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A B S T R A C T

Identifying novel compound–protein interactions (CPIs) plays a pivotal role in target identification and drug
discovery. Although the recent multimodal methods have achieved outstanding advances in CPI prediction, they
fail to effectively learn both intra-modality and inter-modality dynamics, which limits their prediction perfor-
mance. To address the limitation, we propose a novel multimodal tensor fusion CPI prediction framework, named
MMTF-CPI, which contains three unimodal learning modules for structure, heterogeneous network and tran-
scriptional profiling modalities, a tensor fusion module and a prediction module. MMTF-CPI is capable of
focusing on both intra-modality and inter-modality dynamics with the tensor fusion module. We demonstrated
that MMTF-CPI is superior to multiple state-of-the-art multimodal methods across seven datasets. The prediction
performance of MMTF-CPI is significantly improved with the tensor fusion module compared to other fusion
methods. Moreover, our case studies confirmed the practical value of MMTF-CPI in target identification. Via
MMTF-CPI, we also discovered several candidate compounds for the therapy of breast cancer and non-small cell
lung cancer.

1. Introduction

The development of a novel drug is a time-consuming, expensive and
risk-laden process which typically takes 12 years and costs $2.6 billion
on average [1]. A major factor contributing to rising costs is the limited
success rate in conducting Phase 2 and 3 clinical trials [2,3], which is
primarily attributed to suboptimal therapeutic effects and unfavorable
off-target toxicities resulting from potential unknown targets of exper-
imental compounds [4]. Therefore, to minimize unexpected costs and
maximize of drug effectiveness, identification of the interactions be-
tween compounds (drugs) and target proteins plays a crucial role in drug
discovery and development.

Although conventional compound-protein interaction (CPI) identi-
fication approaches have high reliability [5–7], they are laborious,
costly and resource-intensive. Computational approaches have emerged
as promising strategies for achieving efficient CPI identification. Given

the advantages of deep learning in processing and analyzing biomedical
data, many deep learning methods have been widely proposed for pre-
dicting CPIs.

A group of approaches focus on utilizing molecular and protein
structure data to predict CPIs. For example, Wen et al. used deep belief
network (DBN) to extract compound and protein features from finger-
prints and descriptors for CPI prediction [8]. Öztürk et al., Yang et al.
and Zhao et al. applied two convolutional neural networks (CNNs) to
learn compound and protein features from the raw simplified
molecular-input line-entry system (SMILES) strings [9] and protein se-
quences, respectively [10–12]. Then, the learned compound and protein
features are concatenated and fed into a fully connected layer to predict
CPIs. Tsubaki et al. and Nguyen et al. applied graph neural networks
(GNNs) and CNNs to learn compound and protein features, respectively
[13,14]. The combination of compound and protein features was sub-
sequently used to predict CPIs. Chen et al. applied a GNN and a
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bidirectional long short-term memory (BiLSTM) for compound and
protein representation learning, then the learned representation was
employed to predict CPIs [15]. Transformer has been widely applied to
encode compound and protein representations from raw SMILES strings
and protein sequences for CPI prediction [16–19]. These methods ach-
ieved remarkable performance in CPI prediction, but they only focus on
single-modal structural representations of compounds and proteins,
ignoring the fact that drugs taking effect through therapeutic targets is
an intricate biological process involving drug-drug interactions,
protein-protein interactions and protein-disease associations.

In recent years, multimodal models integrating structure modality
and heterogeneous network modality have been getting lots of attention
in CPI prediction tasks. Ye et al. developed a unified framework that
integrates heterogeneous information and structural information to
enhance feature representation for drug-target interaction (DTI) pre-
diction [20]. Zhou et al. proposed a joint representation framework
called MultiDTI, combining the association information of the hetero-
geneous network and the sequence information of drug and target to
predict potential DTIs [21]. Palhamkhani et al. presented a multimodal

model that integrates the structure features of compounds and proteins,
and the network information for compound-compound and
protein-protein interactions [22]. Dehghan et al. introduced
DTI-multi-modal, a multimodal approach that fuses drug-drug network,
protein-protein network, drug structures and protein sequences to pre-
dict DTIs [23]. Zhang et al. combined structure and network information
to predict activating/inhibiting mechanisms between drugs and targets
[24]. Dong et al. designed a novel multimodal method for drug-protein
interactions (DPIs), incorporating both microscopic representations
learned from drug SMILES strings and protein sequences, as well as
macroscopic representations learned from a single heterogeneous
network [25]. Although these multimodal models have promising per-
formance in CPI prediction, they still lack the consideration of tran-
scriptional profiling data, which can provide an unbiased data-driven
mechanism for identifying CPIs [26]. To address the issue, Xia et al.
proposed MDTips, a multimodal-data-based DTI prediction model, by
integrating the knowledge graphs, gene expression profiles, and struc-
tural information [27].

Despite the promising performance demonstrated by existing

Fig. 1. Overview of the MMTF-CPI framework. (A) Transcriptional profiling modality learning module: two PPI networks are used to learn compound and protein
features from raw compound and gene perturbation profiles, respectively; (B) Structure modality learning module: Attentive FP and CNN are used to learn compound
and protein features from compound SMILES strings and protein sequences, respectively; (C) Heterogeneous network modality learning module: a heterogeneous
network with compound-protein-disease association is applied to learn compound and protein features; (D) Tensor fusion module: the expressiveness of tran-
scriptional profiling, structure and heterogeneous network modalities are controlled and multimodal features are mapped into a common representation; (E) Pre-
diction module: the predictor obtains the probabilities of compound-protein interactions.
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multimodal models, they aggregate multiple modalities by simply
concatenating multimodal features at the input level [28,29]. There are
two challenges for multimodal feature integration in these models. The
first challenge is that concatenating multimodal features does not map
multiple modalities into a common representation [30], which increases
the complexity of inter-modality dynamics, such as the interactions
between structure, heterogeneous network and transcriptional profiling
modalities. The second challenge is that concatenating multimodal
features results in the concatenated feature with collinearity and noise.
These challenges make it difficult to efficiently model intra-modality
dynamics of a specific modality (unimodal interaction) because the
inter-modality dynamics at the input level can be more complex and
collinear, leading to model overfitting. Consequently, the existing
multimodal models neglect intra-modality dynamics and tend to
emphasize more on inter-modality dynamics.

To address these challenges, we propose MMTF-CPI, a novel multi-
modal tensor fusion framework for CPI prediction based on fusion of
structure, heterogeneous network and transcriptional profiling modal-
ities (Fig. 1). The proposed framework is capable of focusing on both
intra-modality and inter-modality dynamics simultaneously. First,
MMTF-CPI learns unimodal features of transcriptional profiling, struc-
ture and heterogeneous network. For transcriptional profiling modality,
we constructed two protein-protein interaction (PPI) networks with raw
compound and gene perturbation profiles to derive compound and
protein embedding features, respectively (Fig. 1A). For structure mo-
dality, we utilized Attentive FP and CNN to extract compound and
protein structure features, respectively (Fig. 1B). For heterogeneous
network modality, we constructed a heterogeneous network with
compound-protein-disease association information, then six schemes of
meta-paths are applied to generate compound and protein embedding
features from this heterogeneous network (Fig. 1C). Second, MMTF-CPI
employs a tensor fusion module to reduce the complexity in inter-
modality dynamics by mapping multimodal features into a common
representation and to reduce the collinearity by controlling the
expressiveness information of each modality (Fig. 1D). Finally, the fused
common representation is sent to a fully connected neural network for
predicting probabilities of compound-protein interactions (Fig. 1E).

In this study, our contributions are summarized as follows:

(i) We developed a novel multimodal method MMTF-CPI, which
fuses structure, heterogeneous network and transcriptional
profiling modalities for CPI prediction.

(ii) In MMTF-CPI, we designed a tensor fusion module that can
reduce the complexity and collinearity in inter-modality dy-
namics, which encourages the model to focus on both intra-
modality and inter-modality dynamics.

(iii) The tensor fusion module significantly improves the performance
of MMTF-CPI, surpassing that of other state-of-the-art multi-
modal methods.

(iv) We explored the impact of different transcriptional signatures on
multimodal performance and illustrated the effectiveness of
learning transcriptional profiling and heterogeneous network
modalities in MMTF-CPI.

(v) We confirmed the efficacy of MMTF-CPI in target identification
and drug discovery.

2. Materials and methods

2.1. Data preparation

We constructed a CPI dataset based on Hetionet knowledge network
[31] to evaluate the effectiveness of the proposed model. We collected 39,
859 compound-protein interactions from Hetionet, in which 23,146 CPIs
have three modalities, including 7,500 compound-upregulated-protein
and 15,646 compound-downregulated-protein interactions. Details of
the CPI dataset we constructed are shown in Table 1. To obtain a balanced

dataset, we randomly sampled unknown compound-protein pairs as
negative samples according to a common approach [32], ensuring an
equal number to the positive samples. We evaluated the performance of
MMTF-CPI using 10-fold cross-validation. First, we randomly partitioned
all CPI samples into a training-validation set (90 % of all CPI samples) and
a test set (10 % of all CPI samples). Then, for each fold of cross-validation,
we randomly divided the training-validation set into a training set (89 %
of the training-validation set) and a validation set (11 % of the
training-validation set). Finally, such a splitting strategy results in an
approximate ratio of 8:1:1 for the training set, validation set and test set.
There are no overlapping CPI samples between the training set, validation
set and test set. We used the training set to train model, the validation set
to tune the hyperparameters, and the test set to evaluate the performance.

The transcriptional profiles of all compounds and proteins/genes are
obtained from the phase I L1000 dataset (https://www.ncbi.nlm.nih.go
v/geo/query/acc.cgi?acc=GSE92742) of the Library of Integrated
Network-Based Cellular Signatures (LINCS) program (https://clue.io/)
[33], which generates and catalogs gene transcriptional profiles of
various cell lines exposed to different perturbing agents in diverse
experimental contexts. The profiles in phase I L1000 dataset are pro-
duced by L1000 high-throughput gene-expression assay, which involves
a set of 978 landmark genes. In this study, we applied the level 5
signature data processed using the moderated z-score (MODZ)
(https://clue.io/releases/data-dashboard) and used only real measured
expression values of the landmark genes. Based on the previous obser-
vation [34,35] that cell type significantly impact the distribution of
transcriptional profiles, we evaluated the influence of cell type on
transcriptional profiles using gene knockdown induced signatures
(trt_sh), gene overexpression induced signatures (trt_oe) and gene
expression without any perturbation (ctl_vector) across seven cell lines
including MCF7, A375, PC3, HT29, A549, HEPG2, HA1E. As demon-
strated in Supplementary Fig. S1, we observed distinct clusters in the
trt_sh, trt_oe, and ctl_vector signatures across the seven cell lines, sug-
gesting variability in properties among different cell lines. Thus, it is
highly valuable to conduct unbiased estimations of the effectiveness of
MMTF-CPI using transcriptional signatures from different cell lines. To
impartially evaluate model performance, we divided our CPI dataset
into seven datasets using transcriptional signatures from six cancer cell
lines (MCF7, A375, PC3, HT29, A549, HEPG2) and one non-cancer cell
line (HA1E). All compounds and proteins in each dataset have struc-
tural, heterogeneous network, and transcriptional profiling modalities.
Details of seven datasets are described in Supplementary Table S1.

2.2. Model architecture

The proposed MMTF-CPI consists of transcriptional profiling mo-
dality learning module (Fig. 1A), structure modality learning module
(Fig. 1B), heterogeneous network modality learning module (Fig. 1C),
tensor fusion module (Fig. 1D) and prediction module (Fig. 1E).

2.2.1. Transcriptional profiling modality learning
To learn compound and protein transcriptional profiling modality

features, two protein-protein interaction (PPI) networks are constructed
using compound perturbation and gene perturbation induced tran-
scriptional profiles, respectively. PPIs are essential for numerous bio-
logical processes and crucial for the development of human health and
disease states [36]. The PPI networks can be represented as graphs,
where each node denotes a gene and its property is the corresponding
gene expression value in transcriptional profiles. The entire PPI network

Table 1
Statistics of our CPI dataset.

Drugs Targets Interactions

Upregulate 577 892 7,500
Downregulate 716 1,478 15,646
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includes 978 nodes corresponding to the landmark genes in transcrip-
tional profiles.

We constructed two spectral-based graph convolutional networks
(GCNs) to capture the topological structure information from two PPI
networks for extracting compound and protein embedding features,
respectively. The input are compound or protein transcriptional profiles
and a layer-wise spectral-based GCN can be expressed as:

Hl = f
(
UωUTHl− 1

)
(1)

where U is an orthogonal matrix calculated using the adjacency matrix
of the PPI network and its column vector is the eigenvector of the Lap-
lacian matrix. ω denotes a trainable diagonal matrix and f(⋅) denotes
ReLU activation function. Hl is hidden vector at the l-th layer of the
spectral-based GCN.

2.2.2. Structure modality learning

2.2.2.1. Compound representation learning. We first collected compound
SMILES strings from the DrugBank database (version 5.1.10) [37] and
converted them into graphs by RDKit [38]. In molecular graphs, nodes
and edges represent atoms and bonds, respectively. Then, we used
DGL-LifeSci [39] to initialize atom features of nine types and bond
features of four types for characterizing atoms and describing their local
surroundings, as listed in Supplementary Tables S2 and S3. Conse-
quently, a node and an edge can be represented by a 39-dimensional and
an 11-dimensional feature vector, respectively. Then, we employed
Attentive FP to learn compound features with the node and bond feature
vectors.

Attentive FP, a graph neural network (GNN), introduces an attention
mechanism that captures both the atomic local environment and
nonlocal effects at the intramolecular level [40,41]. Attentive FP con-
sists of twomain steps: atom embedding andmolecule embedding. Atom
embedding and molecule embedding use stacked attentive layers to
learn local environment and nonlocal effects, respectively. As general
GNN [42], the atom embedding of Attentive FP includes a messaging
phase and a readout phase.

In the messaging phase, each atom gathers local information from its
neighboring atoms and bonds, the information messaging is as follows:

Ci− 1v = elu

(
∑

u∈N(v)

αi− 1vu ⋅W⋅hi− 1v

)

(2)

where, i ∈ {1,2,…, k} is the i-th iteration, N(v) is the set of neighboring
atoms of atom v,W is trainable weight matrix, hi− 1v is the state vector of
target node v at (i-1)-th iteration. When i = 1, h0v is generated by a fully
connected layer that includes only the initial atom and bond features.
elu(⋅) is ELU activation function. αi− 1vu is the weight of neighbor node u to
target node v:

αi− 1vu = softmax(evu) =
exp
(
ei− 1vu
)

∑

u∈N(v)
exp
(
ei− 1vu
) (3)

ei− 1vu is the alignment vector of target node v and neighbor node u,
the alignment operation is performed as follow:

ei− 1vu = leaky_relu
(
W⋅
[
hi− 1v , hi− 1u

] )
(4)

where W is trainable weight matrix and leaky_relu(⋅) is leaky ReLU
activation function. hi− 1u is the state vector of neighbor node u at (i-1)-th
iteration, its initial feature is computed by concatenating initial atom
and bond feature, followed by a fully connected layer.

In the readout phase, the state vector hiv of target node v is updated by
feeding the output of the messaging phase Ci− 1v and state vector hi− 1v into
a gated recurrent unit (GRU), as follows:

hiv = GRU
(
Ci− 1v , hi− 1v

)
(5)

For the molecule embedding, Attentive FP combines the individual
atom state vectors into a full-molecule state vector. First, Attentive FP
constructs a super virtual node that connects all the nodes of the mo-
lecular graph. Second, the super virtual node is embedded using the
same attentionmechanism in atom embedding. Finally, a state vector for
the whole molecule is generated. Thus, the whole molecule can be
embedded in the same way as the individual atoms.

2.2.2.2. Protein representation learning. We converted protein sequences
collected from the Uniprot database [43] into sequential representations
by splitting them into overlapping 3-gram amino acid sequences, which
we defined as word sequences. Then, we translated all words into
real-valued embeddings using the pre-trained approach Word2vec [44].
We represented protein sequences as real-valued 100-dimensional vec-
tors using a pre-trained Word2vec model [16] on the large corpus
constructed from all human protein sequences in UniProt.

In recent years, convolutional neural networks (CNNs) have gained
more popularity in medical image analysis [45,46] as well as protein
sequence processing [10,47]. We applied multiple parallel 1D-convolu-
tional layers with different kernel sizes to enhance the learning of pro-
tein features from different perspectives [48]. Using 100-dimensional
protein embeddings as input, the output hidden vectors is calculated by
convolutional layers as follows:

clk = f
(
σbn
(
Wk⋅cl− 1k + bk

) )
(6)

where k ∈ {1,2,…,K} is the number of different convolution kernels. l ∈
{1,2,…, L} is the number of convolutional layers. Wk ∈ R100×d and bk
are weight matrix and bias in the l-th convolutional layer, respectively. d
is the dimension of the hidden vector. σbn stands for BatchNorm oper-
ation. f(⋅) is ReLU activation function. We obtained the final protein
features by concatenating the hidden vectors:

p =< cL1, c
L
2,…, cLK > (7)

2.2.3. Heterogeneous network modality learning
We first constructed a heterogeneous network with compound-

protein-disease associations collected from Hetionet. The heteroge-
neous network includes 1,435 compounds, 4,739 proteins and 91 dis-
eases. The heterogeneous network can be represented as a graph G =

(V,E,T), where vi ∈ V denotes node i, e ∈ E denotes edge, TV and TE
denote the sets of node and edge types in the heterogeneous network.
Then, we used meta-path-based random walks in heterogeneous net-
works to represent compounds and proteins. A meta-path scheme S is
denoted in the form of V1 ̅→E1 V2 ̅→E2 V3⋯ ̅̅̅→Et− 1 Vt →Et Vt+1, where
V ∈ TV and E ∈ TE. Essentially, a meta-path describes various composite
relations in different types of nodes. Given a heterogeneous networkG =

(V,E,T) and a meta-path scheme S, the definition of transition proba-
bility at step i is as follows:

p
(
vi+1|vti

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
Nt+1

(
vti
),

(
vi+1, vti

)
∈ E; S(vi+1) = Vt+1

0,
(
vi+1, vti

)
∈ E; S(vi+1) ∕= Vt+1

0,
(
vi+1, vti

)
∕∈ E

(8)

where vti ∈ Vt represents node i of type t, vi+1 is the neighboring node of
vti , Nt+1

(
vti
)
represents the Vt+1 type of neighboring nodes of node vti .

S(vi+1) represents the type of node vi+1 under the given meta-path
scheme S.

We defined six meta-path schemes, including protein-compound-
protein, protein-compound-disease-compound-protein, protein-
compound-compound-protein, compound-compound, compound-
protein-compound and compound-disease-compound. In each schema,
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all compound or protein nodes are individually utilized as the initial
node to ensure structural integrity, facilitating feature learning of re-
lations. Finally, a skip-gram model [44] is applied to learn embedding
representations of compounds and proteins.

2.2.4. Multimodal tensor fusion
After learning the features of structure, heterogeneous network and

transcriptional profiling modalities of compounds and proteins, the
tensor fusion module maps the three unimodal features into a common

Fig. 2. Comparison of the performance between MMTF-CPI and state-of-the-art multimodal CPI prediction methods on seven datasets.
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representation using Kronecker Product, which reduces the complexity
of inter-modality dynamics and captures important interactions across
these modalities by modeling pairwise feature interactions. To prevent
excessively focusing on inter-modality dynamics and neglecting intra-
modality dynamics, we appended the extra constant dimension with
value 1 to each unimodal feature representation to preserve unimodal
features when capturing important interactions across the three mo-
dalities. This definition is shown the equation below:

zfusion =
[
zs
1

]

⊗

[
zh
1

]

⊗

[
zt
1

]

(9)

where zs ∈ R40×1 represents gated structure modality features, zh ∈
R16×1 represents gated heterogeneous network modality features, and
zt ∈ R25×1 represents gated transcriptional profiling modality features.
⊗ is the Kronecker Product and zfusion ∈ R41×17×26 is the common rep-
resentation that forms in a 3D Cartesian space. In this computation,
every neuron in zs is multiplied by every other neuron in zh, and sub-
sequently multiplied with every other neuron in zt. Finally, the common
representation zfusion captures inter-modality dynamics and intra-
modality generated with the extra constant dimension.

To reduce the impact of collinearity and noise in the fusion of
multimodal features, we additionally applied a gating-based attention
mechanism before the Kronecker Product. The gating-based attention
mechanism can control the expressiveness of each modality [49]. The
gating-based attention mechanism in the tensor fusion module is defined
as:

gn = softmax
(
Wsht→n⋅ < us, uh, ut >

)
(10)

zn = gn∗un, ∀n ∈ {s, h, t} (11)

where Wsht→n are learnable weight matrices for feature gating, us, uh, ut

is the unimodal features from structure, heterogeneous network, tran-
scriptional profiling modality learning modules, respectively, < ⋅ >
represents the concatenation operation. For modality n, the attention
weight gn can be learned as shown in Eq. (10), which is the relative
importance of each unimodal feature to the modality. Then, the gated
representation zn is obtained by taking the element-wise product of
attention weight gn and unimodal features un, as presented in Eq. (11).
Following the tenor fusion module, we propagated the common repre-
sentation through a hidden layer of size 256, which is subsequently
supervised using a cross-entropy-based loss function for predicting CPIs.

3. Experiment setup

3.1. Evaluation metrics

We used AUROC (area under the receiver operating characteristics

curve) and AUPRC (area under the precision-recall curve) to measure
the performance of MMTF-CPI.

3.2. Comparison to baseline methods

In the comparative analysis, we compared our MMTF-CPI with
following state-of-the-art multimodal models: MultiDTI [21], MDTips
[27], DeepCompoundNet [22], KGE_NFM [20], DTI-multi-modal [23],
DrugAI [24]. The description of comparison methods is shown in Sup-
plementary Experiment Setup.

4. Results and discussion

4.1. Model performance

To provide insight into the prediction performance of MMTF-CPI, we
compared against recent state-of-the-art multimodal models, i.e. Mul-
tiDTI [21], MDTips [27], DeepCompoundNet (DCN) [22], KGE_NFM
[20], DTI-multi-modal (DTI-MM) [23], DrugAI [24] in seven datasets
(MCF7, A375, PC3, HT29, A549, HEPG2, HA1E). Comparison results are
displayed in Fig. 2. MMTF-CPI achieved the best AUROC and AUPRC
values, significantly outperforming all competitive approaches in all
datasets. We observed that MMTF-CPI and MDTips, the models inte-
grating structure, heterogeneous network, and transcriptional profiling
modalities, exhibited better prediction performance than MultiDTI,
DCN, KGE_NFM, DTI-MM, DrugAI, which only include structure and
heterogeneous network modalities. Our results indicate that the tran-
scriptional profiling modality improves CPI prediction performance,
which is consistent with the findings of Xia et al. [27]. It is noteworthy
that MMTF-CPI significantly outperforms MDTips in all datasets, which
is attributed to our multimodal tensor fusion module. Our model not
only focuses on inter-modality dynamics but also emphasizes
intra-modality dynamics during model training, enhancing the predic-
tion performance of the model. In contrast, MDTips only concatenates
multimodal features at input level, which may be a limitation in pre-
dicting CPIs.

To verify the effectiveness of unimodal information, we also
compared MMTF-CPI with its unimodal modules: the structure modality
learning module (S_model), the heterogeneous network modality
learning module (H_model), the transcriptional profiling modality
learning module (T_model), as well as other unimodal methods,
including two structure modality based methods (DeepDTA and
CPI_GNN) [10,13] and one heterogeneous network modality based
method (NeoDTI) [50]. As shown in Table 2, we observed that
MMTF-CPI achieves the best performance compared with other unim-
odal methods in seven datasets, demonstrating that the features of
structure, heterogeneous network, and transcriptional profiling modal-
ities all contribute to the model performance.

Table 2
The performance of MMTF-CPI and unimodal methods.

Methods MCF7 A375 PC3 HT29 A549 HEPG2 HA1E

AUROC MMTF-CPI 0.944 0.940 0.945 0.934 0.933 0.921 0.930
S_model 0.903 0.900 0.907 0.897 0.900 0.888 0.897
H_model 0.881 0.880 0.882 0.879 0.874 0.877 0.879
T_model 0.914 0.911 0.915 0.911 0.908 0.898 0.910
DeepDTA 0.909 0.904 0.911 0.904 0.905 0.894 0.903
CPI_GNN 0.860 0.864 0.893 0.846 0.855 0.877 0.846
NeoDTI 0.897 0.900 0.896 0.834 0.875 0.907 0.915

AUPRC MMTF-CPI 0.926 0.940 0.934 0.923 0.924 0.917 0.919
S_model 0.883 0.893 0.888 0.889 0.891 0.892 0.888
H_model 0.857 0.870 0.859 0.866 0.863 0.880 0.866
T_model 0.895 0.903 0.895 0.903 0.898 0.900 0.902
DeepDTA 0.888 0.896 0.892 0.893 0.894 0.896 0.892
CPI_GNN 0.837 0.851 0.870 0.834 0.843 0.877 0.833
NeoDTI 0.870 0.888 0.871 0.817 0.858 0.904 0.894
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4.2. Generalizability to real-world data

It is crucial to ensure the generalizability of CPI prediction models to
real-world data in the practice of drug discovery. To evaluate the
generalizability of MMTF-CPI, we constructed extra independent test
sets from seven datasets to simulate real-world conditions for predicting
CPIs. The independent test set is unbalanced, with a positive-to-negative
sample ratio of 1:2, and both the compounds and proteins in the inde-
pendent test set are unseen in the training set and validation set.

Additionally, the compound protein interactions in the independent test
set are completely filtered from the heterogeneous networks. The
training set and validation set are balanced, with a positive-to-negative
sample ratio of 1:1. The training set is used to train the model, validation
set to tune the parameters, independent test set to evaluate the gener-
alizability of the model. As depicted in Fig. 3, the evaluation results
obtained in seven datasets are encouraging, indicating MMTF-CPI
generalized well in real-world data compared to other multimodal
models.

Fig. 3. Evaluation of the generalizability between MMTF-CPI and state-of-the-art multimodal methods in extra independent test sets of seven datasets.
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Fig. 4. Performance comparison of MMTF-CPI with different feature fusion methods.
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4.3. Efficiency of the tensor fusion module

4.3.1. Tensor fusion module improves prediction performance
To validate the ability of the tensor fusion module for improving

multimodal performance, we evaluated model performance with
Concatenation, Average and Weight as feature fusion methods, which

are currently used in other multimodal methods. Concatenation repre-
sents that we directly concatenated the three learned unimodal features
from structure, heterogeneous network, and transcriptional profiling
modality learning modules for CPI prediction, and the dimension of the
concatenated feature is the sum of the sizes of each unimodal feature.
Average denotes that the final prediction result is the average of the

Fig. 5. Feature visualization in PCA and t-SNE. (A-C) PCA plots for structure, heterogeneous network, transcriptional profiling modality features in MMTF-CPI with
the tensor fusion module; (D-F) PCA plots for structure, heterogeneous network, transcriptional profiling modality features in MMTF-CPI with concatenation; (G) t-
SNE plot for three unimodal features; (H) PCA plot for three unimodal features.
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prediction results based on three unimodal features, respectively.
Weight indicates that each prediction result, based on three unimodal
features, is assigned a weight, and the final result is computed as the sum
of all prediction results multiplied by their corresponding weights. Fig. 4
illustrates the comparison of multimodal performance using different
fusion strategies in seven datasets. We observed that MMTF-CPI using
the tensor fusion module for feature fusion demonstrated the best per-
formance in all seven datasets, confirming the effectiveness of the tensor
fusion module in improving multimodal performance of MMTF-CPI.

4.3.2. Tensor fusion module enhances the learning of intra-modality
dynamics

To further explore whether the tensor fusion module focuses on
intra-modality dynamics, we visualized the three unimodal features
using principal component analysis (PCA). Different from the tensor
fusion module and Concatenation, Average and Weight combine mul-
tiple prediction results from various models constructed based on
different modules rather than a unified model. In this section, we
emphasized analyzing the visualization of unimodal features in MMTF-
CPI with the tensor fusion module and concatenation. As displayed in
Fig. 5, the dark blue and cyan plots represent the unimodal features
labeled as negative and positive CPIs, respectively. From Figs. 5A and
5D, we observed that the tensor fusion module promotes MMTF-CPI to
focus more on structure modality features than concatenation. Figs. 5B
and 5E also demonstrate that the tensor fusion module significantly
improves the concentration of heterogeneous network modality

features. Although the PCA conducted on the transcriptional profiling
modality features in MMTF-CPI with concatenation (Fig. 5F) obtains a
better result than the tensor fusion module (Fig. 5C), it is mainly
attributed to the complexity of the transcriptional modality learning
module containing a large number of parameters (4,421,740), which
makes MMTF-CPI with concatenation overfit the transcriptional mo-
dality features. These results indicate that MMTF-CPI with the tensor
fusion module can balance attention across all three intra-modality
dynamics more effectively than with concatenation. To clearly display
the features of each modality, we also provided t-SNE and PCA plots for
the three unimodal features (Figs. 5G and 5H).

4.4. The impact of different transcriptional signatures on prediction
performance

Although the previous study of Xia et al. has demonstrated the po-
tential improvement in multimodal performance by incorporating
transcriptional profiling, the importance of different types of tran-
scriptional signatures cross various cell lines in CPI prediction has not
been analyzed in detail. To investigate the importance of different types
of transcriptional signatures in CPI prediction, we used the signatures
induced by gene knockdown (trt_sh), the signatures induced by gene
overexpression (trt_oe), and the combination of trt_sh and trt_oe from
seven cell lines to predict CPIs (Fig. 6). The performance of MMTF-CPI
with both trt_sh and trt_oe (trt_sh+trt_oe) is superior to that with only
trt_oe (trt_sh-), indicating that the signatures induced by gene

Fig. 6. Performance comparison of MMTF-CPI with different signatures in seven datasets. Trt_oe+trt_sh denotes both the signatures induced by gene knockdown and
gene overexpression; Trt_oe- denotes only the signatures induced by gene knockdown; Trt_sh- denotes only the signatures induced by gene overexpression.
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knockdown from all seven cell lines significantly enhance the prediction
performance. We found that the performance of MMTF-CPI using both
trt_sh and trt_oe significantly outperforms that of MMTF-CPI using only
trt_sh (trt_oe-) in A375 dataset. This result illustrates that the signatures
induced by gene overexpression from the A375 cell line can significantly
enhance model performance. However, the gene overexpression signa-
tures from other cell lines (MCF7, PC3, HT29, A549, HEPG2, HA1E) do
not effectively improve the multimodal performance in CPI prediction.
This may be because the melanoma cell line A375 has a higher genetic
mutation burden compared to other cell lines. Mutations of genes (such
as BRAF, NRAS, TP53, CDKN2A, and RB1), which are included in the PPI
networks of MMTF-CPI, frequently occur in melanoma [51], leading to
changed gene expression. These changes of gene expression result in
gene overexpression providing more important information for CPI
prediction. Therefore, predicting CPIs in A375 dataset needs to use
signatures induced by both gene knockdown and overexpression.

4.5. Importance of transcriptional profiling and heterogeneous network
modality learning strategies

We further conducted a series of ablation experiments in seven
datasets to explore the importance of transcriptional profiling modality
learning strategy for in improving the performance of MMTF-CPI. In
MMTF-CPI, two PPI networks are built with compound perturbation and
gene perturbation induced transcriptional profiles. Subsequently, two

spectral-based GCNs are employed to capture the topological structure
information of two PPI networks for compound and protein feature
extraction, and we denoted the model configuration as PPI+ in this
section. Next, we constructed PPI- that PPI networks and spectral-based
GCNs are removed from MMTF-CPI. Specifically, the original tran-
scriptional profiles are directly fused with the features from structure
and heterogeneous network modality learning modules. We compared
PPI+ with PPI- in seven datasets, the results are as shown in Fig. 7. We
observed that the proposed model MMTF-CPI with PPI networks and
spectral-based GCNs achieved superior performance in all the seven
datasets, indicating that the transcriptional profiling modality learning
strategy we designed significantly improved the performance of MMTF-
CPI.

Next, to validate the effectiveness of the heterogeneous network
modality learning strategy, we evaluated the performance of MMTF-CPI
with different heterogeneous network modality learning strategies. The
heterogeneous network learning strategies include three network
embedding methods: DeepWalk [52], LINE [53], Node2vec [54], and
two knowledge graph embedding methods: DistMult [55], TransE [56].
As displayed in Fig. 8, despite some fluctuations, the model performance
with meta-path consistently achieved the best performance in most
datasets compared to with other learning strategies. The results
demonstrate that our learning strategy effectively captures structural
correlations from the heterogeneous network. Moreover, the latent
feature learned from the strategy contribute to improving the prediction

Fig. 7. Ablation experiments of the transcriptional profiling modality learning. PPI+ denotes the construction of two PPI networks for compound and protein
transcriptional profiles, followed by the application of spectral-based GCNs to extract compound and protein embeddings, respectively. PPI- denotes that the original
transcriptional profiles are directly used in feature fusion.
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Fig. 8. Comparison performance of MMTF-CPI with different heterogeneous network modality learning strategies.
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performance of MMTF-CPI.

4.6. Case studies

Breast cancer is the commonest cause of cancer-related deaths
among women worldwide and the incidence rates are increasing [57].
Lung cancer leads to about 1.6 million deaths worldwide each year [58],
with approximately 85 % of lung cancer patients diagnosed as non-small
cell lung cancer (NSCLC) [59]. However, the overall survival and cure
rates for patients with NSCLC are still low. Thus, there is an urgent need
for rapid exploration and discovery of drugs to treat and improve the
prognosis of breast cancer and NSCLC. In this study, we mainly focus on
identifying targets for approved drugs used to treat breast cancer and
NSCLC, as well as discovering experimental drugs with the potential to
treat both cancers.

4.6.1. Enrichment analyses for identified targets of approved drugs
To confirm the practical applicability of MMTF-CPI, we applied a

pre-trained MMTF-CPI to identify targets for approved drugs used in
treating breast cancer and NSCLC, and subsequently conducted ontology
enrichment analyses on these targets.

First, we collected approved small molecule drugs for treating breast
cancer and NSCLC, which have structure, heterogeneous network, and
transcriptional profiling modalities. The collected approved drugs are
listed in Supplementary Table S4. Second, we constructed training sets
based on MCF7 and A549 datasets to pretrain MMTF-CPI, respectively.
The MMTF-CPI pre-trained on MCF7 and A549 datasets were

respectively used to identify targets for the approved drugs used in the
treatment of breast cancer and NSCLC. To mitigate bias towards popular
known targets, we adopted a balanced data sampling strategy for con-
structing training sets. Specifically, in the training set, each target
occurred in equal frequency in both positive and negative compound-
protein pairs. We also excluded the compounds with more than five
targets from training sets to decrease the impact of polypharmacology.
Additionally, to demonstrate the generalization performance of MMTF-
CPI, the collected approved drugs were removed from the training set.
Third, we predicted the targets for the approved drugs. Finally, we
conducted ontology enrichment analyses using Metascape [60] on the
top 50 ranked identified targets for each drug (Fig. 9).

As shown in Fig. 9, the targets identified for breast cancer and NSCLC
drugs using MMTF-CPI are significantly enriched in breast cancer-
related (Fig. 9A) and NSCLC-related (Fig. 9B) processes. It is note-
worthy that the pathways highlighted in red are closely associated with
the occurrence, development, and metastasis of breast cancer and
NSCLC, as evidenced by previous studies (Supplementary Tables S5 and
S6). Our findings suggest that MMTF-CPI has immense potential in
identifying drug targets.

4.6.2. Discovery of anticancer drugs
To demonstrate the ability of MMTF-CPI in discovering experimental

drugs for cancer therapy, we predicted the interactions between
experimental drugs and cancer-related targets. First, we collected
experimental small molecule drugs with structure, heterogeneous
network, and transcriptional profiling modalities from the DrugBank

Fig. 9. Ontology enrichment analyses on identified targets for approved drugs. (A) The enrichment analysis on identified targets for breast cancer drugs; (B) The
enrichment analysis on identified targets for NSCLC drugs.
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database [37]. Then, we obtained breast cancer-related and
NSCLC-related therapeutic targets with the three modalities from the
TTD database [61]. Finally, we utilized the pre-trained MMTF-CPI to
discover experimental drugs for treating breast cancer and NSCLC,
respectively. Furthermore, to confirm the reliability of the prediction
results by MMTF-CPI, we conducted molecular docking with Autodock
Vina [62] on the compound-protein pairs with higher predicted proba-
bilities. The results of molecular docking visualization are displayed in
Fig. 10.

For breast cancer, the serine threonine kinase Akt1 (AKT1) and
cyclin D/cyclin-dependent kinases 4 (CDK4) play a key role in the
proliferation of breast cancer cells [63,64]. In our prediction results, we
found that Tamibarotene and Flubendazole have higher probability
values of 0.921 and 0.933 acting with AKT1 and CDK4, respectively. The
binding free energy of Tamibarotene to the co-crystal structure of AKT1
(PDB: 7NH5) [65] is − 10.5 kcal/mol. As shown in Fig. 10A, Tamibar-
otene forms hydrogen bonding interactions with residues Trp80, Asn204
and Asp292, as well as a strong π-stacking interaction with residue
Trp80. Additionally, it forms hydrophobic interactions with other key
residues including Gln79, Thr82, Ile84, Leu210, Leu264, Tyr272 and
Asp274. Similarly, there is a lower binding free energy of − 9.6 kcal/mol
between Flubendazole and the co-crystal structure of CDK4 (PDB: 7SJ3).
From Fig. 10B, Flubendazole forms strong hydrogen bonding in-
teractions with residues Tyr17, Lys142, Glu144 and Asp158, and hy-
drophobic interactions with other key residues (Tyr17, Val20, Ala33,
Lys35, Val72, Phe93, Ala157, Asp158). Moreover, we found that
Tamibarotene and Flubendazole exhibit lower binding free energies
when interacting with TOP2A and ERBB2, important therapeutic targets
for breast cancer, respectively. The visualization of molecular docking
can be found in Supplementary Fig. S2.

For non-small cell lung cancer (NSCLC), epidermal growth factor

receptor (EGFR) is one of the crucial therapeutic targets, expressed on
the majority of NSCLC cells. Our MMTF-CPI infers that Quinacrine can
targeting EGFR. Then molecular docking result shows the binding free
energy of − 8 kcal/mol between Quinacrine and the co-crystal structure
of EGFR (PDB:4I22) [66]. As displayed in Fig. 10C, Quinacrine forms
strong hydrogen bonds with residues Met793 and Thr854 at the dis-
tances of less than 3 Å, and hydrophobic interactions with other key
residues, such as Leu718, Phe723, Val726, Ala743, Leu792, Arg841 and
Leu844. These results indicate the tremendous practical significance of
MMTF-CPI in discovering and developing anti-tumor agents.

5. Conclusion

Altogether, we presented a novel multimodal CPI prediction frame-
work MMTF-CPI that fuses structure, heterogeneous network and tran-
scriptional profiling modalities. MMTF-CPI employs different feature
extractors to learn unimodal features from the three modalities,
respectively. We designed a multimodal tensor fusion module that can
reduce the complexity and collinearity in inter-modality dynamics,
simultaneously focusing on both intra-modality and inter-modality dy-
namics. MMTF-CPI is the first multimodal CPI prediction framework
that effectively learns both intra-modality and inter-modality dynamics.

We highlighted several improvements of MMTF-CPI compared with
existing state-of-the-art multimodal CPI prediction methods. (i) MMTF-
CPI significantly outperforms several state-of-the-art multimodal
frameworks in all datasets. (ii) The performance of MMTF-CPI is more
significantly improved with the tensor fusion module than other feature
fusion methods. (iii) The visualization of unimodal features demon-
strates that MMTF-CPI with the tensor fusion module exhibits superior
ability to focus on intra-modality dynamics across three modalities
compared to concatenation. (iv) We conducted a series of detailed

Fig. 10. Visualization of molecular docking. (A) The binding mode of co-crystal structure of AKT1 with Tamibarotene; (B) The binding mode of co-crystal structure
of CDK4 with Flubendazole; (C) The binding mode of co-crystal structure of EGFR with Quinacrine.
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analyses on the impact of different types of transcriptional signatures
from various cell lines on multimodal performance of CPI prediction. In
A375 dataset, both the signatures induced by gene knockdown (trt_sh)
and gene overexpression (trt_oe) significantly enhance prediction per-
formance. However, in MCF7, PC3, HT29, A549, HEPG2 and HA1E
datasets, only trt_sh contributes to improving the multimodal perfor-
mance of CPI prediction. Hence, the enhancement in multimodal per-
formance varies based on different transcriptional signatures across
various cell lines, suggesting that merely incorporating transcriptional
signatures does not always improve multimodal performance of CPI
prediction. (v) Our experimental results highlight the importance of
transcriptional profiling and heterogeneous network modality learning
strategies in MMTF-CPI for enhancing model performance. (vi) The case
studies indicate that MMTF-CPI not only accurately identifies drug tar-
gets but also discovers anticancer drugs. Furthermore, the molecular
docking exhibits lower binding free energies between predicted drugs
and therapeutic targets, confirming that the drugs predicted by MMTF-
CPI indeed possess therapeutic potential for breast cancer and non-small
cell lung cancer. Therefore, we believe that the proposed novel multi-
modal CPI prediction framework, MMTF-CPI, can serve as a powerful
tool for accelerating drug discovery and development for various
cancers.

Although MMTF-CPI achieves satisfactory performance in enhancing
CPI prediction, there are several directions for future improvement in
MMTF-CPI. Our current MMTF-CPI framework does not include three-
dimensional (3D) structural information, which may result in insuffi-
cient learning of structural information. We will integrate more 3D
structural information of compounds, proteins and binding pockets into
MMTF-CPI to better capture the interactions between compounds and
proteins. Another potential direction for future work could be to
incorporate the interactions between drugs and side effects into the
heterogeneous network, focusing on better extracting the features of
heterogeneous network modality.

Code and data availability

The source codes are available at https://github.com/wangmen
g-code/MMTF-CPI. Data in this study is availale at https://drive.goo
gle.com/drive/folders/1lfVZNHlpgdlBhozK_oeS1upU8NvpBOx6.
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