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Genome Sequence of Mariprofundus sp. Strain EBB-1, a Novel
Marine Autotroph Isolated from an Iron-Sulfur Mineral
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ABSTRACT Mariprofundus sp. strain EBB-1 was isolated from a pyrrhotite biofilm in-
cubated in seawater from East Boothbay (ME, USA). Strain EBB-1 is an autotrophic
member of the class Zetaproteobacteria with the ability to form iron oxide biominer-
als. Here, we present the 2.88-Mb genome sequence of EBB-1, which contains 2,656
putative protein-coding sequences.

embers of the class Zetaproteobacteria are known for their ability to obtain energy

from the oxidation of ferrous [Fe(ll)] to ferric [Fe(lll)] iron in microaerobic envi-
ronments at circumneutral pH (1). Zetaproteobacteria species were initially associated
with Fe(ll)-rich deep-sea hydrothermal vents such as the Loihi Seamount (HI, USA),
where the first isolate, Mariprofundus ferrooxydans, was discovered (1). However, Zeta-
proteobacteria species have also been found in shallow coastal marine environments,
where they are thought to play roles in microbiologically influenced corrosion (2),
rejuvenation of iron oxides in bioturbated sediments (3), cycling of iron in pelagic
estuarine areas (4), and colonization of iron sulfides (5). Previously, pure cultures of
iron-oxidizing Gammaproteobacteria and Zetaproteobacteria were established from in
situ incubations of pyrrhotite, an iron-sulfur mineral, in a near-shore, marine environ-
ment of California (5, 6). Here, we present the genome sequence of Mariprofundus sp.
strain EBB-1, isolated from the in situ incubation of pyrrhotite at the mouth of the
Damariscotta River (i.e., saline water from the Gulf of Maine) (East Boothbay, ME, USA).
EBB-1 was isolated from rusty material that accumulated as a biofilm on the surface of
pyrrhotite. EBB-1 contributes to our understanding of the genomic potential of Zeta-
proteobacteria species and their potential ecological role with respect to iron, carbon,
phosphorus, and nitrogen cycling in near-shore marine environments. EBB-1 is, to date,
the only isolated strain representing the previously identified 16S rRNA-defined clade
ZetaOTU14 in the class Zetaproteobacteria, order Mariprofundales, family Mariprofun-
daceae, genus Mariprofundus (7).

A sample of the rusty biofilm on pyrrhotite was incubated in artificial seawater
medium (8) at room temperature in the presence of ferrous iron (FeCl,-4H,0) and under
microoxic conditions, following the protocol by Barco et al. (5). A dilution-to-extinction
culturing method (9) was applied for at least five transfers to isolate organisms under
the described growth conditions. EBB-1 was selected for sequencing based on its
capacity to grow in a medium under microoxic conditions with inorganic carbon as the
sole carbon source and iron as the sole electron donor. EBB-1 genomic DNA was
extracted using the FastDNA Spin soil kit (MP Biomedicals, Santa Ana, CA, USA), per the
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manufacturer’s protocol. Library construction and sequencing were performed at the
Single Cell Genomics Center at the Bigelow Laboratory for Ocean Sciences following
their published protocol (10). Library construction was performed using the Nextera XT
(Illumina) reagents, following the manufacturer’'s suggestions, except that DNA was
purified using column cleanup kits (Qiagen) and size selected to 500 * 50 bp using
BluePippin (Sage Science, Beverly, MA, USA). DNA was sequenced using a NextSeq
instrument (lllumina, USA) with 2 X 150-bp chemistry, generating a total of 7,248,670
raw paired-end reads. Trimmomatic version 0.32 (11) was used to trim the last 5 bp of
each sequence, regions with low quality scores (Q < 15), and reads shorter than 36 bp,
resulting in 7,092,091 quality-controlled sequences. These sequences were processed
prior to assembly using a complexity filter threshold of 0.05, normalization with
kmernorm version 1.05 (parameters k = 21; t=30; ¢ = 3; https://sourceforge.net/
projects/kmernorm/). The resulting 723,807 high-quality paired-end sequences were
then assembled using the SPAdes genome assembler version 3.9.0 (12), resulting in 63
high-quality contigs, with an N, value of 84,398 bp and a maximum contig length of
200,406 bp. The assembled EBB-1 genome was 2,877,040 bp in length, with a GC
content of 46.6%. Annotation was performed using the NCBI Prokaryotic Genome
Annotation Pipeline (13, 14), resulting in 2,656 protein-coding genes, 3 rRNA genes (1
copy each of 5S, 16S, and 23S rRNA genes), and 38 tRNA genes. Preliminary assignment
of EBB-1 to the genus Mariprofundus was determined using CheckM version 1.0.18 (15)
and refined to a specific ZetaOTU by ZetaHunter (7).

As in other Zetaproteobacteria species, the EBB-1 genome contains genes indic-
ative of the Calvin-Benson-Bassham cycle and high-affinity oxygen terminal oxi-
dases (e.g., cbbs-type cytochrome oxidase), which are consistent with an au-
totrophic and microaerophilic lifestyle, respectively. Cyc2, the protein that has been
proposed to be an iron oxidase in neutrophilic iron oxidizers (16), is also encoded
in the EBB-1 genome. Additional analysis revealed that EBB-1 possessed genes
encoding cellulase, sulfide:quinone oxidoreductase, chemotaxis, and flagellum bio-
synthesis.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession number RCFQ00000000. The version associ-
ated with this submission is the first version, RCFQ01000000. The EBB-1 genome
sequence has also been deposited in the JGI Integrated Microbial Genomes (IMG) and
Microbiomes system under IMG identifier 2781125668. Raw reads have been deposited
in the Sequence Read Archive under run number SRR9201317 and BioProject number
PRINA494876.
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