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Abstract: Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are
currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds
have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing
catalytic domain of the histone deacetylase (HDACs) and they repress the deacetylase enzymatic
activity. The broad therapeutic effect of HDIs with seemingly low toxicity is somewhat puzzling
when considering that most HDIs lack strict specificity toward any individual HDAC and, even if
they do, each individual HDAC has diverse functions under different physiology scenarios. Here, we
review recent mechanistic studies using omics approaches, including epigenomics, transcriptomics,
proteomics, metabolomics, and chemoproteomics, methods. These omics studies provide non-biased
insights into the mechanism of action for HDIs.

Keywords: histone deacetylase inhibitors (HDIs); epigenomics; transcriptomics; proteomics;
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1. Introduction

Human histone deacetylases (HDACs) are categorized into four classes that are based on sequence
homology [1]. Class I includes HDAC1, 2, 3, and 8; class IIa includes HDAC4, 5, 7, and 9; class IIb
includes HDAC6, and 10; class IV includes HDAC11; and class III includes SIRT1-7 [1]. Class I, II, and
IV are canonical zinc-dependent HDACs and are simply referred to as HDACs in this review. Class III
are NAD-dependent sirtuins that are more distantly related and they will not be discussed in this review.
We shall keep in mind the following facts while we discuss HDACs and histone deacetylase inhibitors
(HDIs). (i) HDACs deacetylate not only histones, but also non-histone proteins [2,3]. (ii) In addition
to deacetylation, HDACs can also catalyze other deacylation reactions, such as demalonylation,
desuccinylation, or decrotonylation [4–6]. (iii) HDACs have enzyme-independent functions [7–10].

HDIs block HDAC enzyme activity by binding to the zinc ion in the catalytic site, which blocks
substrate access to the site [11,12]. HDIs usually consist of a zinc binding group, surface binding
group, and a linker that connects the above two components and spans the hydrophobic catalytic site
channel [11,12]. HDIs can be categorized into groups that are based on their chemical nature [13–16].
Hydroxymates, such as suberoylanilide hydroxamic acid (SAHA) (vorinostat), TSA (trichostatin A),
LBH589 (panobinostat), and PXD101 (belinostat), are pan-HDIs that inhibit all HDACs. Short-chain
fatty acids, such as VPA (valproic acid) and butyrate, inhibit class I and IIa HDACs. Benzamides,
such as MS275 (entinostat), and depsipeptides, such as FK228 (romidepsin), inhibit some of the class I
HDACs. Cyclic tetrapeptide, such as TPX (trapoxin), target some class I, IIa and IV HDACs. ACY-1215
(ricolinostat) is a selective inhibitor for HDAC6 [13–16].
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HDIs are being tested in over 500 clinical trials for treating many diseases, including cancers,
heart diseases, diabetes, inflammatory diseases, and neurological diseases [17]. SAHA and FK228 have
been approved for the treatment of cutaneous T-cell lymphoma (CTCL). PXD101 has been approved
for peripheral T-cell lymphoma (PTCL), and LBH589 has been approved for multiple myeloma [18].
Most HDIs that are being tested currently are not specific to a specific HDAC. When considering that
many HDACs are essential in development and physiology, such as metabolic processes [19,20], it is
surprising that the nonspecific inhibition of the HDAC family could produce therapeutic effects for so
many conditions. Here we review the recent non-biased studies using omics approaches (Figure 1)
that provide insights into the mechanism of action for HDIs.
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Figure 1. The omics approaches discussed in this review.

2. Epigenomic Effects of HDIs

Histones are the classical substrates for HDACs. HDIs are expected to upregulate histone
acetylation levels, remodel chromatin accessibility, and upregulate gene expression. This speculation
has proved to be an oversimplification by recent studies. Western blot analysis of total histone extracts
can detect altered histone acetylation after HDIs treatment. However, the western blot results can be
misleading, since different regions of the chromatin are differentially altered by HDIs, especially when
considering that only a small fraction of the transcriptome is altered by HDIs in any given condition [21].
Chromatin immunoprecipitation (ChIP) can assess localized change of histone acetylation on the
genome. Briefly, the protein-DNA complexes are cross-linked followed by fragmentation of genome
DNA through sonication or enzyme digestion. Protein-bound DNA fragments are enriched with
immunoprecipitation using antibodies specific for modified histones or other chromatin-binding
proteins. The protein-bound genome DNA fragments are then analyzed by microarray hybridization
analysis (ChIP-chip) [22] or massive parallel sequencing (ChIP-seq) [23]. Chromatin structures can
range from a more open status generally associated active gene transcription to a more closed status
that is associated with transcriptional silence. Open chromatin regions, which are generally enriched
with regulatory cis-elements, are often free of nucleosomes and more accessible to DNA digestive
enzymes or transposases. Therefore, chromatin accessibility can be assessed by DNase I, restriction
enzyme (RE), or micrococcal nuclease (MNase) digestion combined with sequencing (DNase-seq
or MNase-seq), formaldehyde-assisted isolation of regulatory elements (FAIRE-seq), and assay for
transposase-accessible chromatin while using sequencing (ATAC-seq) [24] (Figure 1 and Table 1).
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Table 1. Epigenomics (blue), transcriptomics (orange), proteomics (gray), metabolics (green), and
chemoproteomics (yellow) studies of histone deacetylase inhibitors (HDIs). Cells are from human
origin unless otherwise indicated.

Analysis HDI Cell or Tissue Reference

H3 and H4 ChIP-chip butyrate and TSA hepatocarcinoma HepG2 cells and colon
adenocarcinoma HT-29 cells [25]

DNase-seq butyrate and SAHA K562 myelogenous leukemia cells [26]
MNase-seq ACY1035 BCR-ABL1-expressing leukemic cells SupB15 [27]
MNase-seq VPA HT-29 colon cancer cells [28]

ATAC-seq, DNA methylation
BeadChip and RNA-sequencing LBH589 triple-negative breast cancer cell lines

HCC1806 and MDA-MB-231 [29]

ATAC-seq SAHA or FK228 cutaneous T cell lymphoma tissue [30]

ChIP-seq SAHA and MS275
human primary foreskin melanocytes

HMEL-BRAFV600E and PMEL-BRAFV600E
cells

[31]

ChIP-qPCR SAHA MCF-7 breast cancer cells [32]

HT-FAIRE AR-42, SAHA, and LBH589 Ewing sarcoma patient-derived EWS894 and
EWS502 cells [33]

H4K5/K8/K12/K16ac ChIP-seq
and RNA-seq SAHA osteoblast MC3T3 cells [34]

ChIP-seq, MBD-seq and
RNA-seq TSA and SAHA primary vascular endothelial cells HAECs [35]

H4K16/H3K9/K27ac and
H3K27me3 ChIP-seq VPA and SAHA GM12878 and AH-LCL lymphoblastoid cells [36]

H3K9Ac ChIP-seq and
microarray abexinostat mesenchymal or stromal stem cells (hMSCs) [21]

H3K9ac/K14ac ChIP-chip phenylbutyrate wild-type and R6/2 mouse liver [37]
H3K9/K14ac ChIP-seq TSA mouse heart tissue [38]
Nuclease accessibility
sequencing (NA-seq) TSA fibro-adipogenic progenitors (FAPs) from

mdx mice [39]

ATAC-seq TSA and butyrate dendritic cells [40]
microarray SAHA acute promyelocytic leukemia NB4 cells [41]

microarray TSA T lymphoblastoid leukemic CCRF-CEM cells
and promyelocytic HL-60 cells [42]

microarray ACY1035 MV-4-11 acute myeloid leukemia cells [43]
microarray VPA, SAHA and TSA promyelocytic leukemia HL60 cells [44]
microarray VPA and SAHA GM12878and AH-LCL lymphoblastoid cells [36]
microarray TSA primary T cells [45]

microarray SAHA and FK228 acute T cell
leukemia cell line CEM cells [46]

miRNA microarray SAHA and LBH589 My-La, HH, and HUT78 cutaneous T-cell
lymphoma cells [47]

microarray LBH589 cutaneous T-cell lymphoma tissue [48]
miRNA-seq and mRNA-seq VPA mouse B cells [49]

RNA-seq TSA SK-MEL-3 melanoma Cells [50]

single-cell RNA-seq ACY-1215

tumor-infiltrating T cells from mice harboring
KrasG12D concurrent with P53 loss (KP) and

tumor-associated macrophages among
myeloid cell populations

[51]

microarray TMU-35435 MRC5 and IMR90 lung cancer cells [52]
microarray butyrate H460 lung cancer cells [53]

RNA-seq ACY-1215 SCLC NCI-H69 xenograft tumors carried by
athymic nude mice [54]

microarray FK228 esophageal cancer cell lines T.Tn and TE2 [55]
microarray TSA and CG-1521 LNCaP prostate cancer cells [56]
microarray SAHA and LBH589 HCT116 and HT29 colon cancer cells [57]

splicing-sensitive microarray butyrate HeLa cervical cancer cells [58]
RNA-seq butyrate bovine epithelial cells [59]

miRNA microarray TSA MCF-7TN-R breast cancer cells [60]
TempO-seq TSA MCF-7 breast cancer cells [61]

microarray UF010 MDA-MB-231 triple-negative breast cancer
cells [62]

GRO-seq TSA BT474 breast cancer cells [63]

RNA-seq quisinostat SYO-q, FUJI, YaFuss, HS-SY-II, MoJo,
Yamato-SS synovial sarcoma cells [64]

microarray PXD101 and LBH589 BHP2-7 thyroid
cancer cells [65]
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Table 1. Cont.

Analysis HDI Cell or Tissue Reference
microarray SAHA ACTH-secreting tumor cells AtT-20 [66]

RNA-seq and ChIP-seq FK228 pancreatic ductal adenocarcinoma cells L3.6,
BxPC3 and Panc1 [67]

RNA-seq SAHA Patient-derived glioma stem cells [68]

microarray compound 106 brain, cerebellum, and heart of wild type and
KIKI mice [69]

microarray MS275 mouse nucleus accumbens tissue [70]
microarray TSA, SAHA and VPA mouse macrophages and dendritic cells [71]
microarray SAHA rat dental pulp cells [72]

microarray
2-ethyl-4-methylpentanoic acid,

VPA and
(S)-2-pentyl-4-pentynoic acid

undifferentiated R1 mouse embryonic stem
cell [73]

ChIP-seq and RNA-seq SAHA
neuronal and non-neuronal

cells of the hippocampal region and liver in
mouse model

[74]

microarray HDACi 4b mouse brain and muscle tissue [75]
microarray, small RNA-seq and

miR-HTS TSA fibro-adipogenic progenitors from mdx mice [39]

LC-MS/MS SAHA wild-type and patient
NPC1I1061T fibroblasts [76]

SILAC and HSMS FK228 esophageal squamous cell carcinoma EC109
cells [77]

SILAC SAHA and VPA acute myeloid leukemia HL60 cells [78]
MS acetylome 19 HDIs HeLa cervical cancer cells [79]

MS metabolomics Butyrate and TSA colorectal adenocarcinoma HT29 cells [80]

NMR compound i8, i10, i12, SAHA,
TSA and nicotinamide glioblastoma cell lines U373 and LN229 [81]

LC/GC-MS/MS LBH589
plasma from diffuse large B-cell lymphomas

(DLBCL) patients and DLBCL cell line
OCI-Ly1 and OCI-Ly7

[82]

affinity capture > MS 16 HDIs K562 myelogenous leukemia cells, Jurkat E6.1
cells, and Ramos lymphoma cells [83]

affinity capture > MS tacedinaline K562 myelogenous leukemia cells [84]
beads MS SAHA HeLa cervical cancer cells [85]

multidimensional protein
identification technology

(MudPIT)
compound 106 Friedreich’s ataxia patient iPSC-derived

neural stem cells [86]

2.1. Epigenomic Effects of HDIs in Cancer

In the hepatocarcinoma HepG2 cells or colon adenocarcinoma HT-29 cells that were treated with
butyrate or TSA, ChIP-chip analysis with antibodies against acetylated histone H3 or H4 (H3ac or H4ac)
revealed that, contrary to the expected histone hyperacetylation, the histone acetylation levels were
actually reduced at the transcription start sites (TSS) of actively-transcribed genes after HDI treatment.
The chromatin regions with reduced acetylation levels were enriched in genes that were downregulated
by the HDIs. Although histone hyperacetylation in some TSS was detected, it seemed to be transient.
Trimethylation of the lysine 4 on the histone H3 (H3K4me3), a histone marker for the active promoters
near TSS, was not altered by HDIs. The global histone hyperacetylation that was detected by western
blot in the same study could be driven by the change in the heterochromatin regions, because the
hyperacetylated regions were mainly localized in the nuclear periphery. The pan-HDI TSA showed
similar H3ac and H4ac changes as the class I/IIa-selective HDI butyrate in this study [25].

In myelogenous leukemia line K562 that was treated with butyrate or SAHA, DNase
I-hypersensitive (DHS) sites, as identified by DNase-seq, displayed enhancer-like properties. These
regions were associated with increased gene expression and increased binding of transcription factor
PU.1. However, the knockdown of PU.1 did not prevent HDIs-induced increase in accessibility and
gene upregulation. The effect on the gene expression showed a high degree overlap between the
pan-HDI SAHA and the class I/IIa–selective HDI butyrate [26].

The inhibition of HDAC1 and HDAC2 with small molecule ACY1035 increased the H3K27ac levels
around transcription start sites, transcription termination sites, and enhancer regions in SupB15 cells,
a cell model of B-cell precursor acute lymphoblastic leukemia. MNase-seq revealed that ACY1035 did
not change the nucleosomal occupancy at the silent genes around transcription start and termination
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sites. Instead, it decreased the nucleosomal occupancy at TSSs of the expressed genes. Longtime
treatment of ACY1035 (62 h) can cause even more decrease in the nucleosomal occupancies around
TSS of the expressed genes. These results, together with other data in the study, suggested that the
inhibition of HDAC1,2 could reduce the chromatin occupancy of chromatin remodelers and other
factors that are involved in DNA repair [27]. In HT-29 cells that were treated with VPA, MNase
accessibility assays found an overall more open chromatin structural state compared to non-treatment
control [28].

ATAC-seq is another technique looking at chromatin accessibility. In triple-negative breast cancer
(TNBC) cells HCC1806 and MDA-MB-231 treated with LBH589, a combined approach of ATAC-seq,
DNA methylation BeadChip, and RNA-sequencing was used to profile genome-wide chromatin
accessibility, DNA methylation, and gene expression changes [29]. No major conclusion was available
from this data repository. However, these datasets could be useful in probing the mechanisms of how
HDI works in breast cancer cells.

In a cutaneous T cell lymphoma (CTCL) study, an analysis of human CTCL and control samples
revealed chromatin signatures that distinguished the leukemic and non-malignant T cells. SAHA
or FK228 are used to treat CTCL, but only a subset (~40%) of CTCL patients respond to HDIs
therapy. ATAC-seq revealed that patients with good response to HDIs showed increased DNA
accessibility in CTCL cells after HDIs treatment, while patients that were resistant to HDIs did not.
Surprisingly, a comparison of HDIs effects across different cell types revealed that HDIs did not open
inaccessible sites in CTCL or non-malignant T cells. Rather, HDIs reinforced the existing pattern of
DNA accessibility in each given cell type [30].

In melanocytes, the transition from the non-tumorigenic to tumorigenic phenotype was associated
with reduced histone acetylation at specific chromatin regions, such as the promoter regions of PI3
kinase, IFNγ, LKB1, TRAIL, and PDGF mediated signaling. Treatment with SAHA or MS275 partially
restored histone acetylation levels H2BK5ac, H4K5ac, and H3K27ac in these regions in tumorigenic
cells, as revealed by ChIP-string. This could explain the tumor-specificity of the HDIs. H3K27ac
ChIP-seq in five melanoma cell lines further showed that cell lines with lower histone acetylation
levels were more sensitive to HDIs-induced cytotoxicity. Both the pan-HDI SAHA and the class
I–selective HDI MS275 preferentially inhibited the proliferation of tumorigenic cells as compared to
the non-tumorigenic cells [31].

Histone acetylation profiling reveals an effect of HDI, not the genomic location that is directly
bound by an HDI. Toward the later goal, a photo-reactive probe was developed based on SAHA
and it was used to identify the binding sites of SAHA on the chromatin. ChIP-qPCR with this probe
in cultured MCF-7 cells revealed that SAHA bind to several promoter regions, but not the gene
bodies on a canonical HDI-regulated gene CDKN1A, which is different from the HDAC1 ChIP pattern.
These results suggest that only a subset of HDACs-bound genomic locations are targeted by HDIs.
Genome-wide studies are currently lacking while using this chemical approach [32].

It is believed that histone acetylation serves as a marker for chromatin remodeling, which leads
to changes of chromatin accessibility. The formaldehyde-assisted isolation of regulatory elements
(FAIRE) is a chemical method for enriching the nucleosome-depleted genomic regions. Ewing
sarcomas are caused by a chromosomal translocation that fuses two transcription factors—EWSR1 and
FLI1—together to generate the chimeric oncoprotein EWSR1-FLI1. This fusion transcription factor is
localized to specific chromatin regions and it maintains nucleosome depletion at these regions. Using a
high-throughput version of FAIRE (HT-FAIRE), HDIs AR-42, SAHA, and LBH589, out of over 600 small
epigenetics molecules, were identified as being sufficient in the reduction of EWSR1-FLI1-mediated
chromatin accessibility. When compared to pan-HDIs, selective HDIs such as tubastatin or PCI-34051
did not alter the Ewing chromatin signature. The loss of chromatin accessibility at EWSR1-FLI1 binding
sites was due to HDI-mediated alteration in EWSR1-FLI1 transcription. Therefore, HDIs suppressed
the oncoprotein level, rather than directly interfering with the HDAC activity on chromatin at the
target sites [33].
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2.2. Epigenomic Effects of HDIs in the Context of other Diseases

In osteoblast MC3T3 cells, ChIP-seq with antibodies against tetraacetylated histone 4
(H4K5/K8/K12/K16ac) revealed that SAHA increased H4 acetylation across the genome. RNA-seq
analysis identified that SAHA upregulated and downregulated the expression of a roughly equal
number of genes (~130 in each direction). Interestingly, both the upregulated and downregulated
genes were associated with H4 hyperacetylation when compared with unaltered genes, although the
upregulated genes tended to have a higher level of H4 acetylation. Genes that are involved in the
insulin signaling were prominently altered, which might explain why SAHA inhibited the insulin
signaling and enhanced osteoblast differentiation. These data suggest that histone hyperacetylation is
not sufficient for gene upregulation [34].

In primary human vascular endothelial cells HAECs that were treated with TSA as compared
to non-treatment control, ChIP-seq of H3K9/14ac, H3K4me3, and H3K9me3 revealed prominent
histone hypoacetylation at promoter regions near TSS, when compared to much fewer hyperacetylated
promoter regions. RNA-seq analysis revealed that the hypoacetylated and hyperacetylated promoters
were associated, respectively, with downregulated and upregulated gene expression in response to TSA.
The hypoacetylated promoters were associated with the reduced binding of histone acetyltransferases
(HATs) p300 and CBP, which could contribute to the TSA-induced histone hypoacetylation at these
regions [35].

In human lymphoblastoid cells, ChIP-seq with H3K27me3 shows a strong increase in H3K27me3
at TSS of the HDIs-responsive genes, which could be altered by the inhibition of H3K27 methylating
enzymes [36]. In human skeletal mesenchymal or stromal stem cells (hMSCs) that were treated with
abexinostat, ChIP-seq with H3K9ac revealed that only 306 genes displayed altered acetylation levels
when compared to vehicle-treated cells. Several key genes, such as AdipoQ, FABP4, and PPARγ that
are involved in stem cell proliferation and differentiation, were among these genes [21].

In the striatum of the R6/2 transgenic mice, a Huntington’s disease mouse model, ChIP-chip
showed that acetylated histone 3 (H3K9ac/K14ac) was decreased as compared to the wild-type control.
This was associated with the reduced expression of genes that were bound by H3K9/K14ac at the
gene body. Treatment of the transgenic mice with HDIs increased the global H3K9ac/K14ac and the
expression of genes, but it only slightly increased the H3K9ac/K14ac levels at the altered genes [37].

The epigenomic effects of TSA in mouse heart in vivo was characterized using ChIP-seq with
H3K9/K14ac in the presence or absence of the transverse aortic constriction (TAC), a pathological
model that induces cardiac hypertrophy. TAC and TSA caused overall opposite effects on histone
acetylation at the promoters in a gene-specific manner. TAC downregulates the H3 acetylation of genes
related to metabolism and cardiac contraction, such as Serca2a and Myh6, while TSA reversed this
effect by upregulating H3 acetylation at those genes. In contrast, TAC-induced hyperacetylation in
genes that are involved in collagen deposition and inflammation, while TSA suppressed such effect
and reduced H3 acetylation on those genes. This later effect is perplexing considering that HDAC
inhibition is supposed to increase, rather than decrease, histone acetylation. It is possible that TSA may
modulate acetylation and activity of NF-kB, which is a master regulator of inflammation. However, the
hyperacetylation of NF-kB is supposed to enhance its activity instead of reducing it. The underlying
mechanism warrants further investigation [38].

The mdx mouse is a mouse model for Duchenne muscular dystrophy. Nuclease accessibility
with restriction enzyme digestion followed by sequencing (NA-seq) detected increased frequency
of nuclease accessibility sites (NASs) in fibro-adipogenic progenitors (FAPs) from skeletal muscles
of young mdx mice that were treated with TSA, but not old mdx mice. 70% of the detected NASs
in the young mdx mice were induced de novo by TSA, while the rest were pre-existing NASs with
accessibility levels increased after TSA treatment. Most of the altered NASs were associated with
noncoding genomic sequences [39].

Another ATAC-seq study looked at the effects of short-chain fatty acids on human dendritic cells
and how HDIs affect these cells’ capacity to prime and polarize T-cell responses. It found that TSA
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caused a stronger ATAC-seq signal in the promoter region of RALDH1, which was comparable to the
profile that was induced by butyrate [40]. However, the pan-HDI TSA did not fully recapitulate the
modulatory effects of the class I/IIa-selective HDI butyrate, particularly in terms of suppression of
LPS-induced maturation marker genes. This suggests that at least some effects of butyrate are separate
from its HDI activity.

In summary, the effect of HDIs on the epigenomic modification and chromatin accessibility
is context-dependent. In many situations, HDIs can induce histone hypoacetylation rather than
hyperacetylation, especially at promoter regions that are proximal to TSS. HDIs can increase or
decrease chromatin accessibility depending on the cell, HDI, and chromatin regions being examined.
The altered gene expression is generally associated with altered histone markers at the promoter
regions. The pan-HDIs and class-selective HDIs tend to have common overlapping effects on global
epigenomic changes, but the downstream physiological effects can be quite different.

3. Transcriptomic Effects of HDIs

Regardless of the upstream epigenomic mechanisms, it is generally believed that HDIs-induced
changes in gene expression are ultimately responsible for their therapeutic effects in a variety of
conditions. The question is what downstream gene, or network of genes, mediate the therapeutic
effect of HDIs. Transcriptome profiling with microarray and RNA-seq have been performed in many
studies to address this question (Figure 1). In addition to profiling the expression levels of the mature
protein-coding mRNA levels, different flavors of RNA-seq techniques were also used to analyze
alternative splicing forms and specific populations of RNA. miRNA-seq is specialized in detecting the
small noncoding microRNA levels. Global nuclear run-on sequencing (GRO-seq) uses isolated nuclei
in run-on reactions in the presence of bromouridine (BrUTP) and sarkosyl, a chemical that prevents
the attachment of RNA polymerase to DNA. Thus, only pre-existing RNA polymerase on the DNA
can produce new BrU-labeled transcripts, which are subsequently enriched with anti-BrU beads and
analyzed by sequencing. Therefore, GRO-seq detects nascent RNA transcription (Table 1).

3.1. Transcriptomic Effects of HDIs in Hematopoietic and Lymphoid Cancer Cells

In acute promyelocytic leukemia NB4 cells, SAHA, in combination with retinoic acid, can
overcome the transcriptional repression that is caused by the RARα fusion oncoproteins. Microarray
identified genes induced by retinoic acid, SAHA, and both combined. SAHA alone upregulated 48
genes, while 80 genes were upregulated with the combination of retinoic acid and SAHA. Nine genes
were found to be upregulated two to three-fold by the combination of retinoic acid and SAHA, but
not induced by either drug alone. Northern blot analysis confirmed that the transcription levels of
transglutaminase 2 and p21WAF1 were higher after the combined treatment when compared to any one
drug alone. These genes may contribute to the synergistic effects of SAHA and retinoic acid in treating
acute promyelocytic leukemia [41].

Microarray analysis in leukemic cell lines CCRF-CEM and HL-60 found that a large number of
genes (9% of the genome) were similarly regulated in both cell lines in response to TSA. Temporal
analysis of gene expression distinguished primary and secondary responses. Many of the HDIs-altered
genes encode trans-acting factors that are highly relevant to cancer [42]. An imprinted gene
MKRN3 was the most rapidly repressed gene and was involved in the Prader–Willi syndrome [42].
In acute myeloid leukemia (AML) MV-4-11 cells, microarray analysis identified respective and
overlapping genes altered by an HDAC1/2 inhibitor ACY1035 and a DNA methyltransferase inhibitor
azacitidine [43].

In another study with human promyelocytic leukemia HL60 cells that were treated with VPA,
SAHA, and TSA, microarray analysis found that only ~9% of the detected genes showed altered
expression levels after treatment. SAHA altered 5% of the detected genes, and TSA altered 13%, with
roughly half being downregulated and half upregulated in each case. However, the responsive genes
to each HDI were unique. More than 67% of the responsive genes of each HDI were not regulated by
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the other two HDIs. Most of the upregulated genes showed minimal change in histone acetylation at
the promoter regions [44].

High-density microarray analysis was carried out to describe the dynamic changes in the transcript
levels in the human lymphoblastoid cell lines GM12878 and AH-LCL when treated with SAHA and
VPA. About 7% of the genes showed significant expression change. For each HDI, the responsive genes
at different concentrations had strong overlap. SAHA altered 73% of the VPA-responsive genes. These
genes were highly enriched in transcriptional regulation, including many DNA-binding zinc-finger
proteins. HDIs downregulated histone acetyltransferases (HATs). GDF9, a TGF-β superfamily gene
essential in G1-S and G2-M progression, and its paralogue GDF15 were downregulated by all HDIs.
The transcriptional response to HDIs was associated with the H3K27me3 changes at the TSS of these
genes [36].

In primary T cells that were treated with TSA, microarray analysis revealed that, out of 2352
detected genes, 48 genes showed significant and reproducible RNA expression changes. Some
costimulatory or adhesion genes, such as CD28 and CD154, were downregulated with TSA treatment.
This indicated that HDI might have immunomodulatory potential [45].

In T cell leukemia CEM cells that were treated with SAHA or FK228, microarray analysis revealed
that 22% and 24% of the detectable genes showed altered expression. Both SAHA and FK228 regulated
genes involved in apoptosis and cell cycle regulation. Signaling pathways related to Myc, type β

TGF, cyclin/cyclin-depend kinase, TNF, Bcl-2 and caspase pathways were regulated by HDIs toward
the induction of apoptosis and decrease of cellular proliferation. Both SAHA and FK228 induced the
expression of APAF-1, which is an intrinsic apoptotic pathway gene. The transcriptomic changes that
are induced by the pan-HDI SAHA highly overlapped with that by the class I-selective HDI FK228
within the first 4h of treatment. However, the responses diverged as time progressed [46].

In cutaneous T-cell lymphoma (CTCL) cells that were treated with SAHA or LBH589, miRNA
microarray identified that 161 miRNAs were commonly upregulated by both HDIs. Among them,
miR-150 was known to have a tumor suppressive function. Further cellular assay and animal
experiments confirmed that miR-150 could efficiently inhibit CTCL migration and metastasis [47].

In biopsy tissues of human CTCL that were treated with LBH589, microarray analysis showed
rapid gene expression change. Among the altered genes, LBH589 downregulated more genes than
it upregulated. The expression change of 23 genes was similar in all of the patients tested. These
common genes were involved in apoptosis, immune regulation, and angiogenesis. These genes could
serve as potential molecular biomarkers for HDI activity in CTCL cells [48].

In B cells that were stimulated by LPS plus IL-4 and treated with VPA, RNA-seq analysis showed
that VPA downregulated Aicda and Prdm1, while miRNA-seq analysis showed that VPA upregulated
miR-23b, miR-30a, and miR-125b. Aicda is a target of miR-125b, whereas Prdm1 is a target of miR-23b,
miR-30a, and miR-125b. Only 0.36% of the high copy number genes were downregulated by VPA by
50% or more. Only 0.30% of the highly expressed genes were upregulated by more than two-fold by
VPA [49]. In SK-MEL-3 melanoma cells that were treated with TSA, RNA-seq revealed the altered
genes were enriched in the MAPK signaling pathway, cell-cycle regulation, and apoptosis [50].

Single-cell RNA-seq (scRNA-seq) of tumor-infiltrating T cells from mice harboring KrasG12D

concurrent with P53 loss (KP) treated with ACY-1215 showed upregulation of T-cell activation and
T-cell receptor signaling genes, including Cd69, Cd44, Cd247, and Zap70. Single-cell RNA-seq of
tumor-associated macrophages among myeloid cell populations, showed that ACY-1215 treatment
induced the expression of key genes related to MHC class II expression, such as Cd74 and H2-Aa,
when comparing to vehicle treatment in genetically engineered mouse models of non–small cell lung
cancer [51].

3.2. Transcriptomic Effects of HDIs in other Cancer Cells

In lung cancer cells that were treated with a novel HDAC inhibitor TMU-35435, microarray
analysis identified cell proliferation and the Wnt signaling pathway as enriched biological
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processes [52]. In H460 human lung carcinoma cells that were treated with butyrate, microarray
analysis revealed 32 genes with greater than two-fold increase and 66 genes less than one-third
expression level as compared with the untreated cells. Among the downregulated genes, 16
were associated with cytokine signaling pathway. Butyrate also upregulated three metastatic
suppressors and downregulated 11 metastasis activation genes. These genes could contribute to
the anti-inflammatory and anti-metastatic effects of butyrate [53].

In one study, selective HDAC6 Inhibitor ACY-1215 and/or BET inhibitor JQ1, as well as vehicle
control, were applied to athymic nude mice carrying human small cell lung cancer (SCLC) NCI-H69
xenograft tumors. A gene expression heat map was generated from RNA-seq analysis of these
xenograft tumors, which showed that ACY-1215 treatment had limited change with transcription
profiling as compared to JQ1 treatment [54].

In esophageal cancer cells that were treated with FK228, microarray analysis showed that 93 and
65 genes in human esophageal cancer T.Tn and TE2 cells had more than two-fold expression level
change when treated with FK228. The expression change patterns of 15 genes were similar between
these two cell lines. Some of these genes, such as p21WAF1 and Prdx, are involved in cell cycle arrest or
tumor suppression [55].

In prostate cancer LNCaP cells that were treated with two hydroxamic acid-based HDIs, TSA and
CG-1521, microarray showed differential gene expression patterns. CG-1521 regulated a very limited
number of genes that were involved in cell cycle progression and cell death, while TSA induced much
more genes that did not overlap much from those genes that were altered by CG-1521 [56].

In colon cancer HCT116 and HT29 cells that were treated with SAHA and LBH589, microarray
analysis showed similarity in terms of the differentially expressed genes that were induced by the two
HDIs within each cell line. However, the HCT116 and HT29 cells showed differential responses to HDI
treatment. Only 11 genes were modulated in both cell lines with both HDIs in a similar manner [57].

In cervical cancer HeLa cells treated with butyrate, splicing-sensitive microarrays identified about
700 genes with altered RNA splicing upon butyrate treatment. By measuring different pre-mRNA levels
along the FN1 gene using polymerase II ChIP assay, the authors showed that butyrate also increased
the processivity of RNA polymerase II along an alternatively spliced element. The depletion of HDAC1
had similar effect as butyrate. This effect was reversed by a wild-type, but not catalytically inactive
HDAC1 mutant, suggesting that the effect was mainly mediated by the inhibition of HDAC1 [58].
In bovine epithelial cells, RNA-seq analysis with a focus on alternative splicing event revealed that
butyrate induced more than 2,000 exon-skipping events. Some of the events occurred on genes with
altered expression levels upon butyrate treatment. In addition, butyrate also affected 13 gene fusion
events [59].

In breast cancer MCF-7TN-R cells, miRNA microarray analysis revealed that TSA upregulated 22
miRNAs and downregulated 10 miRNAs [60]. In another study with MCF-7 cells that were treated
with TSA, a targeted-transcriptome profiling technique, named templated oligo assay with sequencing
(TempO-seq), found more than 9000 differentially expressed genes when compared to vehicle control.
Comparing the TSA-induced transcriptomic change profiles in HL-60 cells and PC-3 cells revealed
around 1000 differentially expressed genes in common, which could serve as a cell-type-independent
TSA signature [61]. In MDA-MB-231 breast cancer cells that were treated with the benzoylhydrazide
analog UF010 and vehicle, microarray analysis found that UF010 altered the expression of many genes
that are involved in cell cycle regulation. UF010 also upregulated histocompatibility complex (MHC) and
immune response genes [62].

Global run-on sequencing (GRO-seq) was used to measure nascent transcription in a breast cancer
cell line BT474 and a non-cancerous breast epithelial cell line MCF10A. TSA was found to repress
transcription by blocking RNA polymerase II elongation. TSA preferentially downregulated the
transcription of the highly expressed genes, as well as high copy number genes in the cancer cell line
genome. In contrast, genes that were upregulated by TSA were likely to be moderately expressed.
The downregulation of amplified oncogenes might explain the cancer-specific lethality of HDI [63].
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In synovial sarcoma cells treated with class I and II HDI quisinostat, RNA-seq showed that the
genes with altered expression were enriched in cell-cycle arrest, neuronal differentiation, and cellular
response to reactive oxygen species. In particular, many pro-apoptotic factors, such as BCL2L11, BIK,
and BMF, were upregulated by quisinostat [64].

In the thyroid cancer cell lines, microarray identified that PXD101 and LBH589 altered the
expression of 528 and 573 genes, respectively, with 153 genes being commonly altered by both
HDIs. The top biological pathways of the 153 genes were cell cycle regulation, DNA damage,
and apoptosis [65]. In adrenocorticotropic hormone (ACTH)-secreting pituitary tumor AtT-20
cells, microarray analysis identified that SAHA downregulated several nuclear receptors, including
LXRα, and upregulated many genes of the mitochondria-mediated cell death pathway. Interestingly,
SAHA-mediated downregulation of LXRα was not observed in normal corticotrophs [66].

In pancreatic ductal adenocarcinoma (PDAC) cell lines that were treated with a class I-specific HDI
domatinostat (4SC-202), RNA-seq and H3K27ac ChIP-seq revealed that the HDI-upregulated genes
were associated with increased H3K27ac at the regions proximal to TSS. The ReMap (regulatory map
of TF binding sites) analysis tool [87] showed an enrichment of BRD4 and MYC binding sites in these
regions as compared to genes that were not altered or downregulated by HDI. Further knockdown
experiments confirmed that BRD4 and MYC were indeed required for the HDI-induced upregulation
of many genes. When compared to HDI-upregulated genes, the HDI-downregulated genes were
associated with decreased H3K27ac in regions that were more distal to TSS. GREAT analysis [88] on
these genomic regions implicated a few genes, including SMAD6 and E2F8, in the process [67].

In brain tumor LN-18 cells, RNA-seq revealed that SAHA upregulated around 4000 genes
and downregulated around 3500 genes. A combination of SAHA treatment with the knockdown
of lysine-specific demethylase 1 (KDM1A) led to altered expression of around 1000 genes that were
not changed by either treatment alone. 179 genes were common among all treatment regimens.
Apoptosis-related genes were enriched among these common genes. Tumor suppressor genes TP53
and its paralog TP73 were decreased by the combined treatment, which may contribute to the cell
death in response to the combined treatment [68].

3.3. Transcriptomic Effects of HDIs in Chronic or Degenerative Diseases

In addition to the anti-cancer effect, transcriptomic profiling has been used to explore the other
therapeutic or toxic effects of HDIs in vivo or in cultured cells. Microarray analysis identified 655 genes
with altered expression in the brain, cerebellum, or heart of either KIKI mice (a genetic mouse model
for Friedreich ataxia) or wild-type mice when treated with compound 106, an HDI that inhibits class I
HDACs. The overall effect of HDI was limited. The apoptosis and the tumorigenesis-related genes
were not significantly changed. KIKI and WT mice had a set of genes with different expression levels
without any treatment. Among these genes, 67% in brain, 84% in cerebellum, and 67% in heart showed
changes toward the normal levels after the treatment of compound 106 in KIKI mice. In WT mice,
the same group of genes showed no significant change or only minor changes after the treatment of
compound 106. These findings indicated that the gene expression difference in KIKI mice as compared
to WT mice could be partially reversed by compound 106, which may contribute to the therapeutic
effect of HDI against Friedreich ataxia [69].

Increased H3 acetylation level in the nucleus accumbens in mice with chronic social defeat stress
is associated with a decreased level of HDAC2. Infusion of MS275 reversed the global gene expression
pattern in the nucleus accumbens of mice with chronic defeat stress. Microarray analysis revealed
overlap effects of MS-275 with fluoxetine, an antidepressant medication. MS275 in mice with chronic
social defeat upregulated about 37% of the fluoxetine-upregulated genes. These genes may underlie
the therapeutic effect of HDI against social defeat stress [70].

In bone marrow derived macrophages (BMDMs), microarray analysis showed that TSA
downregulated innate immune genes, which is in line with the TSA-mediated inhibition of
microbe-induced cytokine release. This could be contributed by the upregulated expression level and
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DNA binding activity of the transcriptional repressor Mi-2β [71]. HDIs could also help to regenerate
dental pulp tissue. In dental pulp cells (DPCs) that were treated with SAHA, microarray identified
around 1100 altered genes [72].

To investigate the teratogenicity of VPA and its analogs, microarray analysis was performed
on undifferentiated R1 mouse embryonic stem cells that were exposed to nonteratogenic
analog 2-ethyl-4-methylpentanoic acid (2-Et-4-Me-Penta), VPA, and the teratogenic VPA analog
(S)-2-pentyl-4-pentynoic acid (S-2-Pe-4-Pentyn) for six hours. VPA and S-2-Pe-4-Pentyn regulated
much fewer genes compared to 2-Et-4-Me-Penta. The expression pattern of five genes was sufficient
to separate the teratogens from nonteratogens. Many teratogenicity related genes were involved in
embryonic development and morphogenesis, including neural tube formation and closure [73].

In an age-associated memory impairment mouse model treated with SAHA, RNA-seq of the
hippocampal CA1 region showed that, out of 1,973 differentially expressed genes in old mice when
compared to young mice, 83% could be reversed by SAHA administration. This reverse effect can be
observed in both up- and downregulated genes. In agreement with the RNA-seq analysis, H4K12ac
ChIP-seq showed a decreased H4K12ac level around TSS in the neuronal cell population in old mice,
which can be reinstated by SAHA. The non-neuronal cells showed similar H4K12ac levels around
TSS between young and old mice. In contrast, RNA-seq analysis of the liver samples showed that the
transcriptomic difference between old mice and young mice is highly enriched with genes involved in
inflammation. In addition, SAHA treatment did not normalize the gene expression change in the liver
of old mice. This age-reversal effect of SAHA on gene expression and histone acetylation specifically
in neuronal cells may explain the cognitive improvement in aged mice after SAHA treatment [74].

In mouse brain and muscle samples that were treated with an HDI, HDACi-4b, microarray
analysis revealed that the biological pathway involving DNA methylation was enriched. Follow-up
DNA methylation analysis in human fibroblast identified some methylated CpG sites that were altered
by the HDI. HDI increased the methylation of lysine-specific demethylase 5D (KDM5D), and further
animal studies suggest that HDI can induce transgenerational effects through such alteration of DNA
methylation [75].

In fibro-adipogenic progenitors (FAPs) from young mdx mice that were treated with TSA,
microarray analysis found that the TSA-upregulated genes were involved in muscle determination,
differentiation, muscle contraction, and metabolism. TSA induced the expression of muscle-specific
determination factor MyoD and chromatin remodeling complex subunit BAF60C. High-throughput
screening of miRNAs (miRs-HTS) and small RNA-seq identified that TSA upregulated the myogenic
miRNAs, including miR-1.2, miR-133, and miR-206 [39].

In summary, HDIs change the expression of genes that are involved in cell proliferation, cell
death, stress response, and DNA damage in many cancer cells, which may underlie their anti-cancer
effects. The transcriptomic effects of HDIs are dependent on the cell and tissue. There is no consensus
regarding what downstream target genes mediate the therapeutic or toxic effect of HDIs in each context
given the general lack of the follow-up functional analyses in the profiling studies. There are generally
distinct transcriptomic signatures between pan-HDIs and selective HDIs, although overlapping effects
were observed under some conditions.

4. Proteomic and Acetylomic Analysis of HDIs

It is conceivable that the epigenomic and transcriptomic changes elicited by HDIs need to
be ultimately manifested at the protein level for the downstream target genes in order to have a
physiological effect (Figure 1). The mass spectrometry (MS)-based approaches have been used to
profile the proteomic changes that were caused by HDIs in several studies. Non-labeling and a variety
of labeling methods have been developed for quantification. Stable isotope labeling by amino acids
in cell culture (SILAC) uses cell culture medium that contains amino acids labeled with stable heavy
isotopes. When combined with non-labeled cells for MS analysis, chemically identical peptides with
different isotope composition can be distinguished, and their relative abundance reflects the relative
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abundance of the two proteins [89]. This method allows for a more accurate quantification when
compared to the non-labeling methods. In addition to histone acetylation, HDIs may affect acetylation
of many non-histone proteins, including transcription factors and co-factors [90–92]. The acetylome
approach uses immunoprecipitation with pan-anti-acetylated lysine antibodies to enrich the acetylated
peptides from the total peptides of a biological sample. The subsequent MS analysis allows for
comprehensive detection and quantification of acetylated proteins [93] (Table 1).

Impaired cholesterol efflux from the late endosomal/lysosomal (LE/L) compartment characterizes
Niemann–Pick type C (NPC) disease. SAHA can restore the cholesterol level in NPC patient-derived
NPC1I1061T fibroblast cells. An isobaric labeling-based quantitative proteomic profiling of fibroblasts
identified a total of 202 proteins differentially expressed in SAHA-treated fibroblasts versus vehicle
control. Gene ontology and pathway analysis showed that most of the 202 genes were mapped to
metabolic pathways, and about one-third of the genes were mitochondria-associated. 132 proteins
were upregulated, while 70 were downregulated after SAHA treatment. Lysosomal acid lipase (LIPA)
was particularly interesting, because it played an essential role in mediating cholesterol efflux in
NPCI1061T fibroblasts [76].

In esophageal squamous cell carcinoma EC109 cells that were treated with FK228, SILAC-based
proteomic analysis identified that FK228 altered acetylation levels on 87 lysine sites from histone
and altered the protein levels of 3,515 proteins. Among the 3515 proteins, 675 proteins showed
an upregulation of lysine acetylation levels, and 186 proteins showed downregulated acetylation
levels. Gene ontology (GO) analysis revealed that the many proteins involved in type I interferon
signaling pathway and the protein stability regulation were upregulated by FK228, whereas those
that were associated with intermediary metabolism and hormone biosynthesis were downregulated.
Enrichment analysis of the molecular functions revealed that the actin-binding and metal-binding
proteins were upregulated. Proteins related to oxidoreductase or aldo–ketoreductase activities were
downregulated [77].

In acute myeloid leukemia (AML) HL60 cells that were treated with SAHA and VPA,
a combination of SILAC, anti-acetyl-lysine affinity enrichment, and liquid chromatography-tandem
mass spectrometry (LC-MS/MS) approaches identified 5775 proteins and 1124 lysine acetylation
sites as responsive to SAHA or VPA treatment. SAHA upregulated 323 proteins and downregulated
452 proteins, whereas VPA upregulated 359 proteins and downregulated 426 proteins. GO-based
classification showed similar distribution between SAHA and VPA regarding the ontology of
biological process, cellular component, and molecular function. Molecular function-based clustering
showed that VPA upregulated proteins involved in the phosphatidylinositol phosphate phosphatase
activity and cargo receptor activity, whereas it downregulated the proteins that were involved in
cysteine-type endopeptidase inhibitor activity, phosphoprotein binding, and isocitrate dehydrogenase
activity. In the cellular component category, VPA upregulated proteins that were involved in plasma
lipoprotein particle, and transcription regulation related protein complexes, such BAF and SWI/SNF
complexes, while SAHA upregulated proteins involved in vesicular transportation and transmembrane
transportation. A clustering analysis based on KEGG pathway showed that leukocyte trans-endothelial
migration, lysosome, platelet activation, and apoptosis were the dominant pathways that were enriched
in the upregulated proteins by both VPA and SAHA, while many amino acid metabolism pathways
were enriched in the downregulated proteins by both VPA and SAHA. For acetylome profiling, VPA
upregulated acetylation levels on 186 lysine sites of 164 proteins and downregulated acetylation
levels on 135 lysine sites of 104 proteins. SAHA upregulated acetylation levels on 139 sites of 124
proteins and downregulated 94 sites of 88 proteins. Proteins with differential acetylation levels upon
VPA and SAHA treatment show similar distribution based on GO and subcellular location analysis.
Protein–protein interaction network analysis revealed that top nodes in HDIs-induced interactome
were heat shock proteins, protein chaperones, ribosome proteins, ATP-citrate synthase, and small
nuclear ribonucleoproteins [78].
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In HeLa cells that were treated with 19 different HDIs, SILAC based quantitative mass
spectrometry was used to profile acetylation change. For all HDIs except sirtinol, more lysine
sites showed upregulated acetylation levels than the sites with downregulated acetylation levels.
Interestingly, most HDIs increased the acetylation level above the threshold on only a small fraction
(average 6.2%) of the quantified sites, including sites on histones and non-histone proteins. Genetic
studies showed that nicotinamide worked through the inhibition of SIRT1, while tubacin and
bufexamac worked through inhibition of HDAC6 [79].

In summary, HDIs not only alter the proteomic profile, they also alter the acetylomic profile
on histone and non-histone proteins. HDI-altered proteins were enriched in metabolism, immune
responses, intracellular protein trafficking, and protein quality control.

5. Metabolomic Effects of HDIs

Metabolic changes are recognized as a hallmark of cancer [94]. Many HDACs are known
to regulate the metabolism of nucleotides, lipids, carbohydrates, amino acids, and other
intermediates [95–97] (Figure 1). With the recent development of the nuclear magnetic resonance
(NMR) or MS-based metabolomics methods, profiling of the metabolic changes in response to HDIs
has been performed. In addition to the static snapshot profiling, stable-isotope tracers can also be used
to analyze the kinetic flux through a variety of metabolic pathways, an approach that is sometimes
referred to as fluxomics [98] (Table 1).

To characterize the role of HDIs in cell differentiation, a tracer-based metabolomics approach was
carried out in human colorectal adenocarcinoma HT29 cells with the treatment of butyrate or TSA.
[1,2-13C2]-D-glucose was used as a tracer to measure the metabolic flux through glycolysis, the pentose
phosphate pathway (PPP), and the Krebs cycle. Butyrate and TSA decreased glycolysis, the use of the
oxidative branch of the PPP, and pyruvate dehydrogenase contribution. TSA and butyrate induced
similar metabolic profiles and induced the differentiation of HT29 cells, which was different from the
metabolic effects of acetyl-CoA precursors. When considering that butyrate itself is an endogenous
precursor for acetyl-CoA, these data suggest that the metabolic change of butyrate is mainly due to its
HDI activity, rather than a precursor of acetyl-CoA. The study also suggests a potential connection
between HDIs-induced metabolic changes and cell differentiation [80].

Proton nuclear magnetic resonance (1H-NMR) metabolomics analysis was performed in
glioblastoma U373 and LN229 cell lines that were treated with SAHA, TSA, HDACIIb inhibitor
tubastatin A (TUBA), some novel HDIs (i8, i10, or i12), or the SIRT inhibitor nicotinamide (NAM). Both
the intracellular and extracellular metabolites were measured. The intracellular metabolites showed
a distinct pattern between U373 and LN229 cells. The LN229 cells showed major metabolic changes
in cellular metabolism and metabolite transport upon treatment with i8, i10, i12, SAHA, or TUBA.
LN229 cells that were treated with SAHA showed drastic differences in intracellular profiles, including
elevated levels of lactate, glucose, and TCA cycle intermediates. The treatment of LN229 cells with i8,
i10, or i12 also changed choline-related metabolites. However, for the intracellular metabolites from
U373, only isocitrate showed significant changes, suggesting that metabolic profiles inside of the U373
cells were relatively unaffected by SAHA. Interestingly, HDIs altered the extracellular metabolites
from the U373 cell culture medium, which suggests an increase of metabolite transport to or from the
extracellular medium. These findings showcased the heterogeneous responses to HDIs among the
different cell lines [81].

To determine the metabolic effects of HDIs on diffuse large B-cell lymphoma (DLBCL), untargeted
MS-based metabolomic analysis was performed on plasma samples from patients that were treated
with LBH589. LBH589 upregulated several sulfated steroids and bile acids in a xenobiotic metabolism
pathway. LBH589 downregulated metabolites branched chain amino acids (BCAA) and betaine,
which is an atypical amino acid derived from the oxidation of choline. The further metabolomic
analysis in DLBCL cell lines OCI-Ly1 and OCI-Ly7 revealed that LBH589 upregulated many
metabolites in the betaine-choline pathway, including choline, cytidine diphosphate, CDP-choline, and
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1-oleoylglycerophosphocholine. Gene expression analysis revealed the upregulation of choline kinase
α (CHKA) and phosphocholine cytidylyltransferase (PCYT1A) in DLBCL cell lines that were treated
with LBH589. Further functional study regarding CHDA inhibition or knockdown demonstrated that
targeting the choline pathway increased the anti-cancer effect of HDIs in DLBCL [82].

In cultured pancreatic cancer BxPC3 cells and hepatocellular cancer Hep1 cells, 1H-, 13C-,
and 31P-NMR spectroscopy with [1–13C]-glucose tracer did not identify any prominent changes
in cell metabolism after treatment with PXD101 [99]. In rats that were treated with HDIs, gas
chromatography-mass spectrometry analysis of the serum revealed that SAHA upregulated urea, oleic
acid, and glutaconic acid, whereas it downregulated octadecanoic acid, pentadecanoic acid, glycerol,
propanoic acid, and uric acid [100]. MGCD0103, another HDI, downregulated alanine, isoleucine, and
leucine levels in the serum [101].

In summary, HDIs can alter the metabolism of amino acids, choline, or carbohydrates, which may
contribute to their therapeutic or toxic effects in different tissues.

6. Chemoproteomic Analysis of HDIs

Regardless of the downstream epigenomic, transcriptomic, proteomic, or metabolomic changes
that HDIs may cause, it is conceivable that HDIs must have physical interactions with their direct
targets. Small molecules are notoriously promiscuous, and it is possible that HDIs could bind to
many proteins and alter their functionality, in addition to HDACs. Chemoproteomic approaches
with chemical probes allow the systemic identification of proteins bound to a small molecule. These
methods have been used to profile HDI-interacting proteins in several studies (Table 1).

The HDIs affinity probes were synthesized by conjugating sepharose to analogs of SAHA or
class I and class II-selective HDI givinostat. After exposing the probe with protein extracts from the
myelogenous leukemia K562 cells, the captured proteins were quantified with mass spectrometry.
Competition analysis with HDIs was then performed to reduce the binding affinity of each HDI with
the identified binding proteins, generating a dataset composed of 16 HDIs with over 1000 proteins.
Immunofluorescence analysis of acetylated histones or tubulin further validated the range of activity
for several HDIs, as determined in the chemoproteomic analysis. Class IIa HDACs were not identified
in the assay, which is consistent with their low affinity to hydroxamate and lack of catalytic activities
due to a missense mutation in the catalytic pocket [102]. The anti-inflammatory drug bufexamac was
identified as a novel HDI targeting class IIb HDACs. The approach also identified the interaction
between some HDIs with many non-HDAC proteins that do not appear to be in any HDAC protein
complexes [83]. The chemoproteomics-based competition analysis with the same chemical probe was
later used to characterize the binding kinetics property of different HDIs with endogenous protein
lysates from K562 cells [84]. As is consistent with the previous assays with recombinant HDAC
proteins [12], aminobenzamides showed slower binding kinetics with HDACs-containing protein
complexes when compared to hydroxamates [84].

A similar approach from a separate study with SAHA-coated sepharose beads and HPLC-MS/MS
identified 58 proteins as potential SAHA binding proteins in the HeLa cell lysates. 35 proteins were
found as HDAC complex components. Gene ontology analysis showed that 23 proteins were metabolic
enzymes, four proteins were involved in cell cycle regulation and differentiation, and two proteins
were chaperones. A glucose metabolism enzyme ENO-1 was identified as a novel SAHA-binding
protein and may be a target of HDIs [85].

Another study used the chemoproteomic approach to explore the mechanism of the
2-aminobenzamide class of HDIs in treating Friedreich’s ataxia (FRDA) and Huntington’s disease.
A chemical probe was synthesized by connecting the HDI compound 106 with two structures: one to
form a covalent bond with target proteins upon UV crosslink and another to be conjugated with biotin
through click chemistry. This active probe and a control probe were incubated with nuclear protein
extracts from FRDA patient-derived neural stem cells. After UV crosslink and biotin conjugation, a
quantitative proteomic method using multidimensional protein identification technology (MudPIT)
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was used to identify the proteins that were specifically captured by the probe. Among the 3003 detected
proteins, 883 were enriched more than two-fold with the active probe as compared to the control
probe. HDAC1, HDAC2, and HDAC3 showed enrichment, which was confirmed by western blot.
Gene ontology analysis showed that the active probe-binding proteins were highly enriched in the
translation elongation and ribosome-associated pathways. This finding suggests that RNA processing
and translational regulation may contribute to HDIs-mediated therapeutic effect in FRDA [86].

In summary, HDIs can interact with a variety of protein and protein complexes, including those
that are not directly associated with HDACs. Their profile of interacting proteins tends to be different
for different HDIs.

7. Conclusions

Multiple omics approaches have started to shed light on the mechanisms that underlie therapeutic
or toxic effects of HDIs, although the mechanism is likely context-dependent and there is no consensus
mechanism on the horizon. Although HDIs can upregulate global histone acetylation levels, HDIs
do not always cause histone hyperacetylation, especially at promoter regions near gene transcription
start sites. HDIs tend to upregulate and downregulate an equal number of genes, although the
relative ratio is dependent on the binding kinetics of the HDIs and the timing of the assay. HDIs
regulate the expression of genes that are involved in diverse biological pathways, including cell cycle
regulation, cell death, metabolism, and stress responses in many cancer cells. The changes in histone
acetylation levels at gene promoters tend to correlate with the changes in gene expression levels in
most cases, although the gene expression changes are not always associated with phenotypic changes.
In addition to epigenomic and transcriptomic profiling, recently developed proteomics, metabolomics,
and chemoproteomics approaches have started to provide multifaceted datasets regarding HDIs.
Pan-HDIs tend to have distinct effects from class-selective HDIs in general, although overlapping
effects were observed under some conditions. The availability of these omics datasets provides
opportunities for data mining with artificial intelligence. For example, the correlation of differential
responses to HDIs among cancer cell lines with transcriptomic and proteomic effects of HDIs on
these cells could shed light on the downstream targets that mediate certain cellular responses to HDIs.
Continuous application of these omics measurements and integrated bioinformatics analysis of the
datasets shall provide novel mechanistic insights into the HDIs-mediated biological effects.
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