; Liao, 2018; Yu et al., 2018),were considered. The
studies were published from 2005 to 2021. Five of these weremaster’s
or doctoral theses (Xiao, 2005;Wang, 2008;He, 2014; Rao, 2014; Liao,
2018). All of them were concerned with 282 male Sprague–Dawley
rats, whose weight varied from 180 to 350 g. In one study,
pentobarbital sodium was used to anesthetize animals (Yu et al.,
2018), while isoflurane was used in another (Ko et al., 2018). Chloral
hydrate was used in the remaining 11 (Xiao, 2005;Wang, 2008; Tang
et al., 2010; He, 2014; Mao et al., 2014; Rao, 2014; Zhang et al., 2015;
Liu, 2016; Chu et al., 2017; Liao, 2018; Tang et al., 2021).Moreover, in
five studies, PF was used before treatment (Xiao, 2005; Wang, 2008;
He, 2014; Mao et al., 2014; Liu, 2016), and in seven, it was used after
treatment (Rao, 2014; Zhang et al., 2015; Chu et al., 2017; Ko et al.,
2018; Liao, 2018; Yu et al., 2018; Tang et al., 2021). In one study, it was
used both before and after treatment (Tang et al., 2010). Furthermore,
in nine out of 13 studies, intraperitoneal administration was adopted
(Xiao, 2005;Wang, 2008; He, 2014; Zhang et al., 2015; Liu, 2016; Chu
et al., 2017; Ko et al., 2018; Yu et al., 2018; Tang et al., 2021), while in
three, intravenous tail injection was performed (Tang et al., 2010;
Liao, 2018; Yu et al., 2018). In the final study, intragastric
administration was adopted (Mao et al., 2014). Neurological
severity scores (NSS) were reported in all studies. Three studies
(Xiao, 2005; Tang et al., 2010;Mao et al., 2014) referred to the scoring
method of Bederson et al. (1986), while three others (Chu et al., 2017;
Ko et al., 2018; Tang et al., 2021) referred to the scoring method of
Chen et al. (2001). In seven studies (Wang, 2008;He, 2014; Rao, 2014;
Zhang et al., 2015; Liu, 2016; Liao, 2018; Yu et al., 2018), the scoring
method of Longa et al. (1989) was used. Cerebral infarction size (CIS)
was reported in nine studies (Xiao, 2005; Wang, 2008; Tang et al.,
2010; He, 2014; Rao, 2014; Zhang et al., 2015; Liu, 2016; Liao, 2018;
Yu et al., 2018). One out of the nine studies did notmention the exact
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method (Liu, 2016). In three of the nine studies, infarct area/
contralateral brain area was used for CIS determination (Xiao,
2005; He, 2014; Rao, 2014). In the remaining five studies, CIS
determination was based on infarction area/total brain area
(Wang, 2008; Tang et al., 2010; Zhang et al., 2015; Liao, 2018; Yu
et al., 2018). In five studies, the expression of the associated protein
was determined by western blot (WB) (Xiao, 2005; Wang, 2008; He,
2014; Chu et al., 2017; Tang et al., 2021), while in two, reverse
transcription-polymerase chain reaction (RT-PCR) was used (Xiao,
2005; He, 2014). In seven studies, the TUNEL assay was performed
(Wang, 2008; Tang et al., 2010; Mao et al., 2014; Zhang et al., 2015;
Liu, 2016; Ko et al., 2018; Tang et al., 2021). In eight studies,
immunohistochemistry (IHC) was performed (Wang, 2008; Tang
et al., 2010; Mao et al., 2014; Zhang et al., 2015; Liu, 2016; Ko et al.,
2018; Liao, 2018; Yu et al., 2018), while in two, an
immunofluorescence (IF) assay was conducted (Ko et al., 2018;
Tang et al., 2021). Three studies reported brain water content
(BWC) (He, 2014; Rao, 2014; Chu et al., 2017). In two studies,
correlated factors were determined using an enzyme linked
immunosorbent assay (ELISA) (Liao, 2018; Tang et al., 2021).
Two studies focused on morphological changes (Rao, 2014; Yu
et al., 2018). One study reported results for peripheral blood cells
(Tang et al., 2010). One study reported superoxide dismutase (SOD)
levels (He, 2014), and another reported brain specific gravity and
blood-brain barrier (BBB) permeability (Chu et al., 2017). One study
reported the Rotarod test (Ko et al., 2018), and another reported the

foot fault test (Tang et al., 2021). The general features of the included
studies are listed in Table 1.

Methodological Quality of the Included
Studies
The quality scores of studies ranged from 3 to 6. Two studies did
not report random grouping (Tang et al., 2010; Tang et al., 2021).
Only three studies out of 11 reported the exact randomization
method (He, 2014; Liao, 2018; Yu et al., 2018), despite the fact that
11 studies reported randomization (Xiao, 2005; Wang, 2008; He,
2014; Mao et al., 2014; Rao, 2014; Zhang et al., 2015; Liu, 2016; Chu
et al., 2017; Ko et al., 2018; Liao, 2018; Yu et al., 2018). In five
studies (Tang et al., 2010; Rao, 2014; Chu et al., 2017; Ko et al.,
2018; Tang et al., 2021), the modeling method was assessed using
doppler analysis, and in six studies (Wang, 2008; He, 2014; Mao
et al., 2014; Liu, 2016; Liao, 2018; Yu et al., 2018), NSS was used to
guarantee the unification of experimental baseline standards. In the
remaining studies, the modeling method was not assessed. Four
studies (Tang et al., 2010; Chu et al., 2017; Ko et al., 2018; Tang
et al., 2021) reported the feeding environment of the animals.
However, none of the studies reported allocation concealment,
blinding of investigators, or random outcome assessments. In four
studies (Tang et al., 2010; Zhang et al., 2015; Chu et al., 2017; Ko
et al., 2018), assessors were blinded to outcomes. The data reported
in three studies were incomplete (He, 2014; Liao, 2018; Yu et al.,

FIGURE 2 | Flow diagram of the study-search process.
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TABLE 1 | Basic characteristics of the included studies.

Author Type Species Anesthetic Ischemia
duration

Time
of PF administration

Control
group

Experimental
group
(daily

dosage,
approach,
duration)

Outcome
measures

Proposed
mechanism

Xiao,
(2005)

Doctoral
thesis

Rat/M/SD
220–250 g

Chloral hydrate 90 min 48 h before MCAO NS 40 mg/kg,ip, 24 h 1.CIS,2. NSS,3.RT-PCR(COX-2↓), 4.WB(COX-2↓) Activation of adenosine A1
receptors and
downregulation of COX-2

Wang,
(2008)

Master’s
thesis

Rat/M/SD
250 ± 30 g

Chloral hydrate 90 min 30 min before MCAO NS 60 mg/kg,ip, 24 h 1.CIS,2. NSS,3.TUNEL,4.IHC(FAS↓, TNF-α↓),
5.WB(P-P38↓, iNOS↓)

Anti-apoptosis,
downregulation of p-p38,
iNOS, FAS, and TNF-α

Tang
et al.
(2010)

Journal Rat/M/SD
300–350 g

Chloral hydrate 90 min 10 min before MCAO/
30 min after MCAO

PBS 20 mg/kg,iv, 24 h 1.NSS, 2. CIS, 3.IHC(ED1↓, IL-1β↓, TNF-α↓, ICAM-
1↓, MPO↓),4.TUNEL

Anti-inflammation and anti-
apoptosis

He,
(2014)

Master’s
thesis

Rat/M/SD
250–300 g

Chloral hydrate 90 min 48 h before MCAO NS 20 mg/kg,ip, 72 h 1.CIS,2. NSS,3.BWC,4.SOD↑,5.RT-
PCR(Nrf2↑),6.WB(Nrf2↑)

Anti-oxidative stress,
activation of SOD, and
upregulation of the Nrf2
pathway

Mao
et al.
(2014)

Journal Rat/M/SD
250 ± 10 g

Chloral hydrate 90 min 3d before MCAO PBS 200 mg/kg,ig, 24 h 1.NSS.2.TUNEL.3.IHC(CHOP↓) Anti-apoptosis,
downregulation of CHOP

Rao,
(2014)

Master’s
thesis

Rat/M/SD
260–300 g

Chloral hydrate 90 min 30 min after MCAO NS 40 mg/kg
(20 mg/kg,bid),
ip, 24 h

1.NSS,2.CIS,3.BWC.4.Morphological changes Downregulation of
arachidonic acid expression
via cyclooxygense
pathways, activation of
CBR2

Zhang
et al.
(2015)

Journal Rat/M/SD
280 ± 20 g

Chloral hydrate 2 h 2 h after MCAO NS 10 mg/kg
(5 mg/kg,bid),ip,7d

1.NSS,2.CIS,3.IHC(NeuN↑, GFAP↑, MAP-
2↓),4.TUNEL

Deactivation of astrocytes
and anti-apoptosis

Liu,
(2016)

Journal Rat/M/SD
250–300 g

Chloral hydrate 24 h 30 min before MCAO NS 60 mg/kg,ip, 24 h 1.NSS,2.CIS,3.TUNEL,4.IHC (Bcl-2↑, Bax↓) Anti-apoptosis by
downregulation Bax and
activation Bcl-2

Chu et al.
(2017)

Journal Rat/M/SD
280–300 g

Chloral hydrate 90 min 1 h after I/R NM 10 mg/kg (5 mg/kg),
bid,ip,7d

1.NSS,2.BWC,3.Brain specific gravity, 4.BBB
permeability,5.WB(Cx43↓,AQP4↓,p-JNK↑,p-
ERK↔,p-p38↔), 6.IF(AQP4↓)

Downregulation Cx43 and
AQP4 via JNK pathway
activation

Liao,
(2018)

Master’s
thesis

Rat/M/SD
200 ± 20 g

Chloral hydrate 1 h 8 h after I/R NS 5 mg/kg,iv,7d 1.NSS,2.CIS,3.ELISA(IL-1β↓, TNF-α↓), 4.IHC(NF-
kB/P65↓)

Downregulation NF-kB
pathway, anti-inflammation

Yu et al.
(2018)

Journal Rat/M/SD
180–220 g

Pentobarbital
sodium

1 h 6 h after I/R NS 5 mg/kg,iv,7d 1.NSS,2.CIS,3.Morphological changes,
4.IHC(p-Akt↑)

Activation PI3K/Akt signaling
pathway

Ko et al.
(2018)

Journal Rat/M/SD
250–350 g

Isoflurane 15 min 24 h after MCAO NM 20 mg/kg,ip,6d 1.NSS, 2.Rotarod test, 3.IHC( nAChRs α4β2↓,
Ki67↑), 4.IF(CD68↑, nAChR α7↑), 5.TUNEL

Anti-apoptosis and
promotion of neurogenesis

Tang
et al.
(2021)

Journal Rat/M/SD
200–250 g

Chloral hydrate 2 h 2 h after MCAO Vehicle
(PBS +
DMSO)

10 mg/kg,ip,14d 1.NSS,2.foot-fault test,3.WB(Iba-1↓, JNK↔,p-
JNK↓,nuclear P65↓),4.ELISA(TNF-α↓, IL-1β↓ and
IL-6↓),5.IF(Iba-1↓, vWF↑,DCX↑,P65↓),6.TUNEL

Anti-inflammation and
promotion of neurogenesis

AKT, Protein kinase B; AQP4, Aquaporin4; BAX, BCL-2, associated X; BBB, Blood-brain barrier; BCL-2, B-cell lymphoma-2; Bid, Bis in di; BWC, brain water content; CBR2, Cannabinoid 2 receptors; CHOP, C/EBP, homologous protein;
CIS, cerebral infarction size; COX-2, Cyclooxygenase 2; Cx43, Connexin43; d, Day; DCX, doublecortin; ED1, Mouse anti rat CD68; ELISA, Enzyme linked immunosorbent assay; ERK, Extracellular signal-regulated kinase; FAS, fas cell surface
death receptor; GFAP, glial fibrillary acidic protein; h, Hour; i.g, Irrigation; i.p., intraperitoneal; i.v., intravenous; Iba-1, Ionized calcium-binding adapter molecule 1; ICAM-1, Intercellular adhesion molecule-1; IF, immunofluorescence; IHC,
immunohistochemistry; IL-1β, Interleukin-1β; IL-6, Interleukin-6; iNOS, inducible nitric oxide synthase; JNK, c-Jun N-terminal kinase; Ki67, Mitotic cell marker; MAP-2, Microtubule-associated protein 2; MCAO, middle cerebral artery
occlusion; min, Minute; MPO, myeloperoxidase; nAChRsα4β2, α4β2 nicotinic acetylcholine receptors; nAChRα7, α7 nicotinic acetylcholine receptor; NeuN, Neuron-specific nuclear; NF-κB/P65, Nuclear transcription factor-kappa B; NM, not
mentioned; Nrf2, Nuclear factor erythroid 2-related factor 2; NS, normal saline; NSS, neurological severity score; p-AKT, Phosphorylated AKT; PBS, Phosphate-buffered saline; p-ERK, Phosphorylated ERK; PI3K, Phosphoinositide 3-kinases;
p-JNK, Phosphorylated JNK; p-P38, Phosphorylated P38; RT-PCR, Reverse transcription-polymerase chain reaction; SD, Sprague-Dawley; SOD, Superoxide dismutase; TNF-α, Tumor necrosis factor-α; vWF, von willebrand factor; WB,
Western blot. ↑, upregulated; ↓, downregulated; ↔, No difference.
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2018). Results were inconsistent with the research methods in two
studies (Zhang et al., 2015; Liu, 2016). One study reported the
supply of new animals (Mao et al., 2014). The general features of
the included studies are shown in Table 2 and Figure 3.

NSS
According to p < 0.1 and I2 > 50%,an analysis of NSS data in 13
studies (Xiao, 2005; Wang, 2008; Tang et al., 2010; He, 2014; Mao
et al., 2014; Rao, 2014; Zhang et al., 2015; Liu, 2016; Chu et al.,
2017; Ko et al., 2018; Liao, 2018; Yu et al., 2018; Tang et al., 2021)
showed significant heterogeneity among the results of the studies
(p = 0.000, I2 = 74.6%). A random-effects model was used for the
analyses, and in comparison with the control group, PF was
shown to reduce the NSS (SMD = −2.04, 95% CI = [−2.64, −1.43],
p = 0.000). After sensitivity analysis of the included studies, PF
was still shown to reduce the NSS in comparison with the control
group (Figure 4). Subgroup analysis indicated that the
improvement in the NSS summarized estimated value did not
depend on the PF intervention time, duration, daily dosage, and
ischemia time (Table 3). Meta-regression did not demonstrate a
prominent influence of the covariates (intervention time,
duration, daily dosage, ischemia time, sample size, route of
administration and anesthetic) on the effects of PF (Table 4).

CIS
Nine studies (Xiao, 2005; Wang, 2008; Tang et al., 2010; He, 2014;
Rao, 2014; Zhang et al., 2015; Liu, 2016; Liao, 2018; Yu et al.,
2018) presented CIS data. According to p < 0.1 and I2 > 50%, and
the results showed significant heterogeneity (p = 0.000, I2 =
88.1%). In comparison with the control group, PF was shown
to reduce the CIS in the random-effects model (SMD = −4.78,
95% CI = [−6.51, −3.05], p = 0.000). After sensitivity analysis of
the included studies, PF was still shown to reduce the CIS in
comparison with the control group (Figure 5).

BWC
Three studies (He, 2014; Rao, 2014; Chu et al., 2017) presented
data for BWC, and the results showed no heterogeneity according
to p > 0.1 and I2 ≤ 50% (p = 0.383, I2 = 0.0%). In comparison with

the control group, PF was shown to alleviate BWC in analyses
with the fixed-effects model (SMD = −3.03, 95% CI = [−4.35,
−1.71], p = 0.000; Figure 6).

Other Outcomes
Seven studies (Wang, 2008; Tang et al., 2010; Mao et al., 2014;
Zhang et al., 2015; Liu, 2016; Ko et al., 2018; Tang et al., 2021)
presented the results of TUNEL staining. Among these, one study
(Zhang et al., 2015) was ruled out because the data were not
available, and another study (Tang et al., 2021) was ruled out
because of substantial heterogeneity in the data. A fixed-effects
model was used with the last five studies (Wang, 2008; Tang et al.,
2010; Mao et al., 2014; Liu, 2016; Ko et al., 2018) because of no
heterogeneity among them according to p > 0.1 and I2 ≤ 50% (p =
0.103, I2 = 48.1%). In comparison with the control group, PF was
shown to inhibit apoptosis (SMD = −2.62, 95% CI = [−3.32,
−1.93], p = 0.000; Figure 7A).

Two studies presented the results of ELISA (Liao, 2018;
Tang et al., 2021), of which one reported the findings for
interleukin-1β (IL-1β), tumor necrosis factor-α(TNF-α), and
interleukin-6(IL-6) (Tang et al., 2021), while the other one
reported data for IL-1β and TNF-α (Liao, 2018). According to
p > 0.1 and I2 ≤ 50%, the IL-1β results showed no
heterogeneity (p = 0.360, I2 = 0.0%). In comparison with
the control group using the fixed-effects model, PF was shown
to decrease the level of IL-1β (SMD = −8.45, 95% CI = [−11.22,
−5.69], p = 0.000; Figure 7B), and the TNF-α results showed
significant heterogeneity (p = 0.002, I2 = 89.9%) according to
p < 0.1 and I2 > 50%. In analyses with a random-effects model,
in comparison with the control group, PF was shown to
decrease the level of TNF-α, but the difference was not
statistically significant (SMD = −10.57, 95% CI = [−21.54,
0.39], p = 0.059; Figure 7C).

Two studies reported morphological changes (Rao, 2014;
Yu et al., 2018). In comparison with the control group, most
nerve cells in the hippocampus of cornu ammonis 1(CA1) in
the PF group were characterized by structural integrity, light
morphological changes, and less karyopyknosis. In other
analyses, one study reported that PF could improve the

TABLE 2 | The research quality of the included studies.

Study ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ Scores

Xiao, (2005) 0 0 0 0 0 0 0 1 1 1 3
Wang, (2008) 0 1 0 0 0 0 0 1 1 1 4
Tang et al. (2010) 0 1 0 1 0 0 1 1 1 1 6
He, (2014) 1 1 0 0 0 0 0 0 1 1 4
Mao et al. (2014) 0 1 0 0 0 0 0 1 1 0 3
Rao, (2014) 0 1 0 0 0 0 0 1 1 1 4
Zhang et al. (2015) 0 0 0 0 0 0 1 1 0 1 3
Liu, (2016) 0 1 0 0 0 0 0 1 0 1 3
Chu et al. (2017) 0 1 0 1 0 0 1 1 1 1 6
Liao, (2018) 1 1 0 0 0 0 0 0 1 1 4
Yu et al. (2018) 1 1 0 0 0 0 0 0 1 1 4
Ko et al. (2018) 0 1 0 1 0 0 1 1 1 1 6
Tang et al. (2021) 0 1 0 1 0 0 0 1 1 1 5

①Sequence generation;②Baseline characteristics;③Allocation concealment;④Random housing;⑤Blinding of investigators;⑥Randomoutcome assessment;⑦Blinding of assessors
to the outcomes; ⑧Incomplete outcome data; ⑨Selective outcome reporting; ⑩Other sources of bias.
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activity of SOD in the MCAOmodel (He, 2014); one study reported
that PF could increase brain-specific gravity and reduce BBB
permeability in the MCAO model (Chu et al., 2017); one study
(Ko et al., 2018) reported the findings for the Rotarod test and one
study (Tang et al., 2021) reported the findings for the foot-fault test,
and the results of both tests showed that PF could improve
neurological symptoms. The results of WB (Xiao, 2005; Wang,

2008; He, 2014; Chu et al., 2017; Tang et al., 2021), RT-PCR
(Xiao, 2005; He, 2014), IHC (Wang, 2008; Tang et al., 2010; Mao
et al., 2014; Zhang et al., 2015; Liu, 2016; Ko et al., 2018; Liao, 2018;
Yu et al., 2018), and IF (Ko et al., 2018; Tang et al., 2021) are shown
in Table 1. Complete data can be found in the Supplementary
Table S1 and the PRISMA 2020 Checklist is in the Supplementary
Table S2.

FIGURE 3 | Evaluation of the literature quality results obtained through SYRCLE’s risk of bias based on the Cochrane tool. (A) Risk of bias summary. (B) Risk of
bias graph.
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Publication Bias
For the NSS subset, Egger’s linear regression test was performed, and
it indicated the possibility of publication bias (P > ItI = 0.004 for

Egger’s test). The adjusted random-effects pooled HR of −2.036 (95%
CI, −2.638 to −1.435), obtained using the trim-and-fill method, was
unchanged because no trimming was performed (Figure 8).

FIGURE 4 | Forest plots of PF for NSS. (A) Effects of PF on decreasing the NSS in comparison with the control group; (B) sensitivity analysis of PF for NSS.
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DISCUSSION

The main targets in the treatment of acute stroke are recovery of
cerebral blood flow, and mechanical thrombectomy and intravenous
thrombolysis are the main therapeutic strategies at present. However,
the narrow time windows and contraindications are major obstacles
to the universal application of these therapeutic approaches. On the
other hand, vascular recanalization and I/R are often interrelated
(Smith et al., 2019). The supply of oxygen and glucose is reduced after
the onset of cerebral ischemia, and the recovered oxygen-rich blood
from the ischemic damaged brain tissue would offer the necessary
substrate for the generation of reactive oxygen species (ROS) if
recanalization occurs after the key time window (Eltzschig and
Eckle, 2011). ROS can not only lead to direct cell injuries and
apoptosis but can also trigger the activation of adaptive immunity

and brain innate immunity. This process can induce the formation of
various destructive immunological mediators and effectors,
eventually creating a vicious circle (Mizuma and Yenari, 2017).
The mechanisms underlying ischemic stroke have been explored
in depth overmany years, although clinical studies did not often yield
good outcomes. Thus, there is a constant need for the identification of
novel neuroprotective agents (Chamorro, 2018). The neuroprotective
effect of PF may be relevant to some molecular mechanisms, such as
themode of cell death, inflammation, oxidative stress and epigenetics.

Cell death triggered by I/R injury not only consists of cell
necrosis but also includes programmed cell deaths such as
apoptosis (Liao et al., 2020), autophagia (Shen et al., 2021),
and pyroptosis (Gou et al., 2021). These procedures are
monitored by multiple signaling mechanisms by interfering
with a relevant signal pathway to save damaged cells (Datta

TABLE 3 | Study characteristics accounting for heterogeneity in the NSS subgroup analysis.

Analysis References Fixed-effects
model, HR
(95% CI)

p Random-effects
model HR
(95% CI)

p I2

(%)
ph

NSS Chu et al. (2017), He, (2014), Ko et al. (2018), Liao, (2018), Liu,
(2016), Mao et al. (2014), Rao, (2014), Tang et al. (2021), Tang
et al. (2010), Wang, (2008), Xiao, (2005), Yu et al. (2018), Zhang
et al. (2015)

−1.657(−1.943, −1.370) 0.000 −2.036 (−2.638,
−1.435)

0.000 74.6 0.000

Subgroup 1
pre-treatment He, (2014), Liu, (2016), Mao et al. (2014), Tang et al. (2010),

Wang, (2008), Xiao, (2005)
−1.430(−1.835–1.025) 0.000 −1.806 (−2.620,

−0.992)
0.000 69.5 0.006

post-treatment Chu et al. (2017), Ko et al. (2018), Liao, (2018), Rao, (2014), Tang
et al. (2021), Tang et al. (2010), Yu et al. (2018), Zhang et al. (2015)

−1.883 (−2.288, −1.479) 0.000 −2.198 (−3.107,
−1.289)

0.000 78.3 0.000

Subgroup 2
Duration = 24 h Liu, (2016), Mao et al. (2014), Rao, (2014), Tang et al. (2010),

Wang, (2008), Xiao, (2005)
−1.387 (−1.778, −0.995) 0.000 −1.791 (−2.677,

−0.906)
0.000 76.6 0.002

Duration >24 h Chu et al. (2017), He, (2014), Ko et al. (2018), Liao, (2018), Tang
et al. (2021), Yu et al. (2018), Zhang et al. (2015)

−1.967(−2.387, −1.547) 0.000 −2.291 (−3.131,
−1.452)

0.001 72.1 0.001

Subgroup 3
Daily dosage
≤10 mg/kg

Liao, (2018), Tang et al. (2021), Yu et al. (2018) −1.994 (−2.614, −1.373) 0.000 −2.912 (−5.104,
−0.721)

0.000 89.3 0.000

Daily dosage
≤20 mg/kg

Chu et al. (2017), He, (2014), Ko et al. (2018), Tang et al. (2010),
Zhang et al. (2015)

−1.681 (−2.173, −1.189) 0.000 -1.802 (-2.712,-
0.892)

0.000 68.1 0.008

Daily dosage
>20 mg/kg

Liu, (2016), Mao et al. (2014), Rao, (2014), Wang, (2008), Xiao,
(2005)

−1.478(−1.906, −1.051) 0.000 −1.873 (−2.790,
−0.957)

0.000 73.4 0.005

Subgroup 4
Ischemia time
≤90 min

Chu et al. (2017), He, (2014), Ko et al. (2018), Liao, (2018), Mao
et al. (2014), Rao, (2014), Tang et al. (2010), Wang, (2008), Xiao,
(2005), Yu et al. (2018)

−1.536 (−1.878,-1.193) 0.000 −1.905 (−2.595,
−1.216)

0.000 72.5 0.000

Ischemia time
>90 min

Liu, (2016), Tang et al. (2021), Zhang et al. (2015) −1.938(-2.461, −1.416) 0.000 −2.562 (−4.076,
−1.048)

0.001 84.8 0.001

TABLE 4 | Meta-regression analysis of potential sources of heterogeneity.

Heterogeneity factor Coefficient SE t p-value 95% CI

Intervention time 1.255402 2.6493 0.47 0.660 −6.100234, 8.611038
Duration 2.497039 4.00392 0.62 0.567 −8.619626, 13.6137
Daily dosage 2.375791 3.072568 0.77 0.483 −6.155026, 10.90661
Ischemia time −0.0238451 2.307099 −0.01 0.992 −6.429379, 6.381689
Sample size 1.095033 1.722891 0.64 0.560 −3.688479, 5.878546
Route of administration 0.6597497 1.856658 0.36 0.740 −4.495158, 5.814658
Anesthetic 0.5705356 2.355482 0.24 0.821 −5.96933, 7.110401
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et al., 2020). Apoptotic pathways consist of the intrinsic
apoptotic pathway mediated by mitochondria and the
extrinsic apoptotic pathway mediated by death receptors,

among which caspase and the B-cell lymphoma 2 (BCL-2)
protein family are major molecules (Arya and White, 2015).
Studies have shown that PF can maintain the integrity of the

FIGURE 5 | Forest plots of PF for CIS. (A) Effects of PF on decreasing the CIS in comparison with the control group; (B) sensitivity analysis of PF for CIS.
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mitochondrial membrane, reduce the level of BCL-2 associated
X (BAX), BCL-2 associated agonist of cell death (BAD),
downstream caspase-3 and caspase-9, and increase the levels
of BCL-2 and B cell lymphoma-extra large (BCL-XL), thereby
showing anti-apoptotic effects (Chen et al., 2017; Cong et al.,
2019; Liu et al., 2021; Zhang and Yang, 2021). In autophagia,
which is under the control of autophagia-related genes,
lysosomes are used to degrade unnecessary or damaged
organelles and proteins to maintain cellular homeostasis. The
activation conditions of I/R injuries (such as energy deprivation,
oxidative stress and endoplasmic reticulum stress) could result
in autophagia (Wu et al., 2018). Appropriate autophagia could
offer nerve protection and facilitate improvements in clinical
results by significantly decreasing the levels of neurons, glial,
and endothelial cells (Ajoolabady et al., 2021). PF has been
shown to promote autophagy by regulating the lipidation of
microtubule associated protein 1 light chain 3 (LC3-II) (Cao
et al., 2010). Pyroptosis is a kind of programmed death of
inflammatory cells, which could cause lysis and
oligomerization of gasdermin protein family members,
including gasdermin D (GSDMD), cell perforation, or even
worse, cell death. The process is triggered by the activation
of inflammasome-mediated caspases, including caspase-1 (Tuo
et al., 2021). In comparison with apoptosis, pyroptosis occurs
more rapidly and is associated with a greater release of
proinflammatory factors (Tsuchiya, 2021). PF has been
shown to alleviate astrocyte pyroptosis caused by hypoxia
through the Caspase 1/GSDMD signal pathway (She et al.,
2019).

Cerebral I/R injury triggers inflammation without microorganism
participation, although the inflammation shows features common
with those caused by invading pathogens. This immunologic

response involves the collection and activation of pattern
recognition receptors, including Toll-Like receptors (TLRs),
immune cells of the innate and adaptive immune systems, and
the activation of complement systems to pass signal events.
Because these responses may have adverse consequences, targeted
immune activation has become an emerging treatment modality for
I/R injuries (Carbone et al., 2019; Stoll and Nieswandt, 2019). Some
studies have shown that PF may have anti-inflammatory effects
through the signal pathway of TLR4- Myeloid differentiation factor
88 (MyD88)/Nuclear transcription factor-kappa B(NF-κB) (Zhang
et al., 2017; Yang et al., 2021) and Janus kinase 2 (JAK2)/Signal
transducer and activator of transcription 3(STAT3) (Zhang and
Yang, 2021).

Oxidative stress, which is generated as a result of elevated
levels of ROS and reactive nitrogen species and reduced levels of
antioxidants, can cause damage to cell components, including
proteins, lipids, and DNA (Zhao et al., 2016). Malondialdehyde
(MDA), as the end product of lipid oxidation, can induce
crosslinking polymerization of proteins, nucleic acids, and
other macromolecules. In addition, due to MDA’s cytotoxicity,
the stronger its activity becomes, the stronger the lipid
peroxidization, which can trigger oxidative stress damage
(Menon et al., 2020). SOD, an important active ingredient in
organisms, can eliminate harmful substances and maintain good
metabolic conditions. The lower the levels of SOD, the weaker the
cells’ ability to prevent oxidative damage (Cherubini et al., 2000).
Glutathione (GSH), a tripeptide consisting of γ-amido bonds and
sulfydryl, can perform integrated detoxification and
antioxidation functions. GSH measurements are also a
common index to evaluate antioxidation ability (Higashi et al.,
2021). Unsaturated double bonds in cytomembrane
phospholipids are easily attacked by oxygen radicals, resulting

FIGURE 6 | Forest plots of PF for BWC.

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 82777011

Wang et al. Paeoniflorin for Cerebral Ischemia/Reperfusion Injury

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


in the invagination of phosphatidylserine on cytomembranes,
incompleteness of cytomembranes, and release of lactate
dehydrogenase (LDH) (Bhowmick and Drew, 2017). Studies

have shown that PF can improve these targets and alleviate
the brain damage (Liu and Wang, 2013; Wang et al., 2020;
Wu et al., 2020; Zhang and Yang, 2021).

FIGURE 7 | (A) Forest plots of PF for TUNEL staining; (B) forest plots of PF for IL-1β; (C) forest plots of PF for TNF-α.
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Epigenetics, the transitive variation of phenotypic characters, is
unrelated to DNA changes, but may be influenced by external and
environmental factors. These factors can turn on and off genes and
thus affect the ways in which cells read genes. There are three
primary epigenetic mechanisms: DNA methylation, histone
modification, and non-coding RNA (Patsouras and
Vlachoyiannopoulos, 2019). (1) Members of the histone

deacetylase (HDAC) family compete with histone
acetyltransferase (HAT) for the right to control lysine residue
acetylation that forms histone, thereby ensuring post-translational
acetylation of chromatin and many other non-histones (He et al.,
2013). Many studies have reported the neuroprotective roles of
HDAC inhibitors in ischemic stroke (Patnala et al., 2017; Brookes
et al., 2018), and PF has been shown to reduce ischemic brain injuries

FIGURE 8 | Funnel plot of PF for NSS. (A) Assessment of publication bias in a funnel plot. (B) Bias assessment plot by Egger’s test.
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triggered by caspase 3-induced HDAC4 nuclear accumulation
during stroke (Liu et al., 2021). (2) The common non-coding
RNA consists of lncRNAs and miRNAs, and miRNAs have
especially attracted considerable attention in cerebral I/R injuries
studies in recent years (Ghafouri-Fard et al., 2020). miRNAs can not
only influence gene expression by inhibiting mRNA translation or
inducing degradation of mRNA, but also act as damage-associated
molecular patterns and cofactors activating inflammatory cascades
and thrombosis (Hu et al., 2015; Forouzanfar et al., 2019;
Mahjoubin-Tehran et al., 2021). Studies show that PF could
alleviate brain damage by manipulating miR-210 (Jiang et al.,
2021) and miR-135a (Zhai et al., 2019).

This is the first preclinical meta-analysis to investigate the efficacy
of PF for cerebral I/R Injury. The findings confirmed that, in
comparison with the control group, PF showed improvements in
the NSS, CIS, and BWC by modulating a wide range of biological
mechanisms such as neuroinflammation, oxidative stress, and
apoptosis. The results of subgroup analysis showed that the longer
the ischemia duration, the more severe the injury and the better the
treatment effect of PF. The effect of PF administered post-MCAOwas
better than that administered pre-MCAO, but this phenomenon could
be explained by the long observation period. Daily dosage ≤10mg/kg
or >20mg/kg for PF were better than daily dosages ≤20mg/kg,
indicating a “U-Shaped Dose-Response Curve” between PF dosage
and therapeutic effect. There are barriers to turning experimental
findings into clinically viable therapies, particularly in the research of
cerebrovascular disorders. It is important to confirm PF’s efficacy in
larger animal models, to evaluate the therapeutic benefit of
combination application with other neuroprotective treatments,
and to clarify its potential side effects and safety in order to
advance PF into clinical trials as soon as feasible.

LIMITATIONS

First, the studies evaluated in this meta-analysis had problems
related to nonstandard methodologies and incomplete reports,
which may have influenced the effectiveness of our conclusions.
None of the included studies mentioned power calculation. The lack
of a formal sample size calculation leads to uncertainty about the
validity of statistical analysis. Particularly for allocation
concealment, blinding methods to address performance bias and
random outcome evaluation were not mentioned in any studies. A
few studies have also been reported on “random housing.” This
could be an issue as cage size, material, placement, bedding, and the
number of animals placed in the cage may affect thermoregulation
and stress level. Lack of information on these elements could
potentially contribute to bias. Second, ischemic stroke shows
high complexity and heterogeneity. Stroke experiment models
can only cover specific features of multiple diseases (Sommer,
2017). Clinical conditions are more complex; for example, many
factors may affect prognosis, including hypertension, diabetes, and
atrial fibrillation (Boehme et al., 2017). The design differences
between experimental studies and clinical studies can result in a
gradual decrease in effectiveness from early clinical trials to phase III
trials (Schmidt-Pogoda et al., 2020). Thus, to connect preclinical
and clinical studies, the quality of animal research methods requires

improvement through more systematic methods for the analysis of
experimental data and greater collaboration between clinical and
animal researchers. Third, the funnel plot shows high asymmetry,
indicating a publication bias in this study. The results of the Egger
test further validated this finding. However, the findings using the
trim-and-fill method were unchanged because no trimming was
performed. However, similar to other meta-analyses, these
conclusions are influenced by the fact that preclinical studies are
usually published if the analyses with experimental animals yield
positive results. The resultant lack of studies showing lack of
effectiveness or negative findings can result in overestimation of
the overall curative effects.

CONCLUSION

This preclinical meta-analysis suggests that PF could alleviate
cerebral I/R injuries and potentially serve as a neuroprotective
agent. Despite the lack of clinical trial data and potential
publication biases, these conclusion are worth consideration.
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GLOSSARY

AKT Protein kinase B

AQP4 Aquaporin4

BAD BCL-2 associated agonist of cell death

BAX BCL-2 associated X

BBB Blood-brain barrier

BCL-2 B-cell lymphoma-2

BCL-XL B cell lymphoma-extra large

Bid Bis in die

BWC Brain water content

CA1 Cornu ammonis 1

CBR2 Cannabinoid 2 receptors

CHOP C/EBP homologous protein

CIS Cerebral infarction size

COX-2 Cyclooxygenase 2

Cx43 Connexin43

d Day

DCX Doublecortin

ED1 Mouse anti rat CD68

ELISA Enzyme linked immunosorbent assay

ERK Extracellular signal-regulated kinase

FAS Fas cell surface death receptor

GFAP Glial fibrillary acidic protein

GSDMD Gasdermin D

GSH Glutathione

h Hour

HAT Histone acetyltransferase

HDAC Histone deacetylase

i.g Irrigation

i.p. Intraperitoneal

i.v. Intravenous

I/R Ischemia/reperfusion

Iba-1 Ionized calcium-binding adapter molecule 1

ICAM-1 Intercellular adhesion molecule-1

IF Immunofluorescence

IHC Immunohistochemistry

IL-1β Interleukin-1β

IL-6 Interleukin-6

iNOS Inducible Nitric Oxide Synthase

JAK2 Janus kinase 2

JNK c-Jun N-terminal kinase

Ki67 Mitotic cell marker

LC3-II Lipidation of microtubule associated protein 1 light chain 3

LDH Lactate dehydrogenase

MAP-2 Microtubule-associated protein 2

MCAO Middle cerebral artery occlusion

MDA Malondialdehyde

min minute

MPO Myeloperoxidase

MyD88 Myeloid differentiation factor 88

nAChRsα4β2 α4β2 nicotinic acetylcholine receptors

nAChRα7 α7 nicotinic acetylcholine receptor

NeuN Neuron-specific nuclear

NF-κB/P65 Nuclear transcription factor-kappa B

NM Not mentioned

Nrf2 Nuclear factor erythroid 2-related factor 2

NS Normal saline

NSS Neurological severity score

p-AKT Phosphorylated AKT

PBS Phosphate-buffered saline

p-ERK Phosphorylated ERK

PF Paeoniflorin

PI3K Phosphoinositide 3-kinases

p-JNK Phosphorylated JNK

p-P38 Phosphorylated P38

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-
Analyses

ROS Reactive oxygen species

RT-PCR Reverse transcription-polymerase chain reaction

SD Sprague-Dawley

SOD Superoxide dismutase

STAT3 Signal transducer and activator of transcription 3

TCM Traditional Chinese medicine

TLRs Toll-Like receptors

TNF-α Tumor necrosis factor-α

vWF Von Willebrand Factor

WB Western blot
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