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ABSTRACT: A common strategy for identifying molecules likely to possess a desired biological activity is to search large databases
of compounds for high structural similarity to a query molecule that demonstrates this activity, under the assumption that structural
similarity is predictive of similar biological activity. However, efforts to systematically benchmark the diverse array of available
molecular fingerprints and similarity coefficients have been limited by a lack of large-scale datasets that reflect biological similarities
of compounds. To elucidate the relative performance of these alternatives, we systematically benchmarked 11 different molecular
fingerprint encodings, each combined with 13 different similarity coefficients, using a large set of chemical−genetic interaction data
from the yeast Saccharomyces cerevisiae as a systematic proxy for biological activity. We found that the performance of different
molecular fingerprints and similarity coefficients varied substantially and that the all-shortest path fingerprints paired with the Braun-
Blanquet similarity coefficient provided superior performance that was robust across several compound collections. We further
proposed a machine learning pipeline based on support vector machines that offered a fivefold improvement relative to the best
unsupervised approach. Our results generally suggest that using high-dimensional chemical−genetic data as a basis for refining
molecular fingerprints can be a powerful approach for improving prediction of biological functions from chemical structures.

■ INTRODUCTION
The development of new drugs that demonstrate desired
biochemical behavior against a biomolecular target is
challenging. Despite the scientific and technological advances
in drug discovery during the past 60 years, the ratio of drugs
approved to money spent on R&D has halved roughly every 9
years since 1950 (Eroom’s law in contrast to Moore’s law)1

and has now dipped below one drug per billion USD.1−3

Following the similar property principle (SPP),4 ligand-based
virtual screening has been commonly used to filter candidates
prior to high-throughput screening efforts by ranking
compounds from a large database in descending order of
their structural similarity to a reference or target molecule with
known biological activity (Figure 1).5,6 According to the SPP,
structurally similar molecules will more likely possess similar
biological activities and physicochemical properties. Despite

limitations to the SPP,7,8 such as activity cliffs that manifest
when a small structural modification drastically alters the
biological properties of a compound,9 this structure−activity
relationship is broadly consistent throughout the larger flat
regions of activity landscapes.10,11 Improving the structural
similarity-based retrieval of biologically similar compounds will
therefore benefit a multitude of drug discovery efforts.
The chemical informatics community has suggested a wide

range of molecular encodings and similarity coefficients to
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quantify structural similarity between two molecules,13−15

which is then used as a proxy for biological similarity. The
most widely used class of molecular encodings is chemical
fingerprints,16−20 where a molecular graph is represented by a
bit vector that encodes the presence or absence of molecular
features such as paths between atoms, substructural fragments,
and pharmacophores. The degree of similarity of two structural
vectors describing two different compounds is usually
measured by similarity coefficients. The Tanimoto (aka
Jaccard) coefficient, formulated as the fraction of features in
common between two molecules relative to the total number
of features present in either molecule, remains the coefficient
of choice to capture the highest level of intermolecular
similarity and thus biological activity,21−24 although this
coefficient suffers from an intrinsic bias toward selecting
smaller compounds.13,25−27 However, a major challenge for the
research community has been the lack of a systematic
benchmarking framework based on biological activity that
covers a broad range of protein targets. Such a framework will
enable a definitive assessment of the performance of molecular
fingerprints and similarity coefficients in predicting biological
similarity between two molecules.
Chemical genomic approaches, which involve the systematic

mapping of chemical−genetic interactions, offer a valuable new
source of data to connect chemical structures to biological
functions. The yeast Saccharomyces cerevisiae is a well-
characterized eukaryote, for which ∼5000 viable deletion

mutants have been identified.28 Interrogating these deletion
mutants with a bioactive compound generates a chemical−
genetic interaction profile containing the degree of sensitivity
or resistance of each genetic mutant to the compound.29,30

This quantitative, high-dimensional representation of bio-
logical functions can be interpreted using a global compen-
dium of genetic interaction profiles31,32 systematically mapped
through pairwise, double-knockout screens in S. cerevisiae.
Specifically, the chemical−genetic interaction profile of a
compound will resemble the genetic interaction profile
obtained through the genetic knockout of its biomolecular
target.33 These chemical−genetic interaction profiles can be
used as a gold standard to evaluate structural similarity
measures (each defined as one molecular fingerprint encoding
paired with one similarity coefficient), even for compounds
where the actual biological targets are not yet known, since
these profiles accurately reflect compound functions.
We recently generated and published a compendium of over

13,000 chemical−genetic interaction profiles obtained in S.
cerevisiae,34 providing a unique basis to independently assess
the performance of structural similarity measures. These
compounds originate from the RIKEN Natural Product
Depository (NPDepo) and several NCI, NIH, and Glax-
oSmithKline (GSK) compound collections. We systematically
benchmarked 11 different molecular fingerprint encodings,
each paired with 13 different similarity coefficients, to identify
the pair that best predicted biological similarity as measured by

Figure 1. Ligand-based virtual screening of a target (e.g., NPD2186 from RIKEN Natural Product Depository). We ranked all compounds (top
four shown) of the MOSAIC database (http://mosaic.cs.umn.edu)12 in descending order of structural similarity to the target molecule based on
the SPP. We described these compounds using all-shortest path (ASP) fingerprints (depth 8) and measured structural similarity using the Braun-
Blanquet similarity coefficient. In this example rank list, three compounds except NPD4974 have a very similar chemical−genetic interaction profile
to that of NPD2186.

Table 1. Molecular Fingerprintsa

ID name description features reference(s)

FP1 AP2D topological atom pairs 1211 44
FP2 ASP all-shortest paths 26,194 45
FP3 AT2D topological atom triplets 56,963 44
FP4 DFS all-paths (depth-first search) 48,448 46
FP5 ECFP extended connectivity fingerprints 42,672 47
FP6 LSTAR local path environments 85,232 48
FP7 MACCS MDL public keys (166 keys) 155 49
FP8 PHAP2POINT2D topological pharmacophore pairs 17 50
FP9 PHAP3POINT2D topological pharmacophore triplets 302 50
FP10 RAD2D topological molprint-like fingerprints 92,191 48
FP11 RDKit topological daylight-like fingerprints 65,183 43,51

aA total of 11 different molecular fingerprints were generated using the jCompoundMapper tool42 or RDKit toolkit (version 2020.09.4)43 for
describing the compounds in our datasets. The fourth column, features, represents the total number of features that the jCompoundMapper tool or
RDKit toolkit generated for describing our RIKEN high-confidence set (826 compounds). The molecular features that we counted were only those
present in the description of at least one compound of this collection, and the molecular fingerprints that required a depth of description were
measured at depth 8.
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chemical−genetic interaction profile similarity (in brief,
chemical−genetic similarity). Given recent advances in
machine learning approaches for drug discovery,35−39 we
further developed supervised machine learning models to
improve our predictions of the biological activity of our
compounds from chemical structures, achieving higher
predictive power than using similarity measures alone. We
found that support vector machines (SVMs)40,41 can
significantly enhance the power of chemical fingerprints for
predicting the biological activity of compounds.

■ RESULTS AND DISCUSSION
Establishing a Systematic Benchmark for Structural

Similarity Measures. We compiled a list of commonly used
molecular fingerprint encodings and similarity coefficients to
capture the structural similarity of compounds in different
modes (e.g., exploring molecular paths or radial atom
environments) (Tables 1 and 2). To quantify the ability of
different structural similarity measures for predicting function-
ally analogous compounds, we used chemical−genetic
interaction profiles from S. cerevisiae as a systematic genome-
wide standard for biological activity. We previously published
chemical−genetic interaction profiles for 13,431 compounds
from several diverse compound collections and identified a
subset of these compounds predicted with high confidence to
perturb predefined biological processes based on integrating
these profiles with genetic interaction profiles.34 We included

in our benchmarking system two independent subsets of these
high-confidence compounds: (1) 826 compounds from the
RIKEN NPDepo collection, which we hereafter call as the
“RIKEN high-confidence set”, and (2) 659 compounds from
several NCI/NIH/GSK collections, which we hereafter call as
the “NCI/NIH/GSK high-confidence set” (Materials and
Methods).
Since we require a binary gold standard to calculate

prediction performance using precision and recall, we selected
the 10% of most similar compound pairs based on the (cosine)
similarity of their chemical−genetic interaction profiles and
labeled them as our gold standard for true positive compound
pairs. This assumption is imperfect because chemical−genetic
similarity of compounds does not always imply structural
similarity and two functionally analogous compounds may
have distinct chemical structures. However, a large fraction of
these true positives (functionally similar compound pairs)
should still be identified from the structural similarity of
compounds; therefore, this chemical−genetic-derived similar-
ity serves as a reasonable basis to identify compounds with
similar biological effects.
While studying compounds using yeast chemical−genetic

interaction screens benefits from many advantages (e.g.,
genome-wide detection of potential targets), some important
aspects of compound activity such as pharmacokinetic
properties will be missed. Since our modeling approaches are
based on functional similarity as detected in yeast chemical−
genetic interactions, our results and conclusions about the

Table 2. Similarity Coefficientsa

name measurement range reference(s)

Braun-Blanquet x/max(y,z) 0 to 1 53,54

Cosine
x
yz 0 to 1 55,56

Dice +
x

y z
2

0 to 1 57,58

Dot-product x 0 to ∞ N/A

Euclidean + +y z x
1

1 2 0 to 1 N/A

Kulczynski +x y z
yz

( )
2

0 to 1 59

McConnaughey
+x y z yz

yz
( )

−1 to 1 60

Russel/Rao x/w 0 to 1 61
Simpson x/min(y,z) 0 to 1 62

Sokal/Sneath +
x

y z x2 2 3 0 to 1 63

Tanimoto +
x

y z x 0 to 1 64,65

Tullos XYZ 0 to 1 66

Tversky + +
[ ]x

y x z x x( ) (1 )( )
0, 1 0 to 1 67

aA total of 13 different similarity coefficients (several of these coefficients were collected by Raymond and Willett)52 were compiled for measuring
the degree of structural similarity of two compounds described by a given molecular fingerprint encoding. Here, x is the number of bits set in both
fingerprints, y is the number of bits set in the first fingerprint, z is the number of bits set in the second fingerprint, and w is the total number of bits

in the bit string. For the Tullos similarity coefficient, = +( )X log 1 /log(2)y z
y z

min( , )
max( , )

, = + +( )( )Y log 2 /log(2)y z x
x

min( , )
1

1/2
, and

= + +( ) ( )Z log 1 log 1 /log (2)x
y

x
z

2 . For the asymmetric evaluation of the Tversky similarity coefficient, α = 0.9. Here, we assume that the

parameters of the Tversky coefficient in its original formulation, = + +Tversky x
x p y x q z x( ) ( )

, will follow p + q = 1. The Dice and Tanimoto

similarity coefficients are two symmetric instances of the Tversky coefficient, where p = q = 0.5 and p = q = 1, respectively.
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functional similarity predictions of compounds will not reflect
these characteristics, including pharmacokinetic properties.
We evaluated both components (molecular fingerprints and

similarity coefficients) of our systematic benchmark to find

both the fingerprint and the coefficient that best predicted the
biological activity of our compounds (Supporting Information
algorithm). We described all our compounds in 11 different
fingerprint-based structural spaces (Table 1), where a

Figure 2. Performance of selected prediction models using our RIKEN high-confidence set (Table S1 for the complete evaluation of all prediction
models). (A) Precision at several recall thresholds and the area under the ROC curve for each model, where a molecular fingerprint was paired with
the Braun-Blanquet, Cosine, or Tanimoto similarity coefficient, evaluated based on chemical−genetic similarity as the gold standard for biological
activity. The blue values represent the highest precision achieved at a given recall, and the green values represent the average precision over all
molecular fingerprints for a similarity coefficient at a specific recall threshold. (B) Relative performance of ASP, LSTAR, and RAD2D fingerprints to
that of ECFP. For all the molecular fingerprints that required a depth of description, precision was measured at a depth of 8. With the exception of
ASP, LSTAR, and RAD2D, the remaining molecular fingerprints are coded as FP1−FP11 (Table 1).
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Figure 3. Performance of selected prediction models using our NCI/NIH/GSK high-confidence set (Table S2 for the complete evaluation of all
prediction models). (A) Precision at several recall thresholds and the area under the ROC curve for each model, where a molecular fingerprint was
paired with the Braun-Blanquet, Cosine, or Tanimoto similarity coefficient, evaluated based on chemical−genetic similarity as the gold standard for
biological activity. The blue values represent the highest precision achieved at a given recall threshold, and the green values represent the average
precision over all molecular fingerprints for a given similarity coefficient at a specific recall threshold. (B) Relative performance of ASP, LSTAR, and
RAD2D fingerprints to that of ECFP. For all the molecular fingerprints that required a depth of description, precision was measured at a depth of 8.
With the exception of ASP, LSTAR, and RAD2D, the remaining molecular fingerprints are coded as FP1−FP11 (Table 1).
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compound was described by a bit vector that indicated the
presence or absence of certain molecular features. The number
of features required for the description of the compounds in a
structural space varied based on the space definition and
collection properties (e.g., only 155 out of 166 predefined
molecular substructures from MDL public keys were used in
the MACCS description of our RIKEN high-confidence set,
while RAD2D structural encodings generated 91082 features
to describe the same collection). We used 13 widely used
similarity coefficients (Table 2) to measure the degree of
similarity of two compounds described by a given molecular
fingerprint.
Evaluating the Performance of Structural Similarity

Measures. We computed pairwise structural similarities for
the compounds in our RIKEN high-confidence set (340,725
different compound pairs) using every combination of a
molecular fingerprint and a similarity coefficient (143 different
prediction models). For every model, we sorted pairwise
structural similarity scores in descending order against our
binarized gold-standard functional (chemical−genetic) sim-
ilarities and calculated precision at predefined recall thresholds
(Table S1 for all precision values and complete evaluation of
all prediction models). To isolate the best-performing
molecular fingerprint, we examined the precision of all the
prediction models at several predefined recall thresholds for
our RIKEN high-confidence set (Table S1). Based on these
evaluation metrics, the ASP, LSTAR, and RAD2D fingerprints
emerged as the molecular fingerprints with superior predictive
power (Figure 2 and Table S1). The wide range of precision
values achieved by different molecular fingerprints revealed
that our chemical−genetic interaction profiles can readily
discriminate molecular fingerprints in terms of their efficacy in
predicting the biological activity of our compounds.
Notably, among the molecular fingerprints that we evaluated

was the Morgan fingerprint,68 also known as the extended-
connectivity fingerprint (ECFP),47 which has recently been
identified as one of the best-performing fingerprints in a variety
of applications such as small-molecule virtual screening.69−71

However, ECFP was generally outperformed by ASP, LSTAR,
and RAD2D fingerprints, except for a small number of recall
thresholds (Figure 2B and Table S1). Because this finding
might simply be a result of the RIKEN NPDepo compound
collection characteristics, we used our NCI/NIH/GSK high-
confidence set to validate the prediction performance of ASP,
LSTAR, and RAD2D fingerprints, using the same evaluation
method designed for our RIKEN high-confidence set. Our
analysis on this second large set of compounds strongly
confirmed the superiority of these fingerprints over ECFP at
many recall thresholds (Figure 3 and Table S2 for complete
evaluation of all prediction models).
We determined that the ASP and LSTAR fingerprints best

captured the relationship between the chemical structure and
biological activity of our compounds. ASP fingerprints encode
graph traversals over all atoms in a molecular graph but store
only the shortest paths between atoms, whereas LSTAR and
RAD2D fingerprints describe the radial environment of all
atoms in the molecular graph.42 As a result, ASP structural
encodings needed fewer features than LSTAR and RAD2D
encodings to describe our compound collections (Table 1�
“features” column), although the prediction performance of
ASP fingerprints was higher or comparable with that of LSTAR
and RAD2D fingerprints at most recall thresholds. Moreover,
LSTAR fingerprints generally exhibited higher performance

than RAD2D fingerprints at several recall thresholds (Figures 2
and 3), which could be driven by the additional bond
information that LSTAR fingerprints collect from the radial
environment of the atoms.
While the choice of a molecular fingerprint is important (as

demonstrated above) for maximizing the biological relevance
of chemical similarity calculations, such fingerprints must be
paired with a similarity coefficient to compute chemical
similarity. To characterize the utility of different similarity
coefficients, we benchmarked a large set of 13 different
similarity coefficients (Table 2) that were applied to the
complete set of candidate molecular fingerprints. Again, using
our RIKEN high-confidence set as the basis, we measured the
prediction performance of every coefficient over all molecular
fingerprints to find the best-performing similarity coefficient
(Table S1). We found that several (nine out of 13) coefficients
were able to consistently exhibit high performance across all
molecular fingerprints; however, four coefficients (Dot-
product, Euclidean, Russel/Rao, and Simpson) failed in several
molecular fingerprint spaces because their precision substan-
tially dropped at many recall thresholds (Table S1). Because
these four coefficients were unable to capture the biological
similarity of our compounds given the provided molecular
fingerprints, we focused only on the nine remaining
coefficients.
We found that the Braun-Blanquet similarity coefficient53,54

resulted in the highest precision at many recall thresholds
compared to all other coefficients (Table S1), including the
Tanimoto and cosine coefficients (Figure 2A), which have
been used widely by the chemical informatics community. The
Braun-Blanquet coefficient is simply computed as the fraction
of features shared between two molecules to the total number
of features present in the larger molecule. For the Braun-
Blanquet coefficient, the average and maximum precisions and
the average and maximum areas under the receiver operating
characteristic (ROC) curves across all molecular fingerprints
were slightly higher at many recall thresholds compared to
those of the Tanimoto and cosine coefficients (Figure 2A and
Table S1�green and blue values), suggesting that this simple
coefficient of structural similarity can confidently be used in
ligand-based virtual screening as a substitute for the traditional
Tanimoto coefficient. We further measured the performance of
our prediction models using our NCI/NIH/GSK high-
confidence set to validate the superiority of the Braun-
Blanquet coefficient over other similarity coefficients (Figure
3A and Table S2).
Given the prevalence of the Tanimoto similarity coefficient

throughout chemical similarity calculations, we found our
evaluation results especially interesting in that the Tanimoto
similarity coefficient was outperformed in our systematic
benchmark by the Braun-Blanquet similarity coefficient. Thus,
we offer a potential explanation: for a pair of small molecules
where the structural features of one molecule are a subset of
the structural features of the other molecule, both similarity
coefficients yield the same similarity values. However, these
similarity values diverge if new features are added to the
molecule with fewer structural features, and therefore, its
feature set is no longer a subset of the feature set of the larger
molecule. Specifically, Tanimoto-based structural similarity
decreases because the size of the total feature set across the
two molecules increases, while Braun-Blanquet-based struc-
tural similarity remains unchanged. Thus, when retrieving
similar molecules to a target molecule, the Tanimoto similarity
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coefficient will bias the results toward the sub- and supersets of
the target molecule and against the molecules that share a
common core with the target molecule but incorporate
additional unique features. Braun-Blanquet-based similarity
does not suffer from this bias, as the denominator of the Braun-
Blanquet coefficient is the size of the largest molecular feature
set and not the total number of features observed across both
molecules. The higher performance of the Braun-Blanquet
coefficient against our functional gold standard suggests that
the bias inherent in the definition of the Tanimoto coefficient
affects its performance in predicting the true functional
similarity of compounds and that a similarity coefficient such
as the Braun-Blanquet coefficient can mitigate this issue.
Overall, we identified the combination of the Braun-

Blanquet similarity coefficient and either the ASP or LSTAR
molecular fingerprints as the highest-performing approach for
measuring chemical structural similarity in ligand-based virtual
screening. This conclusion was further confirmed through
more formal “sum of ranking distances” (SRD) analysis
(Figures S1 and S2, Tables S1 and S2�SRD analysis
spreadsheets).72−74

To the best of our knowledge, no study has reported or used
the combination of the ASP or LSTAR fingerprints paired with
the Braun-Blanquet similarity coefficient as a measure of
structural similarity.
Optimizing the Depth of Molecular Fingerprints. One

major parameter involved in the structural description of
compound collections is the describing depth; a high depth
generates features that describe the local and global environ-

ments of each atom, whereas a low depth focuses only on the
local neighborhood of atoms in the molecular graph. We
assessed the impact of the depth of five molecular fingerprints
(ASP, DFS, ECFP, LSTAR, and RAD2D) in predicting the
biological activity of our compounds using the Braun-Blanquet
similarity coefficient (Figure 4).
At predefined recall thresholds, we observed that precision

beyond a depth of 8 at best minimally improved the prediction
of functional similarity from chemical structures and at worst
decreased it markedly. Describing our RIKEN high-confidence
set at a high depth generally resulted in strong predictions at
lower recall thresholds. Structural description at a high depth
was able to predict the compound pairs that were structurally
and therefore functionally very similar according to the SPP.
On the other hand, a low describing depth was able to capture
the similarity of two molecular graphs in the local subgraphs
that were essential for functional similarity, resulting in
reasonable predictions at lower recall thresholds. We further
evaluated these results using our NCI/NIH/GSK high-
confidence set (Figure S3), which confirmed a similar general
trend across a range of recall thresholds using 10 different
describing depths. Therefore, the structural description of a
compound collection at high depths does not appear to be
beneficial from our evaluation, and thus, the additional
computational complexity and storage space for these
structural vectors across hundreds or thousands of compounds
may not be justified. For other evaluations in this study, we
selected a depth of 8 as the focus of our analysis.

Figure 4. Impact of the describing depth of molecular fingerprints on the RIKEN high-confidence set. We measured the precision of our prediction
models at 10 molecular depths, ranging from 2 to 20, for five different molecular fingerprints. Similarities were calculated with the Braun-Blanquet
similarity coefficient, and the precision at three different recall thresholds for each molecular depth is shown.
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Improving the Prediction Performance Using SVM
Models. To increase our ability to predict the biological
activity of compounds from their structures, we designed
supervised machine learning models that leveraged chemical−
genetic interaction profiles as training data. As a preprocessing
step to reduce the size of the feature space, we used supervised
principal component analysis75 to extract the most informative
structural features given our functional similarity standard.
We designed a learning pipeline (Figure 5A) for predicting

chemical−genetic similarities by creating bootstraps76 from our
compound collections and generating “pairwise structural

vectors” (Figure S4) that labeled the shared molecular features
between two molecules (Materials and Methods). This
pipeline was implemented using support vector regression
(SVR) models40,41 with a radial basis function (RBF) kernel.
We employed PR curves to evaluate the prediction perform-
ance of our learning models for different molecular finger-
prints, where the compound pairs from our high-confidence
sets with the highest 10% of chemical−genetic similarities were
labeled as the gold standard for true positives. Using this
machine learning approach, we found that a subset of our
molecular fingerprints (FP1−FP6, FP10, and FP11) enabled

Figure 5. Prediction performance of machine learning models. (A) Learning pipeline for one bootstrap using pairwise structural vectors (Materials
and Methods). (B) Model performance for our RIKEN high-confidence set. The blue precision−recall (PR) curve represents the prediction
performance of our best structural similarity measure (ASP/Braun-Blanquet), whereas the teal and gold PR curves represent the performance of
our machine learning models using ASP and LSTAR fingerprints, respectively. A prediction is considered a true positive if the compound pair is
within the top 10% of functionally similar compound pairs using chemical−genetic interaction profiles. We used pairwise true positives or TP
(pairs) as a general form of recall in our PR curves. (C) Model performance for the combined RIKEN and NCI/NIH/GSK high-confidence sets.
(D) Model performance for the NCI/NIH/GSK high-confidence set. (E) Model performance for the NCI/NIH/GSK high-confidence set (as in
panel (D)), except using top 20% of pairwise chemical−genetic similarities to define true positives.
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substantial improvements in performance for predicting
compound functional similarity than the best-performing
structural similarity measure (ASP/Braun-Blanquet). To
evaluate the characteristics of our predicted supervised
structural similarities, we computed the Pearson correlation
between these pairwise similarities and the observed
chemical−genetic similarity for both our compound collections
(Figure S5). This analysis demonstrated that predicted
similarities were correlated with chemical−genetic similarities
in both collections and that the correlation increased using our
machine learning approach.
The PR curves of our learning models built on ASP and

LSTAR fingerprints (Figure 5B) exhibited a fivefold improve-
ment in the recall of biologically similar compounds at a
precision of 50%. However, the degree of improvement was
dependent on the functional diversity of our datasets, where
performance was higher for the collections with lower
functional diversity. For instance, predictions for the NCI/
NIH/GSK high-confidence set improved by only about
twofold based on the recall of biologically similar compounds
at a precision of 50% (Figure 5D−E). We speculate that this
relatively modest improvement (compared to that of the
RIKEN high-confidence set) may be explained by the higher
functional diversity of the compounds in our NCI/NIH/GSK
high-confidence set. Specifically, we derived a functional
diversity score using a divisive clustering approach and
observed scores of ∼25.3 and ∼14.6 for the NCI/NIH/GSK
and RIKEN high-confidence sets, respectively, using the
chemical−genetic interaction profiles of our compounds
(Materials and Methods). This difference in functional

diversity contrasted with the near-identical structural diversity
observed between the two collections (score of ∼62 using ASP
molecular fingerprints). The relatively higher functional
diversity of our NCI/NIH/GSK high-confidence set arises
from its six functionally different sub-collections, which
consequently affected the ability of our pipeline to learn
models that capture chemical−genetic similarities and general-
ize across many compounds in this collection. Although the
performance of our supervised learning models for the NCI/
NIH/GSK high-confidence set was affected by high functional
diversity, even for this collection, the boost in performance
offered by our learning models was still substantial (Figure
5D−E). Furthermore, we combined the two collections, which
added not only more compounds but also more diversity to the
resulting set. Making predictions for the combined dataset, we
achieved about a 4.5-fold improvement in the recall of
biologically similar compounds at a precision of 50% (Figure
5C).
We conclude that compound collections with low functional

diversity benefit substantially from our machine learning
models. These models can more appropriately adjust the
influence of specific substructural features within large clusters
of structurally similar compounds given an independent
standard of shared biological functions.
Exploring the Basis of the Predictive Power of SVM

Models. To investigate the compounds driving our prediction
models, we clustered our compound collections into 10
functional and 10 structural clusters using K-means and K-
medoids clustering algorithms, respectively (Tables S3−S5).
We then mapped the 1000 true positive pairs at the top of our

Figure 6. Functional and structural clusters of top true positive pairs for our RIKEN high-confidence set. (A) Distribution of 10 functional clusters
generated by the K-means clustering algorithm using our chemical−genetic interaction profiles. The blue cluster represents the largest functional
cluster. (B,C) Contribution of these functional clusters to the top true positive pairs retrieved by (B) our machine learning model and (C) our best
structural similarity measure (ASP/Braun-Blanquet). (D) Distribution of 10 structural clusters generated by the K-medoids clustering algorithm
using ASP fingerprints. (E−F) Contribution of these structural clusters to the top true positive pairs introduced by (E) our machine learning model
and (F) our best structural similarity measure.
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PR curves for ASP fingerprints to their corresponding
functional and structural clusters (Figures 6 and 7). A large
group of the compounds generating high predictive scores at
the top of our learning PR curves belonged to the same
functional clusters (Figures 6B and 7B), whereas the baseline
PR curve for the ASP fingerprints and Braun-Blanquet
similarity coefficient included several functional clusters even
at lower recall thresholds (Figures 6C and 7C). This indicates
that our machine learning models improved performance in a
non-uniform fashion, boosting prediction performance sub-
stantially for a few specific functional clusters. The first
functional cluster that we observed among the highest
predictions for the RIKEN high-confidence set (blue cluster
in Figure 6A named as cluster 1 in Table S3) was enriched for
compounds targeting cell cycle checkpoint processes (Tables
S3 and S4 for the enrichment analysis of the functional clusters
in the RIKEN and NCI/NIH/GSK high-confidence sets;
predictions from the MOSAIC database12). Despite this
enrichment for the predicted target processes, several distinct
structural classes were clearly represented among the
compound pairs with the highest similarity predicted by our
machine learning models (Figures 6E and 7E), suggesting that
compounds considered diverse based on molecular structures
alone were predicted to have similar biological activity using
our machine learning models (Table S6).
Example Use Case: Retrieving Novel Functionally

Analogous Compounds for Virtual Screening Applica-
tions. To demonstrate the impact of our machine learning-
based approach in predicting biologically similar compounds,
we illustrate with a specific example. We chose a query

compound of interest from our RIKEN high-confidence set,
NPD2186. We first ranked all other compounds in this
collection based on their structural similarity to this compound
as measured by our best-performing structural similarity
measure (ASP/Braun-Blanquet) (Figure 1). To contrast, we
also compiled a ranking based on our machine learning-derived
structural similarity scores computed from ASP fingerprints
(Figure 8C). For example, among the top 10 most similar
compounds identified by our machine learning-derived
similarity, none were identified in the top 10 by the ASP/
Braun-Blanquet similarity measure (or any of the other
structural similarity measures). Among the top 100 and top
200 most similar compounds identified by our machine
learning-derived similarity, only 29 and 88 were also identified
in the top 100 and top 200 most similar compounds retrieved
by the ASP/Braun-Blanquet similarity measure, respectively.
Overall, Spearman’s rank correlation between the two recalled
lists of compounds for our query compound, NPD2186, was
0.31. Therefore, our machine learning-based structural
similarity approach provided a substantially different set of
similar compounds for this representative example.
The trends that we observed for NPD2186 generalize to the

broader set of compounds as well (Table S7). We measured
Spearman’s rank correlation of our machine learning-derived
and Braun-Blanquet structural similarities, both computed
from ASP fingerprints, for every compound in the RIKEN
high-confidence set (Figure S6A). The median of the resulting
distribution of rank-based correlations was 0.31, suggesting
that these two approaches produce substantially different
rankings on the most similar compounds. Thus, using our

Figure 7. Functional and structural clusters of top true positive pairs for our NCI/NIH/GSK high-confidence set. (A) Distribution of 10 functional
clusters generated by the K-means clustering algorithm using our chemical−genetic interaction profiles. (B,C) Contribution of these functional
clusters to the top true positive pairs retrieved by (B) our machine learning model and (C) our best structural similarity measure (ASP/Braun-
Blanquet). (D) Distribution of 10 structural clusters generated by the K-medoids clustering algorithm using ASP fingerprints. (E,F) Contribution of
these structural clusters to the top true positive pairs introduced by (E) our machine learning model and (F) our best structural similarity measure.
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proposed machine learning-based approach will likely produce
substantially different results than the traditional measures of
structural similarity in virtual screening settings.
Evaluating the Reciprocal Predictive Power of

Structural and Functional Similarities. The main focus
of our study was to improve structural similarity measures by
leveraging functional information from chemical−genetic
interaction data. However, these data also offered an
opportunity to explore the connection between structural
similarity and similarity of functional impact on cellular
functions. Specifically, we were interested in the question of
which was a stronger predictor: structural similarity predicting
functional similarity or functional similarity predicting
structural similarity. To address this question, we carried out
a reciprocal PR analysis, in which we switched the roles of
structural and functional similarities and compared the relative
strength of each for predicting the other. Specifically, we
assessed the predictive power of the ASP/Braun-Blanquet-
derived structural similarity against a standard of chemical−
genetic similarity as described above. Then, we reversed the
analysis, evaluated the potential of chemical−genetic similarity

to predict the ASP/Braun-Blanquet-derived structural sim-
ilarity and compared the resulting performances. This analysis
revealed that structural similarity exhibited substantially higher
power in predicting chemical−genetic similarity than did
chemical−genetic similarity for predicting similar structures
(Figure 8A,B). This result likely reflects the fact that
compounds with very different chemical structures can result
in a similar functional impact (e.g., targeting different subunits
of the same protein complex or different members of the same
pathway will result in a similar phenotype). On the other hand,
compounds with very similar structures are highly likely to
exhibit similar biological activity and very unlikely to possess
extremely divergent biological activities. Interestingly, the gap
between structural prediction of functions versus functional
prediction of structures was substantially larger for the
compounds in the RIKEN high-confidence set (Figure
8A,B). This wider gap likely reflects the fact that the RIKEN
high-confidence set contains many more local clusters of
compounds with highly related structures, whereas the NCI/
NIH/GSK high-confidence set is inherently composed of
several sub-collections with relatively few structurally related

Figure 8. Reciprocal evaluation of the prediction performance of structural vs functional similarity and machine learning-based virtual screening of
a target (e.g., NPD2186 from the RIKEN high-confidence set). Using (A) RIKEN and (B) NCI/NIH/GSK high-confidence sets, we measured the
abilities of structural and chemical−genetic similarities to reciprocally predict each other. The blue curve represents the performance of structural
similarity in predicting chemical−genetic similarity, whereas the red curve represents the performance of chemical−genetic similarity in predicting
structural similarity. (C) Our machine learning model retrieved biologically similar but structurally dissimilar compounds (determined by the ASP/
Braun-Blanquet structural similarity measure) for NPD2186 from our RIKEN high-confidence set. The information table provides the chemical−
genetic similarities, ASP/Braun-Blanquet structural similarities, and machine learning-derived predicted similarities for a few of the compounds at
the top of the predicted ranked list that are functionally analogous to NPD2186. The highest predictive score generated by our machine learning
model was 0.716, retrieving NPD2366 as a functional analogue of NPD2186. The rank of each compound pair comes from the table of all pairwise
compound similarities ranked in descending order of predicted machine learning-derived similarities (Table S7).
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compounds, which results in a more one-to-one correspond-
ence between structural and functional profiles.

■ CONCLUSIONS
The drug discovery process benefits from improvements in our
ability to link the structure of chemical compounds to their
biological function. The chemical informatics community has
proposed a wide range of molecular fingerprints and similarity
coefficients for ligand-based virtual screening, where the SPP
has been the basis for ranking compounds with similar
biological activity to a target molecule based on chemical
structures. However, to date, the research community has
lacked a systematic benchmark for biological activity that
covers a broad range of protein targets to assess the
performance of different molecular fingerprints and similarity
coefficients. We used a large set of chemical−genetic
interaction data from the yeast S. cerevisiae that we previously
published, covering 13,431 compounds from the RIKEN
NPDepo and several NCI/NIH/GSK compound collections,
as the standard for the biological activity of our compounds.
Using these chemical−genetic interaction profiles as a
functional standard for our compounds, we systematically
benchmarked 11 different molecular fingerprints and 13
different similarity coefficients.
We found that the pair of ASP fingerprints combined with

the Braun-Blanquet similarity coefficient was the superior
choice for prioritizing compounds with similar biological
activity to a target molecule. The ASP fingerprints encode all
shortest paths between atoms obtained through an exhaustive
depth-first search of the molecular graph (up to a predefined
describing depth), and the Braun-Blanquet coefficient
represents the fraction of features in common between two
molecules to the total number of features present in the larger
one. We also determined that the performance of our ASP/
Braun-Blanquet structural similarity measure would not
substantially benefit from the high describing depths of ASP
fingerprints beyond a depth of 8. Our results suggest that the
ASP/Braun-Blanquet similarity measure can be used with
confidence as a replacement for the ECFP/Tanimoto similarity
measure, which has been one of the most commonly used
structural similarity measures for ligand-based virtual screen-
ing.
Moreover, we developed a machine learning model based on

SVMs that boosted the predictive power of several fingerprints
up to fivefold, with the degree of improvement dependent on
the functional diversity of the compound collections on which
the machine learning model was applied. The compound
collections with low functional diversity benefited substantially
from our machine learning model.
One interesting future direction of our work would be to

extend this analysis beyond the molecular fingerprints
considered in this study (e.g., computed physicochemical
properties). Chemical−genetic interaction profiles may also
yield important information on the relevance of other features
for predicting functional similarity of compounds.
Overall, our high-dimensional chemical−genetic interaction

data provide a powerful resource for connecting the chemical
structure to compound functions. We expect that the specific
lessons learned here regarding the relative strengths of different
molecular fingerprints and the general approach of integrating
chemical−genetic interaction data with structural information
for improving the structure-based prediction of biological
activity will be of use in other virtual screening contexts.

■ MATERIALS AND METHODS
Data Collections. We previously published chemical−

genetic interaction profiles for 13,431 uniquely named
compounds from several diverse compound collections and
isolated a subset of these compounds that exhibited high-
confidence predictions of perturbed biological processes based
on integration of these profiles with genetic interaction
profiles.34 We used two independent compound collections,
for which we had high-confidence biological processes: the
RIKEN high-confidence set (826 compounds) and the NCI/
NIH/GSK high-confidence set (659 compounds). The RIKEN
high-confidence set is a subset of the RIKEN NPDepo
collection and is composed largely of purified natural products
or natural product derivatives. The NCI/NIH/GSK high-
confidence set is itself a diverse set of several sub-collections:
four collections from the National Cancer Institute’s Open
Chemical Repository (natural products, approved oncology
drugs, and structural and mechanistic diversity sets), a library
of compounds from the National Institutes of Health Small-
Molecule Repository with a history of use in human clinical
trials, and the GSK kinase inhibitor collection. More detailed
descriptions of these two compound collections are available in
the “Methods�Description of Compound Collections”
section of our recent publication.34

Structural Description of Compounds. We used the
jCompoundMapper tool42 and RDKit toolkit (version
2020.09.4)43 to describe our compounds in 11 different
molecular fingerprint spaces (Table 1) using the structural
information of our compounds (Supporting Information
Structure Data Files and Supporting Information SMILES
and InChI). Except for the MACCS and RDKit fingerprints,
we generated all other molecular fingerprints using the
jCompoundMapper tool. These structural descriptions covered
several topological aspects of a molecular graph, including
depth-first search fingerprints, atom pair fingerprints, radial
atom environment fingerprints, extended connectivity finger-
prints, and pharmacophore fingerprints.
Establishing a Gold Standard for Biological Activity.

We selected the top 10% of most similar compound pairs in
chemical−genetic interaction profiles and labeled these pairs as
our gold standard for true positive compound pairs. We
previously published a systematic evaluation of several different
profile similarity measures for genetic interaction networks77

and more recently published our functional annotations of
chemical libraries across diverse biological processes.34 These
two analyses suggested that the cosine similarity coefficient was
a reasonable metric for measuring genetic and chemical−
genetic similarities. Therefore, we used the cosine coefficient
for computing our gold standard biological activity. Specifi-
cally, in the latter study, we annotated our RIKEN and NCI/
NIH/GSK high-confidence sets to 17 different functional
neighborhoods (e.g., DNA replication and repair, glycosyla-
tion, vesicle traffic, mitosis and chromosome segregation, etc.)
based on their chemical−genetic interactions (supplementary
dataset 19 of the latter study).34 In a range of different cutoffs
on the compound functional similarity scores (2%, 5%, and
10%), we computed the distribution of our compounds across
these 17 different neighborhoods. This analysis demonstrated
that, at a cutoff of 2%, we observed a strong enrichment for
compounds mapping to neighborhood 4 (N4 in Figure S7),
which corresponded to mitosis and chromosome segregation.
However, at more relaxed cutoffs (e.g., 5% or 10%), the
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distribution of compounds across neighborhoods was relatively
similar to the background distribution of our compounds,
suggesting that we were covering a broader representation of
the compounds. This observation led us to select a higher
cutoff (10%) on the pairwise functional similarity score to
ensure a broad representation of the function of our
compounds.
We note that the relative performance of our structural

similarity measures and machine learning models for more
stringent cutoffs (e.g., 5%) is consistent with our results for the
top 10% of the functional similarity gold standard (Figure S8).
Designing the SVM Learning Pipeline. We proposed

SVR models40,41 for predicting the functional similarity of two
compounds based on their chemical structures. We used
LibSVM,78 a popular open-source SVM library developed at
National Taiwan University, for implementing our models and
bootstrapping76 for generating our training and test data. To
generate our training and test sets, we randomly drew N (the
total number of compounds in a collection) samples, with
replacement, uniformly from the collection, assigning ∼0.632N
unique compounds to the training set and the rest to the test
set. To reduce the dimensionality of our structural spaces, we
employed supervised principal component analysis75 using
chemical−genetic interaction profiles (from the training data
only) as labels. We normalized each structural vector that
described a compound in the low-dimensional space by its
Euclidean length and multiplied each pair of the normalized
vectors (both from the training set or both from the test set) in
an element-wise manner to create a new space of structural
vectors, called as “pairwise structural vectors” (Figure S4A), for
the representation of compound pairs. We devised a machine
learning pipeline (Figure 5A) to predict chemical−genetic
similarities for the test data using pairwise structural vectors
and pairwise chemical−genetic similarities (from the training
data only). We used RBF kernels to build epsilon SVR (ϵ-̲
SVR) models in the pairwise structural space and evaluated the
average performance of our pipeline across 100−200 boot-
straps (Figure S4B). To measure the prediction performance
of the pipeline on held-out test data, we used the average
model output over all the bootstraps for which a given example
was in the test set (bagging). We sampled 200 bootstraps for
the RIKEN high-confidence set, 200 bootstraps for the NCI/
NIH/GSK high-confidence set, and 100 bootstraps for the
combined collection of these two sets. We evaluated the
prediction performance of our machine learning pipeline using
PR curves (Figure 5B−E). Selecting the 10% of most similar
compound pairs based on the (cosine) similarity of their
chemical−genetic interaction profiles and labeling these pairs
as our gold standard for true positive compound pairs, we
translated our predicted pairwise compound similarities into a
binary evaluation using PR curves, where we ranked our
predicted similarities in descending order against our binarized
gold standard for true positive compound pairs (Table S7,
where the class column indicates our binarized gold standard
for functional similarity).
To facilitate the use of our supervised similarity prediction

pipeline, we provide the current version of our MATLAB
source codes that can be used for learning a new compound
collection. The source codes and our data for the machine
learning prediction pipeline are freely available at https://
github.com/csbio/VS-SVM.
Estimating the Diversity of Compound Collections.

We defined functional and structural diversity measures for

compound collections from the results of a recursive, divisive
clustering algorithm based on either functional (chemical−
genetic) or structural similarity, respectively. More specifically,
we assigned all the compounds in a collection to a single
cluster and split up the cluster recursively to form smaller
clusters of more similar compounds. At any step of recursion,
we determined the cluster with the lowest average within-
cluster pairwise chemical−genetic similarity (for computing
functional diversity) or structural similarity (for computing
structural diversity) and divided the cluster into two new
clusters using the K-means (K = 2) or K-medoids (K = 2)
clustering algorithms, respectively. We terminated the
recursion when at least two new clusters would exceed our
predefined hard threshold for the average between-cluster
pairwise chemical−genetic similarity (cosine similarity of 0.3)
or structural similarity (ASP/Braun-Blanquet similarity of 0.3).
We repeated the algorithm 1000 times for the functional
diversity and 100 times for the structural diversity and
computed the mean diversity score as the average exponentia-
tion of the Shannon entropy indices over all the instances

=D mean(2 )p p( log ( ))i i i2

where pi is the proportional abundance of compounds in the
ith cluster of the final clustering.
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