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Objectives: This study aimed to identify a molecular marker associated with the prognosis
of non-small-cell lung cancer (NSCLC).

Materials and Methods: The RNA sequencing data and clinical information of NSCLC
patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression
Omnibus (GEO). The weighted gene co-expression network analysis (WGCNA) was used
to identify the co-expression gene modules and differentially expressed genes (DEGs) by
comparing gene expression between NSCLC tumor tissues and normal tissues.
Subsequently, the functional enrichment analysis of the DEGs was performed. Kaplan-
Meier survival analysis and the GEPIA2 online tool were performed to investigate the
relationship between the expression of these genes of interest and the survival of NSCLC
patients, and to validate one most survival-relevent hub gene, as well as validated the hub
gene using independent datasets from the GEO database. Further analysis was carried out
to characterize the relationship between the hub gene and tumor immune cell infiltration,
tumor mutation burden (TMB), microsatellite instability (MSI), and other known biomarkers
of lung cancer. The related genes were screened by analyzing the protein-protein
interaction (PPI) network and the survival model was constructed. GEPIA2 was applied
in the potential analysis of pan-cancer biomarker of hub gene.

Results: 57 hub genes were found to be involved in intercellular connectivity from the
779 identified differentially co-expressed genes. Myeloid-associated differentiation marker
(MYADM) was strongly associated with overall survival (OS) and disease-free survival (DFS)
of NSCLC patients, and high MYADM expression was associated with poor prognosis.
Thus, MYADM was identified as a risk factor. Additionally, MYADM was validated as a
survival risk factor in NSCLC patients in two independent datasets. Further analysis
showed that MYADM was nagetively associated with TMB, and was positively correlated
with macrophages, neutrophils, and dendritic cells, suggesting its role in regulating tumor
immunity. The MYADM expression differed across many types of cancer and had the
potential to serve as a pan-cancer marker.
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Conclusion:MYADM is an independent prognostic factor for NSCLC patients, which can
predict the progression of cancer and play a role in the tumor immune cell infiltration in
NSCLC.
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INTRODUCTION

Lung cancer is the second most common cancer in humans and
the leading cause of cancer-related deaths worldwide. Lung
cancer is a heterogeneous disease with many varied
pathological types and subtypes which are clinically relevant.
Among these, non-small-cell lung cancer (NSCLC) accounts for
about 85% of all lung cancer, and lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC) are the most common
pathological subtypes of NSCLC [1].

Traditional treatments for lung cancer include surgery,
chemotherapy and radiotherapy, unfortunately, these methods
often do not have lasting success. Molecular targeting therapy and
checkpoint inhibitor therapy have been important developments
in systemic therapy of NSCLC. The identification of pathogenic
genes changed the treatment model for lung cancer, which
allowed clinicians to conduct individualization of treatment
taking account of the genetic backgrounds of the patients.
Therefore, deeper and more comprehensive identification of
the driver genes of NSCLC and more accurate immunotherapy
efficacy prediction is essential to finding better prediction
mechanisms and the design of new drugs, which will be
beneficial to the prognosis of the patients.

The construction of various cancer databases and the
population of bioinformatic methods have made the initial
screening of new cancer targets extremely accessible to
researchers. In this study, RNA sequencing data from the
cancer databases were used to explore the differentially
expressed genes (DEGs). By the means of weighted gene co-
expression network analysis (WGCNA), functional enrichment
analysis, protein-protein interaction (PPI) network analysis and
other bioinformatic methods the hub gene was found, as well as
its related function, and feasibility as prognostic molecular
markers in NSCLC patients.

MATERIALS AND METHODS

Data Acquisition and Processing
The RNA-Seq data and clinical data of NSCLC patients were
downloaded from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/) and NSCLC GSE74706 expression
profiling data were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds)
(Table 1). We combined TCGA-LUAD and TCGA-LUSC
datasets (henceforth referred to as TCGA dataset) with
108 normal samples and 1037 tumor samples, while
GSE74706 included 18 normal samples and 18 tumor samples.
The DEGs between TCGA and GSE74706 were identified for
further analysis by the “limma” package of the R software
(| logFC | > 1, adjusted p < 0.05 were used as the criteria).
Additionally, the expression profiles and clinical information of
GSE50081 (181 Stage I and II NSCLC cases) and GSE8894
(138 cases) datasets were downloaded for subsequent validation of
the survival analysis.

Identification of Co-Expression Modules by
Weighted Gene Co-Expression Network
Analysis
In the regulation of biological processes, important functional genes
tended to function through co-expression. Co-expression networks
facilitate the screening of disease-related gene clusters and can be used
to identify therapeutic targets and biomarkers. In this study,WGCNA,
a systematic biological method for constructing a scale-free network
using gene expression data, was employed. A weighted co-expression
network was constructed from the expression profile data of the
candidate gene sets by the “WGCNA” package of R. We analyzed the
expression profiles of TCGA and GSE74706 to screen for co-
expression modules and identify key biomarkers. By using the
formula AIJ = | SIJ | β (AIJ: adjacency matrix between gene I and
Gene J, SIJ: similarity matrix obtained by Pearson correlation of all
gene pairs, β: soft threshold), and transformed into a topological
overlap matrix (TOM) and its related similarity (1-TOM). To divide
similar genes into different co-expression modules, a hierarchical
clustering tree based on the 1-TOM matrix was constructed.

The Intersection of Co-Expressed and
Differentially Expressed Genes
In the process of screening for functional hub genes, we
screened DEGs in TCGA and GSE74706. To find the

TABLE 1 | Datasets from TCGA database and GEO database.

Dataset ID Platform Sample count

TCGA - 1037(T)/108(N)
GSE74706 GPL13497 18(T)/18(N)
GSE8894 GPL570 138(T)/0(N)
GSE50081 GPL570 181(T)/0(N)
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FIGURE 1 | The weighted gene co-expression network analysis (WGCNA) of TCGA and GSE74706 datasets. (A,B) The soft threshold selection diagram for
network topology analysisfrom the TCGA/GSE74706 datasets; (C,D) Construction of the network and the module detection diagramfrom the TCGA/
GSE74706 datasets; (E,F) The correlation between the modules and the disease/normal groupfrom the TCGA/GSE74706 datasets.
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differentially co-expressed genes, we used the “limma” software
package in R with the criteria of | logFC | > 1 and adjusted p <
0.05. The “limma” software package enabled us to analyze the
microarray data and the differential expression of RNA. The
genes in the TCGA and GSE74706 datasets were visualized as
volcano plots by “ggplot2”, an R package. Then, the potential
biomarkers were identified as belonging to the intersection of
DEGs and co-expressed genes from WGCNA, and the results
were displayed by the “venn” package of R software.

Functional Annotation of Differentially Co-
Expressed Genes
The “ClusterProfiler” package in R provided the functional
annotations and pathway enrichment analysis for the selected

genes. Gene Ontology (GO) summarized the three main
attributes: biological processes (BP), cell components (CC),
and molecular functions (MF), which outlines the biological
characteristics of genes. 779 DEGs identified through the
differential expression analysis and WGCNA analysis, were
functionally annotated to explore the occurrence and
development mechanism of the NSCLC.

The Expression and Validation of
Prognostic Value of Hub Genes
The Kaplan-Meier univariate survival analysis was conducted
and the R packages “survival” (v3.2.7) and “survminer”
(v0.4.8) were used to investigate the relation between hub
genes and the overall survival (OS) of patients based on clinical

FIGURE 2 | Differentially co-expressed genes of TCGA and GSE74706 datasets. (A) The heat map of the differential genes screened from the TCGA dataset; (B)
The heat map of the differential genes screened from the GSE74706 dataset; (C,D) The volcano plot based on the Fold-Change and p-value of the genes from the
TCGA/GSE74706 datasets; (E) Venn diagram of the intersection based on the analysis of multiple data sets.
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data from the TCGA database. Moreover, the online tool
GEPIA2 (http://gepia2.cancer-pku.cn/) was used to analyze
the significance of hub genes in the disease-free survival (DFS)
of NSCLC patients. In the survival analysis, the survival curve
was generated by the Kaplan-Meier method, and the log-rank
test was used to determine the statistical significance of the
difference.The top 1 gene with the greatest impact on the
prognosis was selected as survial-related core gene.

The Correlation Analysis of
Prognosis-Related Gene With Immune Cell
Infiltration, Tumor Mutational Burden,
Microsatellite Instability and Other
Prognosis Markers
The dependence of TMB, MSI, and other prognosis markers on the
expression of prognosis-related gene were investigated through the
Spearman correlation analysis. Multiple immune cell analysis-related
tools such as CIBERSORT, XCELL, EPIC, MCPCOUNTER, and
QUANTISEQ were used to analyze the correlation between the

expression profile of hub gene and immune cell infiltration. The
correlation of prognosis-related gene with B cells, CD4 + T cells, CD8
+ T cells, neutrophils, macrophages, dendritic cells were analyzed by
the TIMER database (https://cistrome.shinyapps.io/timer/), and the
correlation curves were downloaded.

Validation by Independent Datasets
Two independent datasets from GEO were used to validate by
survival analysis and to verify that the hub gene derived from the
process described thus far was still valid for other datasets. We
downloaded the expression data and the clinical data of
GSE50081 and GSE8894 datasets from the GEO for survival
analysis to verify the validity of the previously obtained results.

Protein-Protein Interaction Network
Construction
The R package, “STRINGdb” based on the STRING database
(https://STRING-db.org/) the protein-protein interactions were
identified, a PPI network of the hub was constructed, and
visualized as a network diagram.

FIGURE 3 | Gene ontology (GO) and Kyoto Encyclopeia of Genes and Genomes (KEGG) pathway enrichment of the differentially co-expressed genes. (A,B) The
bar and bubble plots of the GO enrichment; (C,D) The bar and bubble plots of KEGG enrichment.
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Construction of the Survival Model
The survival model was built using hub gene modules obtained
from the STRINGdb, and the results were visualized using the R
package “survival,” “survminer,” and “ggrisk.”

Analysis of the Key Gene to Evaluate the
Potential as Pan-Cancer Biomarkers
The online tool GEPIA2 was employed to analyze the expression
differences of the selected hub gene between the cancer samples and

FIGURE 4 | The prognostic survival curve for the high-risk group and low-risk group. (A) Kaplan-Meier survival curve based on OS; (B) Kaplan-Meier survival curve
based on DFS.

FIGURE 5 | Correlation analysis of the expression of theMYADMwith immune cell infiltration levels, TMB, MSI, and other prognostic markers in NSCLC. (A,B) The
scatters plot showing the correlation between MYADM and MSI, TMB; (C,D) The scatter plots showing the correlation between MYADM and biomarkers ICAM1 and
RAC1 in NSCLC; (E) The heat map of correlation between MYADM and different immune cells in multiple immune data sets.
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the normal samples to determine whether it had the potential to act
as pan-cancer biomarker.

RESULTS

Construction of Co-Expression Module in
Weighted Gene Co-Expression Network
Analysis
To recognize highly significant co-expression module genes, we
correlated them with normal and tumor groups, and selected a soft
threshold of β = 2 and 6 by the function pickSoftThreshold to establish
a scale-free network.In this study, night modules of TCGA and
20 modules of GSE74706 were identified (excluding grey module
which contained genes were not assigned to any functional group). In
addition, we assessed the correlation between each module and
differences between the normal and tumor groups by plotting the
correlation heat maps. The results showed that the most discernable
difference was between the brown module in TCGA and the
greenyellow module in GSE74706. As a result, these highly relevant
modules were considered candidates associated with the clinical
characterization and were used in the subsequent analysis (Figure 1).

Identification of Differentially Co-Expressed
Genes
With | logFC | > 1, adjusted p < 0.05 as the determining criteria,
4,275 DEGs were identified from the TCGA dataset, and 4,147 DEGs
were identified from the GSE74706 dataset. The brown and
greenyellow modules comprised 1,211 and 5,801 genes, respectively.
A total of 779 differentially co-expressed genes (Figure 2) were
obtained from the intersection of the above four groups.

Functional Enrichment Analysis of
Differentially Co-Expressed Genes
To further understand the biological function of the
779 differentially co-expressed genes involved, the R

“ClusterProfiler” package was used for functional enrichment
analysis. Previous experiments have shown that cell-cell junction
functions connected cells in tissues and regulate tissue barrier
function, cell proliferation, and migration. Defects in cell-cell
junctions cause widespread tissue abnormalities and disrupt the
balance, which was common in genetic abnormalities and cancers
[2]. Accordingly, we took the genes enriched in the functional
pathways of cell-cell junctions as important gene sets for
subsequent analysis. The results of functional enrichment
showed that a total of 57 genes were enriched in the
functional pathways of the cell-cell junctions (Figure 3).

Validation of Intercellular Hub Gene
Expression Patterns and the Prognostic
Value
Univariate Cox regression analysis was used to screen out the
genes with a significant relationship with survival. The results
showed that myeloid-associated differentiation marker
(MYADM) was the most correlated gene with the prognosis of
the patients (p = 0.02617). Repeated validation through the OS
and DFS survival analyses indicated MYADM as a risk factor
among the 57 hub genes and was negatively correlated with
survival (Figure 4).

The Correlation of Immune Cell Infiltration,
Tumor Mutation Burden and Microsatellite
Instability to the Survival-Related Gene
The Spearman correlation analysis was performed to study the
relationship between the MYADM expression and immune cell
infiltration, TMB, and MSI. The results showed that MYADM
was weak negatively correlated with TMB (p = 0.014, r = −0.08),
but not with MSI (p = 0.256, r = 0.04), TMB has been found in a
variety of tumor immunotherapy in recent years as an independent
biomarker that can be used to predict the efficacy of immunotherapy.
MYADM has a weak negative correlation with TMB levels,
suggesting that MYADM may play a role in predicting the
efficacy of immunotherapy (Figures 5A,B). Additionally, we

FIGURE 6 |Correlation ofMYADMwith tumor purity, B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages and dendritic cells by TIMER database in lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients.
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obtained the NSCLC biomarkers from previous studies [3, 4] and
analyzed their correlation withMYADM. It was found thatMYADM
had a high correlation with intercellular adhesion molecule-1
(ICAM1) and a weak correlation with RAS-related C3 botulinum
toxin substrate 1 (RAC1), which demonstrated the potential of
MYADM as a biomarker for NSCLC (Figures 5C,D).
Furthermore, we analyzed the relationship between the risk gene
MYADM and various types of immune cells in multiple immune
datasets. It showed that MYADM was a significant correlation with

immune cells in multiple immune datasets. In both LUSC and
LUAD, MYADM was positively associated with macrophage
M2 within the CIBERSORT and negative with T cell follicular
helper and B cell plasma. In the XCELL, MYADM was positively
correlated with myeloid dendritic cell activated, myeloid dendritic
cell, monocyte, macrophage M2, macrophage M1, hematopoietic
stem cell, eosinophil immune cells, while it was negatively correlated
with T cell CD8 + naive, T cell CD4 + Th1, and common lymphoid
progenitor. MYADM was positively correlated with immune cells

FIGURE 7 | Prognostic survival curves in theMYADM high-expression group and low-expression group. (A) Kaplan-Meier curve based on GSE50081; (B) Kaplan-
Meier curve based on GSE8894.

FIGURE 8 | Construction of the MYADM gene-related survival model. (A) MYADM interactive gene network map; (B) Kaplan-Meier survival curve based on
candidate gene set risk model; (C) The risk score map based on integrated gene set; (D,E) The forest plot and nomogram based on integrated gene set.
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(macrophage) in EPIC, immune cells (T cell, myeloid dendritic cell,
monocyte, macrophage, monocyte) in MCPCOUNTER, immune
cells (macrophage) in QUANTISEQ, immune cells (T cell CD8 +,
T cell CD4 +, neutrophil, myeloid dendritic cell, and macrophage) in
TIMER (Figure 5E).

To further study the relationship between MYADM and the
immune microenvironment of lung cancer, we analyzed the
relationship between MYADM and B cells, CD4 + T cells, CD8
+ T cells, neutrophils, macrophages, dendritic cells, and tumor
purity, and obtained the correlation coefficient by the TIMER
online resource. The scatter plot showed that the MYADM was
associated withmacrophages, neutrophils, and dendritic cells in both
LUSC and LUAD (Cor >0.3, p < 0.05) (Figure 6).

Survival Analysis in Independent Datasets
Furthermore, to evaluate the reliability of MYADM as a risk
factor, we downloaded the gene expression data and the clinical
data of GSE50081 and GSE8894 in the GEO database and
performed the univariate Cox regression analysis of the hub
gene MYADM. In this study, the minimum p-value method,
which has been proven to be effective in many fields [5], was used
to obtain the best grouping values and to generate the Kaplan-
Meier survival curves. The results showed that MYADM was a
risk factor according to two both of these datasets and negatively
impacted the prognosis of patients, further indicating that
MYADM could be used as a biomarker for NSCLC (Figure 7).

Construction of the Survival Model
After determining that MYADM would negatively impact the
patient’s prognosis, STRINGdb was used to predict the PPI
relationship of the MYADM gene (Figure 8A), establish the
survivalmodel for the candidate genes, and apply the risk scoremodel:

Risk score � ∑
n

i�1
βiExp(Ci)

Among them, βi was the Cox regression coefficient of each
RNA (expressed as Ci), n was the number of RNA in the gene set,

Exp (Ci) was the RNA Ci expression value in the corresponding
sample. Then by calculating the sample risk score by the above
formula, the patients were divided into the high-risk group and
the low-risk group by taking the median as the node. By the result
of the survival curve presented in Figure 8B, the survival
difference of the high-risk and low-risk groups was significant,
and risk model genes can be used as biomarkers to predict the
prognosis of patients. We also plotted the risk factor graph, forest
plot, and nomogram showing the results (Figures 8C–E). In
Figures 8D,E, it can be seen that MYADM, T cell activation
rhoGTPase activating protein (TAGAP), and ubiquitin specific
peptidase 49 (USP49) had relatively greater weights in the model,
where MYADM was the risk factor, suggesting that it had a
greater influence on the prognosis of patients.

Pan-Cancer Analysis
After identifying MYADM as a potential biomarker for NSCLC, we
analyzed the expression ofMYADM in 31 other tumors, among these
MYADM, was highly expressed in 6 tumors, including esophageal
carcinoma, kidney renal clear cell carcinoma, acute myeloid leukemia
pancreatic adenocarcinoma, stomach adenocarcinoma and testicular
germ cell tumors, and lowly expressed in 6 tumors such as bladder
urothelial carcinoma, cervical squamous cell carcinoma and
endocervical adenocarcinoma, lymphoid neoplasm diffuse large
B-cell lymphoma, thymoma, uterine corpus endometrial
carcinoma, uterine carcinosarcoma. It has been shown that the
expression of MYADM was different across various types of
cancer, which indicates that MYADM has the potential of being a
pan-cancer biomarker (Figure 9).

DISCUSSION

At present, lung cancer is an important cause of malignant
tumor death in the world, and its diagnosis rate and mortality
rate remain high. Despite the improvement in the treatment
of NSCLC in recent years, the prognosis of patients is still not

FIGURE 9 | Gene expression in normal/patients of various types of cancer.
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ideal. It is of potentially clinical significance to understand
the molecular mechanism of tumor progression, which can
predict the prognosis of NSCLC patients accurately, and
enable making individual treatment plans based on their
genetic profile. This would be potentially beneficial to the
prognosis of patients suffering from NSCLC.

During the discovery phase of our study, we selected datasets of
NSCLC tissue and normal lung tissue from the TCGA and GEO
databases. There were 779 differentially co-expressed genes screened
from the two datasets, and the enrichment analysis results showed
that the differentially co-expressed genes were enriched in organelle
fission,mitosis, nuclear division, and chromosome segregation in the
BP region, the intercellular junction, spindle, chromosome region in
the CC region and ATPase activity in MF region.

Cell-cell junction is an important site for the interaction and
synergy between adjacent cells in a multicellular organism
through the cell plasma membrane, which connects similar
cells into tissues and is kept relatively stable between adjacent
tissues cells. The abnormal cell-cell junctions may play an
important role in tumorigenesis. In our present study, 57 core
genes were enriched in the cell-cell junction gene expression
module, and further survival analysis revealed that the gene most
related to prognosis was MYADM.

MYADM belongs to the MAL family and maps to the human
chromosome 19q 13.33-q 13.4. It consists of 3 exons and 2 introns,
and it spans a 7.1-Kb genomic region [6]. The MYADM protein is
located in the nuclear envelope and cytoplasmic inner membrane,
forming a complete membrane protein [7, 8]. Previous studies have
found that MYADM is selectively expressed in myeloid cells [9],
participates in the process of myeloid differentiation [6], and relates
to the differentiation of hematopoietic cells. Moreover, MYADM is
the target gene of c-Myb which is an important regulator of the
hematopoietic cell development [10]. Additionally, it may play a role
in cell migration through the development of lamellipodium [8].

Aranda JF et al. detected the expression of MYADM in several
tumor cell lines [8]. The expression of MYADM protein was up-
regulated in metastatic melanoma and hepatocellular carcinoma
tissues [11, 12]. Cancer is driven by genetic change, and the wealth of
data to systematically record this variation on a genome-wide scale
provides an important opportunity to develop a comprehensive
picture of commonalities, differences, and emerging themes across
cancer lineages. After pan-cancer analysis, it was found that the
expression levels of MYADM in different cancer types were
different, some of which were up-regulated and others were
down-regulated, indicating that MYADM plays multiple roles in
pan-cancer. Moreover, MYADM was essential for tumor cell
proliferation and migration [8]. Papasotiriou I et al. found that
the expression ofMYADM is up-regulated in differentially expressed
genes when hormone-refractory prostate cancer cells are co-cultured
with osteoblasts or endothelial cells, suggesting that it is related to the
process required for metastasis [13]. The expression level of
MYADM mRNA is significantly increased during the
differentiation of myeloid leukemia, and thus, can be used as a
membrane marker for disease surveillance [9]. The MYADM gene
was found to be associated with 5 years of biochemical recurrence in
prostate cancer in most African American biomarkers studies
lacking E26 transforming specific family fusion events [14].

MYADM has not been further studied in NSCLC. Our findings
suggested that MYADM may be a potential target for the study of
pathogenesis, diagnosis, treatment, and prognosis of NSCLC. This
study provided an important theoretical basis for the further study of
NSCLC in vivo and in vitro experiments and the search of molecular
markers for clinical diagnosis and treatment of NSCLC.

Currently, immunotherapy has been the focus of NSCLC
treatment, predictive cancer biomarkers are important for
assessing benefit in relation to individual patients, accurately
stratifying the population most likely to benefit from targeted
therapy. At present, PD-L1 expression level, MSI, high tumor
mutational burden (TMB-H) may be related to the effect. Our
results showed that there was a weak negative correlation between
MYADM and TMB in NSCLC, but there was no significant
correlation with MSI and CD8 + T cells. It was found that
immunotherapy in the treatment of lung adenocarcinoma
patients with TMB-H resulted in a significantly better
prognosis. But in metastatic lung squamous cell carcinoma,
immunotherapy prognosis with low tumor mutation load
(TMB-L) was even better than that with TMB-H [15]. The
correlation may require further discussion and subdivision of
pathologic types, and whether MYADM can be used as a
predictor of immunotherapeutic efficacy remains to be tested.

It is known that the increase of ICAM-1 expression may
indicate the poor prognosis in lung cancer patients, which
played an important role in the development and metastasis of
lung cancer [16]. Previously, Rac1 has been shown to have high
expression in different types of tumors, which was associated with
poor prognosis, and its high expression in NSCLC stem cells
enhanced the malignant behavior of tumor cells [4, 17]. Aranda
JF et al found that the decline in the barrier function ofMYADM
silenced cells depended on the expression of ICAM-1 [18], and
co-localization of theMYADM and the Rac1 to participate in cell
migration through the membrane [8]. In our study, comparing
MYADM with other known lung cancer biomarkers by
bioinformatic methods, we found MYADM was associated
with ICAM1 and RAC1, suggesting that MYADM may be a
prognostic factor for NSCLC. Additional GEO NSCLC
datasets confirmed that MYADM acted as an independent risk
factor for the survival and prognosis of NSCLC.

In the further analysis of MYADM, the survival model was
established by searching for interaction genes through the PPI
network. The prognosis of the high-risk score group was
significantly worse than that of the low-risk score group, in
which MYADM, USP49, and TAGAP had the important
weights, the former was the risk factor, while the latter two
were the protective factors. At present, the research on
USP49 is limited and its function in malignant tumors is not
completely clear. Luo and Tu et al. showed that USP49 can inhibit
the development of pancreatic cancer and could be the tumor
suppressor of colon cancer [19, 20]. In suspension Chinese
hamster ovary cells, TAGAP acts as a mediator of intracellular
cytoskeleton signal to cell surface integrin, and the increase of
TAGAP expression enhanced cell proliferation, viability, and
adaptability to suspension [21, 22]. The direct or indirect
interaction between MYADM and USP49 or TAGAP warrants
further discussion.
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This study identified one key gene, MYADM, as the most
relevant to the prognosis for the cellular component in NSCLC
through the means of bioinformatic analysis. However, the above
results still lack further confirmation of laboratory molecular
biology experiments, which is a limitation of the study. Therefore,
the subsequent research should focus on the expression and
related functions of MYADM in NSCLC to provide an
adequate understanding of the occurrence and development
mechanism and the treatment targets of NSCLC.

CONCLUSION

In summary, this study conducted a bioinformatic analysis of
RNA sequencing data and clinical data from NSCLC and found
that high expression of MYADM was associated with poor
prognosis in NSCLC. These findings further enhanced the
understanding of NSCLC prognosis and may promote risk-
stratified disease management. In the future, MYADM may be
a potential prognostic marker for lung cancer.
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