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Abstract

Asthma is a multifactorial pathology influenced by environmental and genetic factors. Gluco-

corticoid treatment decreases symptoms by regulating genes involved in the inflammatory

process through binding to specific DNA sequences. Polymorphisms located in the pro-

moter region of the Prostaglandin D Receptor (PTGDR) gene have been related to asthma.

We aimed to analyze the effect of PTGDR promoter haplotypes on gene expression and

response to corticosteroid therapy. A549 lung epithelial cells were transfected with vectors

carrying four different PTGDR haplotypes (CTCT, CCCC, CCCT and TCCT), and treated

with dexamethasone. Different approaches to study the promoter activity (Dual Luciferase

Reporter System), gene expression levels (qPCR) and cytokine secretion (Multiplexed

Bead-based Flow Cytometric) were used. In addition, in silico analysis was also performed.

Cells carrying the TCCT haplotype showed the lowest promoter activity (p-value<0.05) and

mRNA expression levels in basal conditions. After dexamethasone treatment, cells carrying

the wild-type variant CTCT showed the highest response, and those carrying the TCCT vari-

ant the lowest (p-value<0.05) in luciferase assays. Different transcription factor binding pat-

terns were identified in silico. Moreover, differences in cytokine secretion were also found

among different promoter haplotypes. Polymorphisms of PTGDR gene influence basal pro-

moter activity and gene expression, as well as the cytokine secretory pattern. Furthermore,

an association between these positions and response to corticoid treatment was observed.

Introduction

In the last decades, there has been a great increase in prevalence rate of allergic respiratory dis-

eases, being considered a priority line in biomedical research. Corticosteroids constitutes the

mainstay treatment for patients with allergic diseases and asthma [1–3]. In asthma, glucocorti-

coid (GC) treatment reduces symptoms, recovers pulmonary function, and decreases
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bronchial hyperresponsiveness and exacerbations [4]. GCs exert their action through the spe-

cific receptor GR, (Glucocorticoid Receptor). The GC�GR complex is transported into the cel-

lular nucleus, regulating the expression of many genes involved in the inflammatory response.

These actions are mediated by specific binding sites carrying consensus sequences (GRE, glu-

cocorticoid response element) in the target genes [5–7]. Many of the anti-inflammatory effects

of the corticosteroid therapy are attributed to direct inhibition of transcription factors AP-1

(Activator Protein-1) and NF-κB (Nuclear Factor kappa B), regulating the levels of different

molecules involved in the inflammatory process (IL-1β, TNF-α, IL-2, IFN-γ, IL-6, IL-12,

RANTES) [8,9]. Furthermore, glucocorticoids suppress Th2 cells and cytokine production by

inhibiting the transcription factor GATA3, critical for the expression of IL-4, IL-5 and IL-13

[10], or by inhibiting the MAPK pathway. It has been estimated that 5–10% of asthmatics do

not respond well to corticosteroids, developing severe asthma [11]. According to some studies

of gene expression profiles, there is a genetic predisposition to glucocorticoid resistance and

severe asthma [12,13].

Asthma is a multifactorial pathology of complex aetiology including genetic and environ-

mental factors [14]. Different linkage and association studies have identified numerous genetic

markers linked to allergic disease on chromosome 14 [15,16], which include the PTGDR gene.

It encodes a transmembrane receptor of prostaglandin D2 (PGD2), being PGD2 the major

metabolite of arachidonic acid produced by activated mast cells during an allergic reaction

[17]. PTGDR is expressed in immune cells, but also in platelets, cells of the central nervous sys-

tem, ciliated and non-ciliated bronchial cells and alveolar epithelial type I and type II cells [18].

In recent years, certain polymorphisms and specific haplotypes and diplotypes of the promoter

region of PTGDR have been associated to allergy and asthma [19–21]. In addition, epigenetic

aspects of the PTGDR promoter have also been associated with asthma [22]. All these factors

would affect the capacity of PTGDR promoter regions to bind transcription factors, modifying

their expression levels and increasing susceptibility to the disease.

Considering all these data, PTGDR has been considered as a potential therapeutic target in

the asthmatic disease investigation. Our purpose was to study how the polymorphic combina-

tions on PTGDR promoter could affect its activity, and evaluate its relationship with the

responsiveness to corticoid therapy.

Methods

Cell culture

A549 cells (human adenocarcinoma alveolar basal epithelial cells, type II) were kindly pro-

vided by Dr Odero (CIMA, University of Navarra) and maintained in RPMI with 10% Fetal

Bovine Serum (FBS) (Gibco, Invitrogen-Life Technologies, MA, USA) at 37˚C in a humidified

atmosphere with 5% CO2. To perform luciferase and expression experiments, cells were grown

in RPMI supplemented with 10% Charcoal Stripped FBS (Gibco, Invitrogen-Life Technolo-

gies, MA, USA) to avoid possible interference with serum steroids [23,24].

Exposure to corticoid

A time-course test was performed with different dexamethasone (DEX) concentrations to ana-

lyse cell culture response. Cell culture response was monitored by CYP3A5 expression analysis

[25]. Two DEX concentrations (2.5 x 10−6 M and 2.5 x 10−7 M) and four treatment times (12

h, 24 h, 36 h and 48 h) were tested. A final DEX concentration of 2.5 x 10−6 M, and two experi-

mental times, 12 h and 36 h, were chosen.

PTGDR variants and dexamethasone
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Identification of PTGDR promoter variants

Genomic DNA from patients and from A549 cells was isolated with the MagNA Pure Nucleic

Acid Isolation Kit using the MagNA Pure Compact instrument (Roche Applied Science, IN,

USA), and amplified by polymerase chain reaction (PCR) using the oligonucleotide sense

primer 5’-CTCAGTTTCCTCGCCTATGC-3’ and the anti-sense primer 5’-GAGTGAAGGC
TGCGGAAGGG-3’. PCR products were cleaned with exoSAP-IT (USB-Affimetrix, OH, USA)

prior to sequencing in an ABI Prism 3100 Genetic Analyzer (Applied Biosystems-Thermo Sci-

entific, MA, USA).

Plasmid construction

PTGDR promoter constructs of 653 bp were generated by PCR amplification of genomic DNA

from asthmatic patients. The most frequent combinations at positions -613, -549, -441 and

-197, differently expressed in patients were selected: CTCT (wild-type) (haplotype frequency

in controls 0.26 vs 0.23 in patients), CCCC (0.11 vs 0.12), CCCT (0.31 vs 0.32) and TCCT

(0.08 vs 0.10). Primers used incorporated recognitions sites for XhoI and BglII. All constructs

were sequenced to exclude additional mutations.

For promoter activity assays, the above-described constructs were ligated and cloned into

multicloning sites of the firefly luciferase pGL3-Basic vector (Promega, WI, USA). For expres-

sion assays, the above-described constructs were ligated and cloned into the RC208087 (Ori-

Gene, MD, USA) vector containing the PTGDR coding sequence. Plasmid DNA was purified

with a Maxiprep kit (Qiagen, Germany). All plasmids were verified by sequencing.

Transient transfection and treatment

Cells were seeded in antibiotic free medium until cell confluence reached 50–70%, and then

transfected using Lipofectamine Reagent 2000 (Invitrogen, Thermo Fisher Scientific, MA,

USA) according to the manufacturer’s protocol. After 5 hours, transfection medium was

removed and replaced with fresh RPMI with 10% charcoal stripped serum, antibiotics and

dexamethasone (DEX) or vehicle (ethanol). A condition of no-treatment was studied as a basal

condition. DEX (Sigma-Aldrich, Germany) was dissolved in absolute ethanol according to

manufacturer’s instructions.

Luciferase assays

A549 cells were seeded at density of 5x104 cells/well in 24-well plates, and co-transfected with

500 ng of the firefly luciferase reporter plasmid described above (pCTCT-luc, pCCCC-luc,

pCCCT-luc, and pTCCT-luc), and 10 ng renilla luciferase reporter plasmid pRL-SV40 vector

(Promega, WI, USA) as internal control. Cells were collected and lysed after 12 h and 36 h of

DEX or ethanol treatment for luciferase activity measurement. Analysis was performed in a

FLUOstar OPTIMA Luminometer (BMG LabTech, Germany) using the Dual-Luciferase

Reporter Assay System (Promega, WI, USA). Data were represented as relative firefly luciferase

normalized to renilla luciferase activity as Relative Luciferase Units (RLU). Each assay condition

was performed using 3 replicates and the global experiment was replicated 3 times. In the evalu-

ation of the treatment with corticoids, the values obtained with the vehicle (ethanol) were con-

sidered the baseline situation, so they were subtracted from the values obtained with DEX.

Expression assays

Cells were seeded into 6-well plates and transfected with 1 μg of expression plasmid containing

the PTGDR promoter variants and the PTGDR coding sequence described above (pCTCT-

PTGDR variants and dexamethasone
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PTGDR, pCCCC-PTGDR, pCCCT-PTGDR and pTCCT-PTGDR). Total amounts of DNA

(2.5 μg) per well were balanced by adding pUC18 plasmid. Cells were collected after 12 h and

36 h of DEX or ethanol treatment, and total RNA was isolated using the RNeasy Plus Mini kit

(Qiagen, Germany) according to manufacturer’s instructions. DNAse treatment was per-

formed using Turbo DNAse (Ambion, Thermo Fisher Scientific, MA, USA). cDNA was gener-

ated using SuperscriptTM III (Invitrogen, Thermo Fisher Scientific, MA, USA). Relative

quantitative PCR was performed using the LightCycler 480 Instrument and SYBR Green I

Master (Roche Applied Science, IN, USA). MIQE guidelines were followed in the gene expres-

sion study. According to these, two genes (GAPDH and TPB) were initially selected as poten-

tial candidates. A correlation study was developed in A549 cells in both conditions (with

and without dexamethasone treatment). High stability was observed for both genes (r =

0.992, p = 0.001) and in both condition (r = 0.999, p<0.001). Considering these results,

GAPDH was selected based, as well, on its broad use in previous studies developed in the

same cell line treated with corticoid [26–29]. The following primers were used: PTGDR for-

ward primer 5’-GGCATGAGGCCTAAAAATGAG-3’ and reverse primer 5’-CCTTGAC
ATCCTTAAATGCTCC-3’; GAPDH forward primer 5’-CTCTGCTCCTCCTGTTCGAC-3’
and reverse primer 5’-ACGACCAAATCCGTTGACTC-3’. Fold induction was calculated

using the formula 2-(ΔΔCt) [30]. PCR product specificity was monitored using post-PCR

melt curve analysis. Data were expressed as fold change relative to RNA levels for control

cells (transfected cells with control vector pCMV-XL5) in the same conditions. The experi-

ments were performed in duplicate. In the evaluation of the treatment with corticoids, the

values obtained with the vehicle (ethanol) were considered the baseline situation, so they

were subtracted from the values obtained with DEX.

In silico characterization of transcription factors

Two bioinformatics algorithms were used to identify differences of putative biding sites for

transcription factors based on polymorphic changes -613C>T, -549T>C, -441C>T and

-197T>C in PTGDR promoter: MatInsprector software (Genomatix Software GmbH) (www.

genomatix.de) and Transfac (BioBase) (www.gene-regulation.com/). The analysis included the

PTGDR promoter region used in the plasmid construction.

Multiplexed bead-based flow cytometric assay

Cytokine analyses were undertaken on culture medium supernatants of the cells transfected

with each expression vector (pCTCT-PTGDR, pCCCC-PTGDR, pCCCT-PTGDR and pTCCT-

PTGDR). Cell culture supernatants were centrifuged before to be stored at -80˚C, and allowed

to cool to room temperature before bead-based cytometric assays were set up. For the cytokine

analysis, we used the Bio-Plex Pro™ Human Cytokine standard 27-plex, Group I kit (Bio-Rad,

CA, USA) following the manufacturer’s instructions. This multiplex assay allowed detecting

IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17,

Eotaxin, FGF-basic, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB,

RANTES, TNF-α and VEGF. Cytokine standards, controls and samples were added (50 μL

total volumes) to 96 well plates in duplicates and incubated with beads conjugated with specific

antibodies. After washing, biotinylated detection antibodies were incubated with the bound

cytokines. Three washes to remove antibodies excess were performed, and the streptavidin

reagent was added. A final wash was followed by resuspension in Assay Buffer for analysis

using the Bio-Plex ManagerTM 5.0 software (Bio-Rad, CA, USA). An eight-point standard

curve was constructed and the concentration of each cytokine calculated against this curve

through a logistic regression model. All samples were measured in duplicate.

PTGDR variants and dexamethasone
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Statistical analysis

All data were presented as mean ± SD. Statistical analysis was performed using SPSS 21.0

(IBM, IL, USA). Measures of central tendency, measures of dispersion, Kolmogorov-Smirnov,

Levene, Kruskal-Wallis, ANOVA and Wilcoxon test were calculated. P< 0.05 was considered

significant.

Results

Different genetic variants of PTGDR promoter show different promoter

activity

We analysed the basal promoter activity of PTGDR for common haplotype variants in asth-

matic patients: CTCT, CCCC, CCCT and TCCT (positions -613, -549, -441 and -197). Signifi-

cant differences in promoter activity were detected between haplotypic combinations after

luciferase reporter plasmid analysis in the A549 cell line (Fig 1).

Promoter activity after normalization was expressed as relative luciferase units (RLU), with

a value of 1 assigned to the wild-type variant CTCT. After 12 h, mean RLU values were 1.14±0.03

for CCCC, 1.04±0.03 for CCCT and 0.89±0.04 for TCCT. Cells carrying both mutant alleles

-613T and -549C (haplotype TCCT) showed the lowest reporter activity at 12 h (vs. CTCT

p-value = 0.013; vs. CCCC p-value<0.001; vs. CCCT p-value = 0.002). In contrast, the CCCC hap-

lotype showed the highest reporter activity (vs. CTCT p-value = 0.002; vs. CCCT p-value = 0.019;

vs. TCCT p-value<0.001). After 36 h, mean RLU values were 1.03±0.03 for CCCC, 0.89±0.01 for

CCCT and 0.075±0.01 for TCCT. Once more, it was confirmed that the variant carrying the

TCCT haplotype remained with the lowest expression (vs. CTCT p-value = 0.005; vs. CCCC

p-value = 0.003; vs. CCCT p-value = 0.001). The CCCT haplotype showed also a lower expression

than wild-type CTCT (p-value = 0.025) and CCCC (p-value = 0.028) haplotypes.

DEX treatment increases promoter activity with a haplotype-dependent

response

A549 cells were split into two groups: the first group was treated with 2.5x10-6M DEX, and the

second group was treated with an equivalent dose of ethanol (DEX vehicle) as baseline. We

Fig 1. PTGDR polymorphic variants modify its basal promoter activity. A549 cells transfected with

reporter plasmid bearing the CTCT (wt) or CCCC, CCCT, TCCT (mutated) PTGDR promoter sequences.

Kolmogorov-Smirnov, ANOVA and Bonferroni test were performed. Data are represented as mean ± SD of

Relative Luciferase Units (RLU) (*Fisher-p<0.05; **Fisher-p<0.01, ***Fisher-p<0.001).

https://doi.org/10.1371/journal.pone.0186957.g001
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analysed the influence of treatment with DEX on the PTGDR promoter activity at 12 and 36

hours (Fig 2A). Our results showed that A549 treated cells had a significantly higher promoter

activity than untreated cells. This luciferase signal increase was more evident after 12 hours of

treatment, although statistical significance was maintained both at 12 and 36 hours (p-

value = 0.002 and p-value = 0.024 respectively).

Cells carrying the mutant variants at -613 and -549 positions (TCCT) maintained the lowest

levels of promoter activity in response to corticoid. After 12 hours of 2.5x10-6M DEX treat-

ment, this haplotypic variant showed a 0.75±0.06-fold in luciferase signal. This difference

reached statistical significance versus CTCT (value 1; p-value = 0.006) and CCCC (1.02

±0.089-fold; p-value = 0.003) variants. After 36 hours of exposure to dexamethasone, the wild-

type CTCT showed the highest promoter activity, whereas the TCCT variant remained as the

lowest active haplotype, with a value of 0.66±0.05-fold (p-value = 0.036). At this experimental

time, A549 cells carrying CCCC and CCCT haplotypes did not show significant differences

(Fig 2B).

Effect of PTGDR promoter polymorphisms on gene expression

Once promoter activity differences were established, we proceeded to the gene expression

analysis. The four promoter haplotypes, CTCT, CCCC, CCCT and TCCT, were cloned into

expression vectors carrying the complete coding sequence of PTGDR gene.

Considering the wild-type variant CTCT as value 1, at 12 hours of culture the lowest expres-

sion levels were detected for the TCCT haplotype (0.71±0.27-fold in TCCT, vs. 1.03±0.03-fold

in CCCC and 1.09±0.15-fold in CCCT). A similar situation was observed after 36 hours

although these differences between variants did not reach statistical significance (Fig 3). Kol-

mogorov and Kruskal-Wallis test were performed.

DEX treatment modifies PTGDR expression levels

Cells treated with 2.5x10-6M DEX followed a time dependent pattern in PTGDR mRNA

expression levels. After 12 hours of treatment, PTGDR expression underwent an important

decrease compared to controls with ethanol (p-value = 0.007) (Fig 4A). This decrease was

detected in all variants. In contrast, when we extended the experimental time of corticoid

exposure up to 36 hours, PTGDR levels increased in treated cells compared to the values

obtained with ethanol (p-value = 0.007). Differences detected did not reach statistical signifi-

cance, although at both times the wild-type CTCT showed a higher response than the mutated

variants (Fig 4B).

Fig 2. Dexamethasone treatment modifies PTGDR promoter activity. A549 cells transfected with reporter

plasmid bearing the CTCT (wt) or CCCC, CCCT, TCCT (mutated) PTGDR promoter sequences and

stimulated with 2.5x10-6 M DEX or ethanol (vehicle) for 12 or 36 h. a) Each value represents the mean ± SD of

Relative Luciferase Units (RLU) obtained in each condition. b) Data represented as mean ± SD of RLU, after

vehicle effect removal normalized to pCTCT-luc vector values. Kolmogorov-Smirnov, ANOVA and Bonferroni

test were performed. (*Fisher-p<0.05; **Fisher-p<0.01).

https://doi.org/10.1371/journal.pone.0186957.g002
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Promoter SNPs determined different putative transcription factors

binding patterns

Different transcription factor binding patterns were obtained in the in-silico study using

MatInspector and Transfac (BioBase) platforms. We observed the loss of a putative biding site

for the glucocorticoid receptor (GR) in sequences carrying the mutant C variant at -549 poly-

morphic position. The CCCC, CCCT and TCCT had purportedly lost this GR binding site vs

the wt CTCT. In addition, other putative binding differences between wild and mutated alleles

at the -643, -549 and -197 positions were observed. These changes affected the binding affinity

of GZF1, CAR/RXR, NBRE, PPARG, VDR/RXR, SOX15, MAF, GABP, FREAC2, NRSF,

MAZ, SFR, ZFP652, NFAT, ISGF-3, and GABP transcription factors (Table 1).

Approach to the cytokines secretion study

To explore the relationship between different levels of PTGDR and the development of the

inflammatory cascade we analyzed the cytokine expression in cell cultures. For this, we used

the culture media of different A549 cells transfected with expression vectors carrying the

PTGDR gene under each of the four promoter haplotypes.

Fig 3. Quantitative real-time PCR analysis of PTGDR expression in no-treatment condition. A549 cells

were transfected with expression plasmids of 653 bp bearing the CTCT (wt) or CCCC, CCCT, TCCT

(mutated) PTGDR promoter sequences, followed by the gene coding sequence. Changes in PTGDR

expression were related to GAPDH as a housekeeping gene. Data were represented as mean ± SD, and

shown as fold increase relative to mRNA levels for cells with CTCT (wt) haplotype (value 1).

https://doi.org/10.1371/journal.pone.0186957.g003

Fig 4. Dexamethasone treatment modifies PTGDR expression levels. A549 cells were transfected with

expression plasmid bearing the CTCT (wt) or CCCC, CCCT, TCCT (mutated) PTGDR promoter sequences

followed by the gene coding sequence, and stimulated with 2.5x10-6 M DEX or ethanol (vehicle) for 12 or 36 h.

Values obtained with ethanol were considered the baseline situation. Kolmogorov, Wilcoxon and Kruskal-

Wallis test were performed. a) Each value represents the mean ± SD of mRNA expression levels obtained in

each condition. b) Data represented as mean ± SD, after vehicle effect removal, and shown as fold increase

relative to mRNA levels for cells with CTCT (wt) haplotype (value 1). (**Wilcoxon-p <0.01).

https://doi.org/10.1371/journal.pone.0186957.g004
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First, we observed that after 12 hours of culture, cells carrying expression vectors with the

PTGDR promoter haplotypes CTCT (wt), CCCC and CCCT had higher cytokine levels than

control cells (without expression vector). At this time, cells carrying the wild-type haplotype

produced the highest concentrations for almost all cytokines measured (S1 Table). In contrast,

after 36 hours of culture, cells carrying the wild-type CTCT sequence had lower values for

most of tested cytokines than control cells and cells carrying mutated haplotypes.

When cells were treated with dexamethasone, we observed again a different responsiveness

pattern depending on the promoter sequence present. After 12 hours of treatment, cells trans-

fected with the wild-type CTCT variant, had decreased levels of cytokines, especially for IP-10,

MCP-1, RANTES, MIP-1β, IL-6 and IL-8. After 36 hours of DEX treatment values of eotaxin

and FGF-basic were also reduced in CTCT cells. However, in cells carrying any of the mutant

haplotypes, the response degree based on almost all measures cytokines were less pronounced

than the response degree observed in cells with wild-type CTCT sequence.

Discussion

The present study focuses on the analysis of the influence of certain polymorphisms of the pro-

moter region of the PTGDR gene on its promoter activity and gene expression, as well as in the

Table 1. In-silico analysis of transcription factor binding site (TFBS) patterns obtained with MatInsprector software and Transfac (BioBase). The

653bp construct includes -613C>T, -549T>C, -441C>T and -197T>C polymorphic sites.

-613 C>T -549 T>C -441 C>T -197 T>C

MatInspector Wild-type E2F

GZF1*
BACH1

CAR/RXR

PPARG

MEF2

HNF3B

EVI1

NBRE

PPARG

VDR/RXR

BCL6

LXRE

NRSF

ZNF263

THRB

E2F1

SP2

KKLF

EOMES

Mutated E2F

SOX15

MAFB

MAFF

BACH1

MEF2

HNF3B

EVI1

PPARG

ZFP652

PAX6

GABP

BCL6

FREAC2

LXRE

PPAR/RXR

ZNF263

THRB

E2F1

SP2

MAZ

SRF

KKLF

EOMES

Transfac (Biobase) Wild-type NF-ATp

ISGF-3

NF-ATc,

NF-ATp,

NF-ATx

SF-1

GR

Mutated IRE-ABP, SRY

SP1

LyF-1

AP-2alphaA

AP-2alphaB

FREAC2

CBF, SRF

*Bold type transcription factors indicate differences between wild-type and mutated polymorphism.

https://doi.org/10.1371/journal.pone.0186957.t001
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evaluation of the effect of dexamethasone treatment. The study included a complete analysis at

three different levels: promoter activity, gene expression and cytokine secretion. In this study,

transfection of different haplotype combinations of PTGDR caused different promoter activi-

ties in A549 cells.

The combination of SNPs at four positions influenced not only the promoter activity but

also expression levels of PTGDR and cytokine secretion patterns, which reinforce the idea that

different SNPs located at different positions should be considered as a whole. In this work, for

the first time, we have studied the promoter activity of the PTGDR gene in cell cultures, analys-

ing the effect of the presence of gene variants in the four more frequently described positions,

i.e. -613, -549, -441 and -197 [31]. Previous studies on the influence of PTGDR promoter poly-

morphisms did not included polymorphisms at -613C>T [19]. In this study, the simultaneous

presence -613T and -549C in a haplotypic combination (TCCT) caused a significant decrease

of the promoter activity after 12 and 36 hours of culture in basal conditions. This variant also

showed lower levels in expression assays, an independent experimental approximation, sug-

gesting that in the presence of both mutations, -613T and -549C (TCCT), a lower promoter

activity would occur, leading to a lower expression of PTGDR.

On the other hand, the experimental data showed that the CCCC construction, which com-

bines both -549C and -197C mutated alleles, caused a significant increase in the promoter

activity at 12 and 36 hours (basal conditions). This increased promoter activity reinforces pre-

vious results showing that the CCC (-549, -441, -197) combination was associated with higher

luciferase expression at 12 and 48 hours [32]. In addition, in our expression experiment, both

CCCC and CCCT haplotypes showed higher expression levels that the CTCT wild-type

PTGDR haplotype (-613, -549, -441 and -197 positions). Our results are consistent with our

own studies, linking high levels of PTGDR mRNA expression in peripheral blood of patients

with asthma (San Segundo Val et al., manuscript in preparation), and studies linking the

-549T>C and -197T>C polymorphism with allergic asthma [19,20]. In addition, we have

described that the diplotype CCCC CCCT was the most frequent diplotype in patients with

asthma [21]. Therefore, the -549C SNP, individually (CCCT), or in combination with the

-197T SNP (CCCC) would be associated to higher levels of expression than the wild-type

PTGDR haplotype. Nevertheless, gene variants in the promoter region of PTGDR could lead to

differences in expression regulation of this gene, which could be associated with an increased

likelihood of developing allergic diseases. The correlation of in vitro expression and dyplotypic

combinations in patients must be considered with caution, since other factors could influence

the PTGDR expression and allergy development.

Several polymorphisms have been involved in corticosteroid responsiveness in asthma [33–

39]. In this study we analyzed for the first time the effect of the treatment with corticosteroids

taking into account different haplotypic combinations of the PTGDR promoter region. The

addition of dexamethasone to the culture caused a different level of response, depending on

the PTGDR haplotype. In the luciferase assays, corticosteroids induced an increment of the

promoter activity both at 12h and 36h. Interestingly, the expression assay exhibited a two-

phase response, with decreased levels of PTGDR at 12h, and increased levels at 36 hours, which

could be indicating a time dependent biphasic mechanism of action of corticosteroids.

In all cases, cells carrying the wild-type variant CTCT had the greatest response, surpassing

even the CCCC haplotype, i.e., the variant with the higher basal activity. It is noteworthy that

these results were obtained in both promoter activity assays and expression analyses. On the

other hand, we observed that the TCCT haplotype, which had the lowest values in basal condi-

tions, also had the lowest response to dexamethasone treatment. The simultaneous presence of

-613T and -549C (TCCT) could indicate that patients with these mutations located in the
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promoter region of PTGDR may respond less to treatment. Further studies are needed to con-

firm the role of this haplotype at the pharmacogenetic response.

Our data also suggest that the combination carrying non mutated SNPs at the four positions

-613, -549, -441 and -197, had a higher capacity to respond to corticoid treatment, suggesting

the presence of specific response elements in the wild-type variant, which are lost with poly-

morphic changes. In fact, our bioinformatics analysis showed that a differential allelic occu-

pancy at these four positions determined modifications in the transcription factor binding,

which could mediate differential performances. The presence of a thymine at -549 position,

which only occurs in the wild-type haplotype, provides a potential binding site for the gluco-

corticoid receptor, which is lost in case of mutation. This could contribute to the worst

response to dexamethasone observed in the CCCC, CCCT and TCCT variants, with respect to

the wild CTCT variant (-613, -549, -441 and -197 positions). Moreover, only the wild-type var-

iant bound to CAR/RXR and VDR/RXR heterodimers and GABP and FREAC transcription

factors, involved in modulating the inflammatory state, balances between Th1/Th2 responses,

and corticoid responses [40–47].

In the other hand, the -613C>T change, present only in the TCCT haplotype, caused the

appearance of putative binding sites for SOX15 and for MAFB, which have been associated to

pulmonary diseases [48,49]. Moreover, this mutation caused the loss of binding sites for GZF1,

also called ZNF336. This transcription factor has a glucocorticoid response element [50],

which could explain the different response to dexamethasone observed in the TCCT variant.

To further investigate the involvement of PTGDR action in inflammation, a multiplexed

analysis of a wide range of cytokines was performed. Cell cultures with high PTGDR levels

showed greater cytokine expression levels than control cells. This data suggest a putative role

of PTGDR in the inflammatory response. Thus, cells with mutant haplotypes in the PTGDR
promoter (CCCC, CCCT and TCCT) showed a higher increment in their cytokine levels than

control cells in both experimental times analyzed. However, cells with wild-type variant CTCT

produced lower cytokine levels than control cells when experimental time was prolonged until

36 hours. Data showed a restraint on increasing cytokines in cells expressing the wild variant

of PTGDR with respect to other variants. It seems that the presence of the wild-type combina-

tion in the PTGDR promoter influences the evolution of cytokine levels. This could contribute

to a lower predisposition to the allergic process. In addition, the presence of different PTGDR
promoter haplotypes appears to cause different response after dexamethasone treatment.

These preliminary data suggest that cells harbouring the wild-type haplotype have a better

response to glucocorticoid showing a more pronounced decrease of proinflammatory cyto-

kines, including cytokines and chemokines associated with asthma and Th2 lung inflamma-

tion, as IP-10 and RANTES [51,52], MIP-1β[53], IL-6, IL-8 [54], and eotaxin [55,56].

It appears that conserved nucleotides for -613C> T, -549T> C, -441C> T and -197T>

C polymorphisms in the promoter PTGDR, as it happens in the wild haplotype CTCT,

provide a greater overall response to treatment with dexamethasone, not only at gene expres-

sion level but also at cytokine expression level. As noted above, this variant is seen most fre-

quently in control individuals [19,20,22] and seems also to be related to a greater sensitivity to

corticosteroids.

In summary, we have shown the influence of PTGDR polymorphisms in the promoter

activity and gene expression as well as in the secretory cytokine pattern in response to corticoid

treatment. Therefore, it is important to note that these results could contribute to explain the

variability in the corticoid response observed in the clinic. Deeper insight in the probable phar-

macogenetic role of PTGDR in corticoid response is needed, in order to identify corticoid

resistant allergic patients.
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