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Abstract

In this study, we demonstrate the use of natural language processing methods to extract, from nanomedicine literature,
numeric values of biomedical property terms of poly(amidoamine) dendrimers. We have developed a method for extracting
these values for properties taken from the NanoParticle Ontology, using the General Architecture for Text Engineering and a
Nearly-New Information Extraction System. We also created a method for associating the identified numeric values with
their corresponding dendrimer properties, called NanoSifter. We demonstrate that our system can correctly extract
numeric values of dendrimer properties reported in the cancer treatment literature with high recall, precision, and f-
measure. The micro-averaged recall was 0.99, precision was 0.84, and f-measure was 0.91. Similarly, the macro-averaged
recall was 0.99, precision was 0.87, and f-measure was 0.92. To our knowledge, these results are the first application of text
mining to extract and associate dendrimer property terms and their corresponding numeric values.
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Introduction

Nanomedicine is the field of study that considers the application

of nanoparticles and nanoscience techniques to health care and

medical research [1]. A main focus of nanomedicine includes the

use of nanoparticles as delivery vectors for pharmaceutics,

diagnostic devices, and tissue replacement materials [2]. This

field is relatively new, however it is producing large numbers of

publications and substantial new data each year [3]. Data being

published contains valuable information regarding how the

structure of these nanoparticles relates to their biochemical and

biophysical properties, which include but are not limited to their

diameter, molecular weight, surface charge, zeta potential,

bioavailability, cytotoxicity, etc. [4].

We have chosen dendrimers for our initial application of natural

language processing (NLP) to nanomedicine, because they are

well-defined, highly branched polymeric nanoparticles that can

easily be modified to differing specifications. There is also

substantial literature reporting their biological, chemical, and

physical properties. Dendrimers are composed of a central core

that is surrounded by concentric shells [5,6]. The number of shells

that extend out from the central core determines the particular

generation of the dendrimer. Due to their structure, these

molecules form very symmetric, three-dimensional particles that

promise to be highly useful in the fields of pharmaceutics and

medicine as delivery vectors [7]. The scaffold structure of

dendrimers has been found to be a suitable carrier for a variety

of drugs and siRNA, improving the solubility and bioavailability of

poorly soluble agents. Currently there are several classes of

dendrimers in use or under consideration for biomedical

applications. This study focused on poly(amidoamine) (PAMAM)

dendrimers that show promise for cancer treatment.

Databases and repositories containing information relevant to

biomedical nanoparticles, especially their biochemical and bio-

physical properties, are critical for both primary research as well as

secondary uses such as data mining and predictive modeling. The

American National Standards Institute’s Nanotechnology Stan-

dards Panel (ANSI-NSP) has created a Nanotechnology Standards

database which is a free for individuals and groups seeking

information about standards and other relevant documents related

to nanomaterials and nanotechnology-related products and

processes [8]. The database does not directly host standards and

other similar documents, however it provides a place for standards

developing organizations to add their relevant documents. This

may someday be an important resource for the future develop-

ment of standardized terminology in the field of nanotechnology

and nanomedicine, but it does not contain an extensive collection

of values of biological properties of medical nanomaterials.

nanoHUB.org is the premier site for computational nanotech-

nology research, education, and collaboration [9]. This resource

provides an environment for collaboration and aggregation of

tools used in simulating nanoscale phenomena. But with this

resource, the researchers must provide their own nanomaterial-

specific data to utilize the host of simulation tools provided. To our

knowledge, there is no authoritative, up-to-date database where
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researchers consistently contribute results from new publications

on biomedical nanoparticles and their properties. Some attempts

have been reported in the literature, like caNanoLab, a database

created by the National Cancer Institute for sharing nanoparticle

information [10]. However, caNanoLab contains a limited

number of nanoparticles, and for those it often has incomplete

information regarding their biological, chemical, and physical

properties. Also, there are only limited capabilities to query this

system. No data model exists to support comparing the properties

of a molecule to its biochemical and biophysical activity. These

properties are necessary to advance research on nanoparticles, but

the only way to retrieve this information currently is by manual

extraction from the primary literature.

Though manual extraction is a very time consuming and

resource intensive process, little research has been done to apply

computational methods to obtain nanoparticle property data from

the vast biomedical literature on nanoparticles. Information

extraction (IE) efforts are widely acknowledged to be important

in harnessing the rapid advance of biomedical knowledge,

particularly in areas where important factual information is

published in diverse literature [11]. In particular, NLP is a family

of methods based on syntactic/semantic analysis that can extract

information automatically from the literature [12].

NLP has been used effectively in other biomedical domains. For

instance, Chaussabel utilized NLP algorithms to extract data from

the literature on cell line profiling. He observed that this approach

could be applied beyond genomic data analysis [13]. Garten et al.

successfully applied NLP methods to the pharmacogenomics

literature to create structured databases built on data from

unstructured text [14]. Hunter et al. created a system called

OpenDMAP that extracts protein transport, interaction, and gene

expression assertions [11]. In the field of nanoinformatics there has

been an attempt at harnessing the utility of NLP in the

nanomedicine literature by Garcia-Remesal and colleagues. They

developed a method utilizing named entity recognition to identify

four different categories of information: nanoparticle names,

routes of exposure, toxic effects, and particle targets [15]. The

method that this group developed was moderately successful, but it

was designed as a proof-of-concept with limited quantitative detail.

Our goal is to gather detailed quantitative data associated with

dendrimer properties.

In this study, we evaluate the use of NLP methods to extract

numeric values for the properties of biomedical dendrimers

reported in the cancer treatment literature. We use open source

tools for extracting particle property values, using the NanoPar-

ticle Ontology (NPO) [4] as a starting point. In particular, the tools

we use are a processing pipeline called the General Architecture

for Text Engineering (GATE) and its IE module ANNIE (a

Nearly-New Information Extraction System) [16]. In a real-world

sentence, a nanoparticle property term can appear arbitrarily far

from its associated value, so we also created a method of

associating the two. We demonstrate that our system can correctly

extract dendrimer property terms and their corresponding

numeric values as evaluated by the typical NLP metrics of recall,

precision, and f-measure score.

Materials and Methods

Literature Corpus
We collected from PubMedCentral relevant articles on

dendrimer nanoparticles as reported in the cancer treatment

literature. Articles were retrieved in pdf format. The search criteria

used was ‘‘PAMAM dendrimers AND cancer treatment.’’ This

search yielded 420 journal articles on March 4, 2013. Articles were

excluded from this study if they did not contain explicit numeric

values of biological, chemical, and/or physical properties of

dendrimers. From this pool of 420 articles, we randomly selected

200 journal articles. A subset of 100 articles was used as the

training set for our system. The other subset of 100 articles was

used for the creation of the test set for our system. Citations for

both the training and test set of documents can be found in the

supplementary information (Appendix S1 and Appendix S2). For

similar applications in related fields, the selection of a test set of

approximately 100 documents is a common target that represents

a compromise of quality and cost of the manual review. For

instance Zaremba et al. used a test set of 138 abstracts to analyze

enteropathogenic bacteria, such as Escherichia coli and Salmonella,

literature [17].

NLP Method Development
The NLP system reported here uses a two-step process to

extract the desired property terms and numeric values. The first

step involves the actual identification and annotation of the

numeric values and dendrimer property terms. This corpus

annotation pipeline was built using the Java Annotations Patterns

Engine (JAPE) and integrating components from ANNIE within

GATE. In order to search for the numeric values, we had to

develop a regular expression model (Appendix S3). The specific

dendrimer property terms were selected from the NPO and

represent the properties of nanoparticles. The dendrimer property

terms were selected from the NPO with the ultimate goal of linking

the NPO with our tool to provide metadata for the data

extractions from the nanomedicine literature. The initial nano-

particle property terms list was confirmed to be relevant for the

nanomedicine community by expert review by the members of Dr.

Hamidreza S. Ghandehari’s research lab (http://nanoinstitute.

utah.edu/research/ustar-clusters/ghandehari-lab/ghandehari-PI.

php) at the University of Utah. The list of terms considered here

includes hydrodynamic diameter (NPO_1915), particle diameter

(NPO_1539), molecular weight (NPO_1171), zeta potential

(NPO_1302), cytotoxicity (NPO_1340), IC50 (NPO_1195), cell

viability (NPO_1343), encapsulation efficiency (NPO_1336),

loading efficiency (NPO_1334), and transfection efficiency

(NPO_1335). The property terms, their corresponding NPO

identification code, and their definitions can be found in Table 1.

To search for these property terms, the system utilizes a simple

keyword identification scheme.

The training set of documents was manually annotated for

numeric values and dendrimer property terms using GATE.

Following the annotation, the numeric values associated with each

property term were extracted manually and organized in a tabular

format for ease of use and comparison. Once the pipeline was able

to successfully annotate the numeric values and the dendrimer

property terms, we developed an algorithm that would associate

numeric values and dendrimer property terms that occurred

within the same sentence using proximity metrics. We selected a

proximity distance metric of 200 characters because our prelim-

inary experiments have shown that the sensitivity and specificity of

the system was best for this distance in the training set. For

instance we observed that if we increased it, the number of false

positives increased without any improvement in the observed

recall of the system. Finally, we optimized performance iteratively

before moving on to the test set of documents.

Reference Standard Creation
Two domain experts were selected from the nanotechnology

program at the University of Utah. Before allowing them to review

the test subset of 100 articles, they independently reviewed,
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annotated, and extracted information from the training set of

articles using GATE. The annotations consisted of numeric values

and dendrimer property terms selected from the NPO. Their

annotations were compared and Cohen’s kappa was calculated.

Cohen’s kappa is a statistical measure of inter-rater reliability, and

for this study we required it to be $80%, which has been

categorized as excellent by Fleiss at a value of 75% or higher [18].

Upon achieving an inter-rater reliability of 80%, the annotators

independently reviewed, annotated, and extracted information

from the test set of articles. Again, the numeric values and

dendrimer property terms were taken from the NPO and were

annotated using GATE. Following the annotation, the numeric

values associated with each property term were extracted and

organized in a tabular format.

NLP System Performance
The subset of 100 test articles was processed by our new NLP

system. The output from the system was organized in a tabular

format for ease of use and comparison.

Data Analysis
Our NLP and manual results were compared on a by-

nanoparticle property term basis. The extracted numeric values

associated to the dendrimer property terms were evaluated and

determined to be true positive, false positive, or false negative.

First, we calculated the recall, precision, and f-measure of each

nanoparticle property term. We then calculated the micro-

averaged and macro-averaged recall, precision, and f-measure.

When using micro-averaged measurements, each ‘‘source’’ (e.g.

document) is given the same weight, and calculations are made on

a pooled contingency table [19]. Macro-averaged measurements

are calculated by giving the same weight to each concept category

or class (e.g., dendrimer property term) [19].

The recall, precision, and f-measure were calculated using the

following equations:

Recall~TP= TPzFNð Þ ð1Þ

Precision~TP=(TPzFP) ð2Þ

F�measure~

((1zb2) � Precision �Recall)=((b2 � Precision)zRecall)
ð3Þ

In these equations TP is true positive, FP is false positive, FN is

false negative, and b is the weighting applied to the relationship

between precision and recall. For our purposes we decided to

weight the precision and recall evenly, so b= 1.

Results

Table 2 summarizes the results of the evaluation of the NLP

system that we created. The results of the system are compared

against the manually annotated reference standard. The table

shows the recall, precision, and f-measure for each of the

nanoparticle property terms and numeric value relationships.

Table 3 displays both the micro-averaged and macro-averaged

recall, precision, and f-measure values.

As can be seen in Table 2, our NLP system yields recall values

ranging from 0.95 to 1 and precision values ranging from 0.59 to

1. The f-measure values range from 0.73 to 1. The micro-averaged

values for recall was 0.99, precision was 0.84, and f-measure was

0.91. Similarly, the macro-averaged values for recall was 0.99,

precision was 0.87, and f-measure was 0.92.

Discussion

The tables show an important difference between recall and

precision. In this task, high recall is preferred to high precision,

because we do not want our system to miss instances of property

terms and their associated numeric values. The number of articles

returned for any given search (e.g., our ‘‘PAMAM dendrimers

AND cancer treatment’’ search) is too large for routine manual

search, but reviewing NanoSifter results is quite traceable. The

results can be manually reviewed post-processing without much

additional effort. From the results, it can be seen that ‘‘encapsu-

Table 1. Listing of the NPO Property Terms.

PROPERTY TERM NPO CODE DEFINITION

Hydrodynamic Diameter NPO_1915 The hydrodynamic size which is the diameter of a particle or molecule (approximated as a
sphere) in an aqueous solution.

Particle Diameter NPO_1539 Diameter which inheres in a particle.

Molecular Weight NPO_1171 The sum of the relative atomic masses of the constituent atoms of a molecule.

Zeta Potential NPO_1302 The potential difference between the bulk dispersion medium (liquid) and the stationary layer of
liquid near the surface of the dispersed particulate.

Cytotoxicity NPO_1340 Toxicity that impairs or damages cells, and it is a desired property of the dispersed particulate.

IC50 NPO_1195 A measure of toxicity which is the concentration of a drug or inhibitor that is required to inhibit a
biological process or a participant’s activity in that process by half.

Cell Viability NPO_1343 Viability of a cell to proliferate, grow, divide, or repair damaged cell components.

Encapsulation Efficiency NPO_1336 The efficiency of inhering in a nanomaterial or supramolecular structure by virtue of its capacity
to encapsulate an amount of molecular entity, isotope or nanomaterial.

Loading Efficiency NPO_1334 A quality inhering in a material entity by virtue of it having the capacity to carry an amount of
another material entity.

Transfection Efficiency NPO_1335 The efficiency inhering in a bearer’s ability to facilitate transfection.

doi:10.1371/journal.pone.0083932.t001
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lation efficiency’’ and ‘‘loading efficiency’’ were the best property

terms extracted with recall, precision, and f-measure values of 1.

These scores are likely due to the low prevalence of these

properties appearing in our literature corpus. ‘‘Transfection

efficiency’’ was the property term that was the least well extracted

from nanomedicine literature. It had a recall value of 0.95, a

precision value of 0.59, and an f-measure value of 0.73.

These results indicate that the NanoSifter NLP system can,

generally, extract numeric values associated with particle property

terms from dendrimers reported in the cancer treatment literature

with high recall, precision, and f-measure scores. To the authors’

knowledge, these results are the first application of text mining to

extract numeric values associated to dendrimer property terms

from nanomedicine literature. With regards to our application, the

high recall values are more important than the moderate precision

values. This is because the lack of precision is manageable and can

be quickly corrected by manual post processing of the annotated

text.

As can be seen from the results, there was a fair amount of

fluctuation in the values for precision for each property term.

There were a few property terms that yielded precisions of 1

including ‘‘hydrodynamic diameter,’’ ‘‘zeta potential,’’ ‘‘encapsu-

lation efficiency,’’ and ‘‘loading efficiency.’’ This can be accounted

for by the limited number of instances that these terms appeared in

the literature. Of all of the property terms used in this study, these

were the least common. The next tier of precision values of interest

are those that were greater than 0.80, these include ‘‘particle

diameter,’’ ‘‘molecular weight,’’ ‘‘cytotoxicity,’’ and ‘‘IC50.’’

These property terms yielded quite reasonable precision values,

as we expected based upon their occurrences in the literature and

the specificity of the syntax used when describing these property

terms and their numeric values.

The lowest precision values could be seen for ‘‘cell viability’’

(0.72) and ‘‘transfection efficiency’’ (0.59). One reason for these

lower precision values is that the numeric units for these properties

are percentages. There was a significant number of false positives

in the literature corpus because the number of occurrences of

percentages for other, non-particle items within the 200-character

proximity metric was large. With specific regard to ‘‘transfection

efficiency,’’ precision values for this term were the lowest because

the terminology used to refer to this property is not standardized.

There are many different ways in which the literature refers to this

property, making it difficult not to overfit a method of retrieving

the numeric values of this property.

Limitations
NanoSifter uses a method that appears to be generally reliable

and accurate. However, there are imperfections that were

observed while processing and analyzing the data from this study.

First, the data extracted by our method is not always directly

associated with a dendrimer nanoparticle. For instance, many

times the system correctly finds, annotates, and extracts a

‘‘molecular weight measurement’’, but this measurement may be

associated with a subunit utilized in the synthesis of a PAMAM

dendrimer or another material used in one of the articles. A

method to address this limitation could include post-analysis

manual review of the system’s performance. Another limitation of

our system is that the NanoSifter algorithm can only pair a

nanoparticle property term with a single numeric value annotation

before and after itself. This causes a problem when a sentence is

more complex and contains a property term, random text,

numeric value, random text, or another numeric value. In NLP,

this is a problem called co-reference resolution, and it could be

addressed with a more sophisticated language model than the one

used in this study.

Another limitation is that our system would only retrieve the

first numeric value expressed following the property term. This

situation accounts for some of the false negatives (‘‘particle

diameter,’’ ‘‘cytotoxicity,’’ ‘‘IC50,’’ and ‘‘transfection efficiency’’)

found in our analysis. This could also be addressed by using a

more sophisticated language model than the one used in this study.

Finally, the other false negatives, ‘‘molecular weight’’ and ‘‘zeta

potential,’’ account for another limitation of our system. Since we

were processing pdf documents in this study, occasionally there

would be an instance where a property term exceeded a single line

of text, so a dash would be inserted in the word and it would

Table 2. Results from the Evaluation of the Nanosifter NLP System.

Nanoparticle Property
Term TP FP FN Recall Precision F-measure Occurrences by Article

Hydrodynamic Diameter 8 0 0 1 1 1 6

Particle Diameter 211 39 1 0.995283 0.844 0.91341991 56

Molecular Weight 143 23 2 0.986207 0.86145 0.91961415 25

Zeta Potential 41 0 1 0.97619 1 0.98795181 16

Cytotoxicity 124 18 1 0.992 0.87324 0.92883895 29

IC50 47 8 1 0.979167 0.85455 0.91262136 15

Cell Viability 78 31 0 1 0.7156 0.8342246 25

Encapsulation Efficiency 1 0 0 1 1 1 1

Loading Efficiency 5 0 0 1 1 1 1

Transfection Efficiency 19 13 1 0.95 0.59375 0.73076923 9

doi:10.1371/journal.pone.0083932.t002

Table 3. Micro-averaged and Macro-averaged Recall,
Precision, and F-measure

Type of
Average Recall Precision F-measure

Micro 0.989766 0.83684 0.90689886

Macro 0.987885 0.87426 0.922744

doi:10.1371/journal.pone.0083932.t003
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continue on the next line. The method used in developing this

system did not account for this artifact. Therefore the NanoSifter

NLP system would not annotate this property term, and no

association would be made to the corresponding numeric value. A

method for addressing this would be to use XML documents

instead of pdfs in future analyses. These limitations are not novel

to our approach, as they are common throughout the field of NLP.

Nonetheless they are counterbalanced by the ability to extract

information from journal articles at a much lower cost than

manual review.

Future Work
Since this is early work in an important but neglected area of

nanoinformatics, there are many directions this research could be

taken. The first priority will be to make corrections to our system

to try to improve our recall, precision, and f-measure values.

Another priority will be to attempt to use this system to annotate

and extract information from another subclass of nanoparticles.

This will help to validate the ability of this system to generalize

across the field of nanoparticles. One of the most important next

steps would be to expand the property terms and numeric values

that the system targets. Some specific properties that we are

considering include ‘‘exposure times’’ and ‘‘cell types’’ interacting

with the nanoparticles. This would allow for greater databases to

be created regarding PAMAM dendrimers and nanoparticles in

general. Another goal would be to more seamlessly integrate the

NPO into our system so that the annotations and extractions

contain descriptive metadata. Finally, it is important that we

attempt to implement some sort of negation analysis tool into our

system. This would specifically help in the instances where an

article states that the dendrimer nanoparticles were not toxic at a

certain concentration.

Conclusion

In this paper, we have presented a nanoinformatics method

based on NLP approaches for automatically extracting numeric

values associated with dendrimer property terms from the

nanomedicine literature. The results from our analysis demon-

strate that the NanoSifter NLP system can be used to reliably and

accurately extract information from dendrimers developed for

cancer treatment literature and shows promise for the future of

text mining in the field of nanoinformatics. This initial research in

the field of applying NLP to nanomedicine literature could assist in

significant advances for the nanomedicine community. This work

could lead to the creation of databases containing valuable

information regarding nanoparticles at a much lower cost than

using manual review. The readily available data on nanomedical

relevant particles could be further analyzed for many secondary

uses of the data. In particular, the acquired data could be used for

data mining to find correlations between properties, create

predictive models like quantitative structure activity relationships,

and eventually reach the point where potential candidate

molecules can be created in silico and modeled to theoretically

predict their biochemical activity before synthesis. This would

reduce the search space for novel, effective nanoparticles for use in

medicine and pharmaceutics.
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