

Supplementary Fig. 1 SGs in different mutants of *hvisa1* and *hvflo6*. **a-c** Iodine-stained thin sections of endosperm cells of *hvisa1-4* (a), *hvisa1-5* (b), and *Risø17* (*hvisa1-1*) (c). **d**, **e** Iodine-stained thin sections of endosperm cells of *Franubet* (*hvflo6-1*). **f**, **g**

Iodine-stained thin sections of endosperm cells of F1 grains from a cross between *hvflo6-2* and *Franubet* (*hvflo6-1*). Bars = 20 μ m.

Supplementary Fig. 2 Expression of HvFLO6.

Reverse transcription (RT)-PCR to check the expression of *HvFLO6* in individual 15 DAA grains of Haruna Nijo and *hvflo6-2*. Total RNA was isolated from three independent grains, and cDNA was amplified with two different PCR cycles. *ACTIN* was used as the internal control.

Supplementary Fig. 3 PCR detection of base changes in the *hvisa1-3* and *hvflo6-2* mutants. **a** To detect the *hvisa1-3* mutation, PCR products were amplified using derived cleaved-amplified polymorphic sequence primers and digested with *Hinf*I. In the case of the wild-type allele (Haruna Nijo), the PCR product (134 bp) was digested into fragments of 102 bp and 32 bp (the smaller band is not visible). In the case of the *hvisa1-3* allele, the PCR product was not digested. Heterozygous plants (*hvisa1-3+/-*) yielded both the full-length band and the digestion products. **b** To detect the *hvflo6-2* mutation, PCR products were amplified with two different primer sets, one specific for the wild-type allele and the other specific for the *hvflo6-2* allele. The wild-type-specific primer set amplified a 266-bp PCR product from the wild-type allele (Haruna Nijo) but not from the *hvflo6-2* allele. In contrast, the *hvflo6-2*-specific primer pairs amplified a 266-bp PCR product from the wild-type allele. Both primer pairs yielded bands from heterozygous samples.

Supplementary Fig. 4 No accumulation of HvISA1 in hvflo6-2 hvisa1-3.

Immunoblot analysis using anti-HvISA1 antisera (top). The Ponceau S-stained membrane is also shown (bottom). HvISA1 accumulated in Haruna Nijo and *hvflo6-2* but not in *hvisa1-3* or *hvflo6-2 hvisa1-3*.

a–d Photographs of 25-day-old plants of Haruna Nijo (a), *hvisa1-3* (b), *hvflo6-2* (c), and *hvflo6-2 hvisa1-3* (d). Bars = 5 cm. **e** The number of tillers of 25-day-old plants (n = 7). **f** Shoot fresh weight of 25-day-old plants (n = 5–6). Data are given as means \pm SD. Statistical comparisons were performed using Tukey's HSD. The same letters above the bars represent statistically indistinguishable groups, and different letters represent statistically different groups (p < 0.05).

а

Supplementary Fig. 6 Co-segregation of the *hvflo6-2 hvisa1-3* genotype with the shrunken grain phenotype.

a A mature panicle of a *hvflo6-2^{+/-} hvisa1-3* plant. Asterisks indicate shrunken grains. Bar = 1 cm. **b** Cross-sections of shrunken grains (1–8) and normal grains (9–16) obtained from a self-fertilized *hvflo6-2^{+/-} hvisa1-3* plant. Bars = 1 mm. **c** Genotyping of the grains in (b) using primers designed to detect the *hvflo6-2* and *hvisa1-3* alleles. Lane numbers match the grain numbers. All eight shrunken grains were homozygous mutants at both loci.

Supplementary Fig. 7 SGs in developing grains at 10 DAA and 20 DAA. **a**, **b** Iodine-stained thin sections of endosperm cells of Haruna Nijo at 10 DAA (a) and 20 DAA (b). **c**, **d** Iodine-stained thin section of endosperm cells of *hvisa1-3* at 10 DAA (c) and 20 DAA (d). **e**, **f** Iodine-stained thin section of endosperm cells of *hvflo6-2* at 10 DAA (e) and 20 DAA (f). Bars = $10 \mu m$.

Supplementary Fig. 8 Grain cross-sections stained with iodine without washing with water. Cross-sections of grains at 20 DAA were stained in iodine solution on a glass slide and observed immediately. **a** Haruna Nijo. **b** *hvisa1-3*. **c** *hvflo6-2*. **d** *hvflo6-2 hvisa1-3*. Bars = 1 mm.

Supplementary Fig. 9 Fluorescence images of GFP-labeled amorphous amyloplasts. **a** Differential interference contrast (DIC), GFP, and merged images of amorphous amyloplasts in *hvflo6-2* endosperm at 15 DAA. **b** Amorphous amyloplasts in *hvflo6-2 hvisa1-3* endosperm at 15 DAA. Bars = $10 \mu m$.

Supplementary Fig. 10 SGs in mature grains of *hvflo6-2 hvisa1-3*.

a Iodine-stained thin section of *hvflo6-2 hvisa1-3* endosperm at mature stage. **b** Enlarged view of compound SGs in the starch-rich region. **c** Enlarged view of defective SGs in the starch-less region. Bars = $20 \mu m$.

Supplementary Fig. 11 Phenotypes of hvisa1-3 hvflo6-1.

a Unstained cross-sections of mature grains of Haruna Nijo, *hvisa1-3*, *hvflo6-1*, and *hvisa1-3 hvflo6-1*. **b** Iodine-stained cross-sections of *hvisa1-3 hvflo6-1* grains at 20 DAA with washing. Bar = 1 mm. **c** Iodine-stained cross-sections of *hvisa1-3 hvflo6-1* grains at 20 DAA without washing. Bar = 1 mm. **d** Compound SGs in a starch-rich region of *hvisa1-3 hvflo6-1* endosperm at 15 DAA. Bar = 10 µm. **e** Pinkish balloon-like structures in a starch-less region of *hvisa1-3 hvflo6-1* endosperm at 15 DAA. Bar = 10 µm.

a *hvisa1-5* and Morex are indicated by black and grey lines, respectively. **b** *hvflo6-1* and *hvflo6-2* are indicated by black and grey lines, respectively. Data are given as means \pm SD. All data were obtained from at least three independent grains.

Supplementary Fig. 13 Elevated accumulation of ADP-glucose in *hvflo6-2 hvisa1-3*. Data are given as means \pm SD (n = 3). Statistical comparison was performed using Student's *t*-test (***p* < 0.01).

Supplementary Fig. 14 Stacked bar graph of the components in single mature grains. Data are average values from at least three biological replicates.