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Introduction
Retinal disease is one of the main causes of blindness 
worldwide, and the most common types of retinal conditions 
are dysfunctional retinal pigment epithelium and degenerating 
photoreceptors. Aging, diabetes, trauma, retinal vessel 
occlusion, hypertensive retinopathy, retinitis, and family history 
can result in retinal disease. With the increase in the aging 
population and the prevalence of high myopia and diabetes, 
visual disabilities will continue to increase.1 At present, 
the diagnosis of retinal diseases mainly relies on clinical 
examination with the help of eye experts in retinal vessels, 

optic discs, the fovea, and lesions. As the prevalence of vision 
disabilities increases,2 early detection and effective treatment are 
the keys to avoiding vision loss. A community health‑care center 
with population concentration, comprehensive monitoring, and 
capabilities of analyzing and evaluating individual or group 
health can provide large‑scale screening and early diagnosis. 
However, one of the main barriers to implementing widespread 
screening is the deficit of medical resources, particularly in 
low‑  and middle‑income countries.3 Given these concerns, 
developing a safe and effective screening program for early 
intervention to prevent currently incurable blinding conditions 
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is essential. Retinal fundus images have become one of the 
main references for screening and diagnosing retinal diseases. 
Recently, several research teams have investigated artificial 
intelligence (AI)‑assisted systems, machine learning, and 
deep learning, based on fundus photographs, to screen retinal 
diseases. However, many of these studies have been devoted 
to identifying diabetic macular edema, age‑related macular 
degeneration (AMD), and glaucoma,4‑6 and studies of retinal 
disease recognition to establish a classification of normal and 
abnormality in multicategorical retinal diseases have been 
very limited.7,8

AI using machine‑learning algorithms, such as support vector 
machines, naive Bayes classifiers, and convolutional neural 
networks  (CNNs), have received extensive attention after 
demonstrating that it can perform at least as well as humans 
in image classification tasks.4,9 As the digital imaging modality 
rapidly develops, image processing, computer vision, and 
machine learning are being used to automatically detect retinal 
lesions based on color fundus photographs. This is of great 
significance for the implementation of computationally assisted 
retinal disease detection and the promotion of large‑scale 
screenings.10 Deep transfer learning (DTL) is a new machine 
learning method that leverages existing knowledge to solve 
different but related domain problems.11 Based on past studies, 
transfer learning is a highly effective technology, especially 
in domains where limited data are available.12 Compared to 
the traditional image recognition methods, DTL does not need 
to rely on manual labeling and a large quantity of labeled 
training data, and does not require much cost and time for data 
collection. The purpose of this study is to develop and validate 
an effective transfer learning algorithm for detecting abnormal 
fundus photographs and to provide an accurate and timely 
referral by employing a small multicategorical retinal disease 
image database. In addition, new insights are generated for the 
screening program to efficiently build a detection model with a 
few labeled fundus photographs and some related graph data.

Methods
Image dataset characteristics
A total of 1295 fundus images were selected in Yijishan 
Hospital of Wannan Medical College from January 2017 to 
December 2018 in this retrospective study. These images 
included normal and abnormal fundus photographs, the latter 
including maculopathy, optic neuropathy, vascular lesion, 
choroidal lesions, vitreous disease, cataract, and low‑quality 
photographs. The images were labeled as poor quality and 
removed from the training and validation dataset in the 
following situations: blurred areas accounting for 50% or more 
of the image area, fovea or optic disc or both were not visible, 
and indistinguishable macular vessels. After removing 366 
poor images, the DTL model was developed using 929 retinal 
fundus images  (370 normal, 559 abnormal) from January 
2017 to December 2018. Figure 1 shows the workflow of this 
study. The images were extracted from the ophthalmic clinics, 
inpatients, and physical examination centers in our hospital. 

Three datasets were applied for DTL training (254 normal, 402 
abnormal), internal validation (116 normal, 157 abnormal), and 
testing (155 normal, 251 abnormal). The training dataset was 
used to adjust common parameters (weights, biases, etc.,) in 
the network, and the test dataset was applied to evaluate the 
performance of the DTL after training with some important 
metrics, such as accuracy, specificity, and sensitivity. Images 
were captured using common conventional desktop retinal 
cameras and the Digital Retinography System TRC‑NW8F 
plus  (Topcon Inc., Tokyo, Japan) and AFC‑330  (NIDEK 
CO., Gamagori, Japan). In this study, three experienced 
ophthalmologists were invited for image labeling. The normal 
images were labeled as 0, and the abnormal images were 
labeled as 1. Fundus images were classified between November 
and December 2018. The images were randomly assigned to 
every ophthalmologist, and each image was labeled by three 
experts. The images that obtained two or more consistent labels 
were transferred into a subgroup and made available for study. 
In this process, the labeling outcomes were blind. The senior 
ophthalmologist handled the cases of controversial image 
labeling. A total of 656 fundus images were randomly selected 
from 929 images as the training dataset, and the remaining 
images were considered the internal validation dataset. To 
improve the accuracy of image recognition with only a small 
number of training datasets, several data preprocessing steps 
were implemented for normalization and standardization. To 
evaluate the model performance, an independent subset of the 
Messidor database was used for the testing dataset.13 In this 
study, 366 fundus images (115 normal, 251 abnormal) were 
randomly selected from the Messidor dataset. To provide a 
standardized image format of the dataset for the succedent 
deep learning and final automated testing, all images were 
anonymized and saved in JPG format with cropped black 
borders because CNNs are sensitive to color when extracting 
features.

Data processing
Data preprocessing can detect trends, minimize noise, 
underline important relationships, and flatten the variable 
distribution in a time series.14 In this study, several steps for 
data preprocessing were performed to normalize the images 
for variation, including removing meaningless photographs 
where important retinal information was lost due to shooting 
angles, light, media opacities; cropping the black edges but 
preserving the crucial regions; adjusting the brightness to 
balance the color of images; reducing noise; and enhancing 
contrast. Image monochromatic and contrast‑limited adaptive 
histogram equalization algorithms were used to enhance 
contrast and reduce noise. The image resolution of the data 
was 3352 × 3364 pixels.

To improve the accuracy of image recognition with a small 
database and avoid overfitting, data augmentation was 
introduced into the preprocessed data to expand the range of 
training data samples while keeping the prognostic features 
in the image. The characteristics of color photographs and 
CNNs are highly invariant in terms of rotation, mirroring, 
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etc.15 Two methods were applied for data augmentation: 
rotating the images and performing mirror image or vertical 
image processing. Figure  2 shows the process of training 
dataset augmentation in Python. The probability parameter is 
the ratio of the images that operate on the input images. Data 
augmentation was introduced into the original small dataset 
to increase the number of training data samples. After data 
augmentation, the training dataset was expanded to 7000 
images, including 3500 normal and 3500 abnormal fundus 
images.

Structure of deep transfer learning
Inception‑ResNet‑v2 is an open‑source framework with 
prior training from ImageNet pretrained networks trained 
for classifying 1.2 million natural color images into 1000 
classes as part of the ImageNet Large Scale Visual Object 
Recognition Challenge and has been widely used in many 
fields.16 Inception‑ResNet‑v2 is a costlier hybrid inception 
version with significantly improved classification performance. 
The inception architecture has been shown to achieve very 
good performance at a relatively low computational cost.17 
Residual connections have also been proven to be more 
accurate on the classification task and can learn faster.17,18 
Inception‑ResNet‑v2 has deeper layers and adds connections 
between the Inception‑ResNet modules (Inception‑ResNet‑A, 

Inception‑ResNet‑B, and Inception‑ResNet‑C) and the 
reduction modules (Reduction‑A, Reduction‑B). More details 
can be found in the literature. The classification accuracy of 
Inception‑ResNet‑v2 outperforms any other architecture on 
benchmark datasets.

In this study, the Inception‑ResNet‑v2 architecture was 
applied to achieve transfer learning. It can help overcome the 
difficulties of obtaining large manually labeled datasets and 
reduce the computational costs. Our model demands relatively 
low computational performance while maintaining effective 
classification results. To achieve the transfer, we removed the 
dense layer and the softmax layer of the pretrained network. 
We eliminated the last two layers because the dimensions 
of the dense layer and softmax layer must be equal to the 
number of classes in our task. We then added adaptation layers 
to construct the new architecture. On this basis, the source 
pretrained model on the large‑scale dataset was transferred 
to the target small dataset, and the model weights and image 
features, except for the last two layers, were extracted as the 
input of the new dense layer and the softmax layer to finish 
our specific task. We fine‑tuned the convolutional layers by 
unfreezing and updating the pretrained weights to classify 
the medical images. In the target task, a modified softmax 
layer output two categories [Figure 3]. The exponential decay 

Figure 1: Development workflow for image labeling in this study

Figure 2: The steps were the process of training dataset aggregation
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learning rate can asymptotically reduce the learning rate to 
stabilize the model in the later stage of training.19 An Adam 
optimizer is an adaptive learning rate optimization algorithm 
that is specifically designed for training deep neural networks. 
In this study, the transferred Inception‑ResNet‑v2 uses an 
Adam optimizer and exponentially decaying learning rate 
with an initial learning rate of 0.0001 and a decay rate of 0.7 
to minimize the loss. The model was saved for evaluation 
when the training ran for 100 epochs. After repeated testing, 
the batch size was set as 256.

Statistical analysis
Our model was implemented on a computer running Ubuntu 
16.04 with one graphical processing unit  (NVidia GeForce 
GTX 1080 ti). The DTL model was implemented using 
TensorFlow1.12 and Python 3.6. The performance of the model 
was evaluated based on standard classification measures: 
accuracy  (classification accuracy), sensitivity  (true-positive 
rate), specificity (true-negative rate), and the receiver operating 
characteristic curve, which used the probability values obtained 
for each sample predicted by the model and the area under the 
curve (AUC).

Results
The manual classification of retinal fundus images was 
completed in November and December 2018, and DTL training 
and validation were completed in January 2019. Figure 4 shows 
the training process performance of the model. The accuracy of 
the training increased rapidly and ran to a subsequent plateau 
after approximately 30,000 training steps. As the training 

continued, a learning rate lower than what we initially set was 
more favorable; therefore, it was beneficial that we used an 
exponential decay learning rate.

The internal validation performance of the model is presented 
in Figure 5. The performance of the internal validation dataset 
(116 normal, 157 abnormal) and the AUC, sensitivity, accuracy, 
and specificity of the DTL for correctly classifying fundus 
images were 0.997, 97.41%, 97.07%, and 96.82%, respectively. 
A total of 273 images were randomly selected from the testing 
dataset to validate the performance of the DTL. The DTL 
correctly classified the test dataset, with the AUC, sensitivity, 
accuracy, and specificity of the DTL being 0.926%, 88.17%, 
87.18%, and 86.67%, respectively [Figure 6]. The results for 
some methods and tests of our fundus images are shown in 
Table 1. The Inception‑ResNet‑v2 classification performance 
is higher than Inception‑v3.

Table 2 shows the characteristics of misclassified photographs. 
The false‑negative cases and the false‑positive cases of the 
internal validation dataset numbered 5 and 3, respectively. 
The false‑negative cases of the testing dataset numbered 24. 
Table 3 shows the false‑negative rate and false‑positive rate 
of the testing dataset. The partial prediction results of the DTL 
model in detecting abnormal fundus images by comparison 
with the image’s true state are summarized in Figure 7.

Discussion
In this study, the DTL model achieved sufficient performance 
in abnormal fundus image detection, and the AUC, sensitivity, 
accuracy, and specificity of the DTL were 0.926%, 88.17%, 
87.18%, and 86.67%, respectively, in an independent subset of 
the test dataset. This study presented an automated screening 
model that was trained with a smaller number of fundus images. 
It can attain clinically acceptable performance in abnormal 
fundus image detection and will benefit medical institutions 
with no retinopathy screening program or a lack of experienced 
ophthalmologists. In addition, the study shows our proposed 
model has high accuracy and reproducibility in detecting 
abnormal fundus images.

AI‑based automated detection of retinal diseases using deep 
learning, VGGNet‑s, AlexNet, and supervised learning systems 
has been reported in several studies.20‑22 The initial focus Figure 3: Illustration of the proposed procedure in this study

Figure 4: The accuracy and the learning rate of the training process
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was on deep learning technology. Ting et al. validated their 
deep learning system  (DLS) using 494,661 retinal images, 
demonstrating that DLS had high sensitivity and specificity for 
identifying diabetic retinopathy and related eye diseases for the 
detection of any diabetic retinopathy (AUC = 0.94–0.96); for 
possible glaucoma, the AUC was 0.942; for AMD, the AUC 
was 0.931.23 Similarly, Li et al. described the development 
and validation of an AI‑based method in 71,043 retinal images 
acquired from a web‑based, deep learning algorithm for the 
detection of referable diabetic retinopathy. Testing against the 
independent multiethnic dataset achieved an AUC, sensitivity, 
and specificity of 0.955%, 92.5%, and 98.5%, respectively.24 
Stevenson et  al. showed their proof‑of‑concept AI system 
performance with 4435 images. The classifiers were for 
AMD and vascular occlusion, both with accuracies of 99.1%, 
sensitivities over 99%, and specificities of 88.9%.25 In contrast 
to the above studies, our independent testing performance in 
terms of the AUC, sensitivity, accuracy, and specificity of the 
DTL were 0.926%, 88.17%, 87.18%, and 86.67%, respectively, 
and the results were relatively low. This may be attributed to 
the outputs of our model being divided into normal groups 
and abnormal groups, the latter including a multitude of 
disease states; thus, some rare and microlesions failed to be 
detected by DTL. The comparison was among the DTL and 
VGGNet‑s, AlexNet, and supervised learning, which are the 
latest deep CNNs for color fundus image classification tasks. 
The DTL has excellent performance in terms of classification 
accuracy  (97.07%) and sensitivity  (97.41%) under a small 

number of training data. Although previous studies have 
shown outstanding research results, some limitations should 
be considered. First, most of the studies required a large 
manually labeled dataset to train and validate, which requires 
considerable time, manpower, and material resources. The 
diagnosis varies depending on the region. Second, more 
thorough research of false-negative values should be performed 
to recognize features and relevance. By comparison, our study 
is, to the best of our knowledge, the first to develop a DTL to 
detect abnormal fundus images by employing a small dataset.

DTL classification has been used for many years in disease 
screening research. Santin et al. performed transfer learning 
to characterize abnormal cartilage using a pretrained neural 
network VGG16 and adapted the final layers to a binary 
classification problem. The AUC, sensitivity, and specificity 
of their study were 0.72%, 83%, and 64%, respectively. In an 
independent sample of 189 new thyroid images, the AUC was 
0.70.26 Compared with this study, previous studies deployed a 
small dataset, but the performance of the Inception‑ResNet‑v2 
architecture was significantly better than that of VGG16. 
Similarly, Heisler, et al. demonstrated three different transfer 
learning methods to identify the cones in a small set of 
adaptive optics optical coherence tomography  (AO‑OCT) 
images using a base network trained on adaptive optics  
scanning laser ophthalmoscopy images, which all obtained 
results similar to that of a manual rater. Using the results 
from the fine‑tuning (Layer 5) method, they calculated four 

Table 1: The results for some methods and tests of our fundus images

Approaches Accuracy (%) Sensitivity (%) Specificity (%) AUC
DA + inception‑ResNet‑v2 + TL 42.49 100 0 0.75
Inception‑ResNet‑v2 + FT 86.81 89.91 84.76 0.905
DA + inception‑v3 (from scratch) 86.45 78.33 92.81 0.912
DA + inception‑v3 + TL + FT 91.79 89.52 93.59 0.938
DA + inception‑ResNet‑v2 + TL + FT 97.07 97.41 96.82 0.997
AUC: Area under the curve, DA: Data augmentation, TL: Transfer learning, FT: Fine‑tuning

Figure  5: Receiver operating characteristic curves of deep transfer 
learning in the internal validation dataset

Figure  6: Receiver operating characteristic curves of deep transfer 
learning in the testing dataset
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different cone mosaic parameters that were similar to the 
results found in AO‑SLO images, showing the utility of their 
method.27 Christopher et al. demonstrated that deep learning 
methodologies have high diagnostic accuracy for identifying 
fundus photographs with glaucomatous damage to the optic 
nerve head in a racially and ethnically diverse population. 
The best‑performing model was the transfer learning ResNet 
architecture, which achieved an AUC of 0.91 in identifying 
glaucomatous optic neuropathy  (GON) from fundus 
photographs, outperforming previously published accuracies 
of automated systems for identifying GON in fundus images.28 
These transfer learning systems showed that the models can 
learn faster by employing transfer learning with fewer data. 
DTL will permit users to utilize relation‑labeled graph data to 
construct a detection model for the target image data.

In this study, the reasons for false‑negative cases of the testing 
datasets were analyzed. High myopic fundus accounted 
for more than half of all false‑negative cases. These results 

could contribute to our experts labeling mild myopic fundus 
as normal. Therefore, the model confused mild myopic 
fundus images and pathological myopic images. In the same 
way, false‑positive cases included mild myopic fundus. 
Other reasons for false‑negatives included peripheral retinal 
microlesions, vascular microlesions, optic neuritis, and 
congenital optic neuropathy.

DTL is surprisingly effective in image classification. 
However, in its current state, our study has several limitations. 
First, due to a training set in which our experts labeled mild 
myopic fundus as normal, the DTL model trained on this 
set achieved a higher than normal prior probability for eye 
disease detection, which may cause a high false‑negative 
rate. Second, our study dataset is not large and includes 
only patients from a local clinical setting. At present, 
the algorithm cannot be independent or matched with 
professional evaluation, but it can provide abnormal fundus 
images with obvious diagnoses so that ophthalmologists can 
focus on more difficult cases. In this study, a wide variety 
of ocular disease images may affect the performance of the 
algorithm. The algorithm’s output divides the photographs 
into normal or abnormal groups but cannot reach a diagnosis 
for a specific disease.

Table 2: False‑negative and false‑positive images of the 
internal validation dataset and testing dataset

Reasons n Proportion (%)
Internal validation dataset

False-negative
Peripheral retinal micro lesions 2 40
Micro maculopathy 1 20
High myopic fundus 2 40
Total 5 100

False-positive
Mild myopic fundus 1 25
Normal 2 12.5
Total 3 100

Testing dataset
False-negative

High myopic fundus 17 70.83
Peripheral retinal micro lesions 2 8.33
Microvascular lesions 2 8.33
Optic neuritis 2 8.33
Congenital optic neuropathy 1 4.17
Total 24 100

False-positive
Mild myopic fundus 4 36.4
Normal 7 63.6
Total 11 100

Table 3: The calculation of false‑negative rate and 
false‑positive rate of testing data set

DTL Standard

Positive Negative
Positive a (154) b (11)
Negative c (24) d (82)
Total a+c (178) b+d (93)
False‑negative rate=c/c+a=24/180≈13.3%, False‑positive rate= 
b/b+d=11/93≈11.83%. DTL: Deep transfer learning

Figure  7: Examples of fundus images show the possibilities for the 
deep transfer learning:  (a‑f) Abnormal fundus images predicted as 
abnormal  (true‑positive);  (g‑i) Abnormal fundus images predicted as 
normal (false-negative)
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In conclusion, the current project demonstrated that DTL 
presents a promising future in the diagnosis of various diseases 
with higher accuracy and efficiency based on color fundus 
image data. In future work, we will be dedicated to adding more 
auxiliary domain information to our model and exploring a 
screening algorithm for classifying retinal pathological lesions 
and providing treatment recommendations. Further steps 
include improving this method and validating and evaluating 
its applicability in the community health‑care center.
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