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Abstract
Background: Emerging evidence indicates that immune infiltrating cells in 
tumor microenvironment (TME) correlates with the development and progres-
sion of gastric cancer (GC). This study aimed to systematically investigate the 
immune-related genes (IRGs) to develop a prognostic signature to predict the 
overall survival (OS) in GC.
Method: The gene expression profiles of training dataset (GSE62254), validation 
dataset I (GSE15459), and validation dataset II (GSE84437) were retrieved from 
GEO and TCGA databases. In the present study, we developed a 10 IRGs prog-
nostic signature with the combination of weighted gene co-expression network 
analysis (WGCNA) and least absolute shrinkage and selection operator method 
(LASSO) COX model.
Results: In the training dataset, the accuracy of the signature was 0.681, 0.741, 
and 0.72 in predicting 1, 3, and 5-year OS separately. The signature also had 
good performance in validation dataset Ⅰ with the accuracy of 0.57, 0.619, and 
0.694, and in validation dataset Ⅱ with the accuracy of 0.559, 0.624, and 0.585. 
Then, we constructed a nomogram using the signature and clinical information 
which had strong discrimination ability with the c-index of 0.756. In the immune 
infiltration analysis, the signature was correlated with multiple immune infiltrat-
ing cells such as CD8 T cells, CD4 memory T cells, NK cells, and macrophages. 
Furthermore, several significant pathways were enriched in gene set enrichment 
analysis (GSEA) analysis, including TGF-beta signaling pathway and Wnt signal-
ing pathway.
Conclusion: The signature of 10 IRGs we identified can effectively predict the 
prognosis of GC and provides new insight into discovering candidate prognostic 
biomarkers of GC.
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1   |   INTRODUCTION

Gastric cancer (GC) is an aggressive malignant cancer 
with poor prognosis and high mortality, even among 
patients who underwent surgical resection.1 According 
to GLOBOCAN 2018 data, GC is responsible for over 
1,000,000 new cases and an estimated 783,000 deaths in 
2018, making it the fifth in terms of incidence but second 
in terms of mortality worldwide.2 GC metastasizes early 
via lymphatic system, blood, and peritoneum, leading to 
recurrences within 2  years after surgery and poor long-
term survival.3,4 Therefore, in order to improve the prog-
nosis for GC, it is necessary to develop a new prognostic 
model to stratify patients with GC, thereby guiding indi-
vidualized and precise treatment.

Emerging and accumulating evidence indicates that 
immune infiltrating cells in the tumor microenviron-
ment (TME) play important roles in the development 
and progression of human cancers.5–7 Previously, our 
group systematically studied the role and mechanisms 
of tumor-associated macrophages (TAMs) in TME in 
the development and progression of colorectal cancer 
(CRC). Our results found that M2-subtype TAMs ratio 
was elevated at tumor invasive front, which was closely 
associated with aggressive phenotype and poor prognosis 
of CRC.8 Further mechanism studies revealed that M2-
subtype TAMs and CRC cells could establish "crosstalk" 
by secreting different cytokines to form a positive feed-
back loop, thereby promoting the progression and metas-
tasis of CRC.9–12 These findings indicate that TAMs play a 
crucial part in the development and progression of CRC. 
However, as a highly heterogeneous internal environ-
ment, TME was composed by complex cellular compo-
nents, including not only TAMs, but also other immune 
infiltrating cells such as T cells, NK cells, and so on. 
Numerous studies have demonstrated that the prognosis 
of patients is affected by immune infiltrating cells, and 
the immune outcomes vary according to different types 
of cancer,13 such as lung tumor,14 breast cancer,15 and 
hepatocellular carcinoma.16 For GC, immune infiltrating 
cells have also been reported to play significant effects 
on tumor progression. Li and colleagues showed that 
M2-subtype TAMs polarization triggered by GC-derived 
mesenchymal stromal cells promoted the EMT and me-
tastasis of GC.17 In addition, the accumulation of Treg 
cells within GC tumors underlies resistance to immune 
checkpoint blockade (ICB).18 However, the prognostic 
value of immune infiltration in GC still needs further 
investigation based on comprehensive analysis and large 
sample statistics.

Nowadays, computational methods have been devel-
oped based on gene expression profiles, which provide 

effective tools for systematic analysis to identify can-
didate biomarkers.19,20 For the first time, we identified 
a novel prognostic signature panel using the combina-
tion of WGCNA and LASSO-Cox model in GC based on 
immune-related genes (IRGs). The signature could ef-
fectively predict the overall survival (OS) of GC patients 
and stratify patients into subgroups according to risk 
score (RS). The efficacy of the signature was validated 
in two external datasets. Then, we constructed a nomo-
gram with the combination of the signature and clinical 
features in order to improve clinical decisions. Finally, 
we explored the underlying mechanisms by analyzing 
the relationship between immune infiltration and the 
signature, along with assessing significant pathways en-
riched in high RS and low RS groups. Our findings pro-
vide a model for patient classification and individualized 
treatment.

2   |   MATERIALS AND METHODS

2.1  |  Data collection and preprocessing

A flow diagram of the data preparation, processing, anal-
ysis, and validation is shown in Figure  1. The raw data 
of the training dataset GSE62254(samples  =  300) were 
downloaded from the Gene Expression Omnibus da-
tabase (GEO: http://www.ncbi.nlm.nih.gov/geo/) and 
were further normalized by Robust multi-array average 
(RMA) using R package “affy”.21 The probes were con-
certed to gene symbols according to the platform GPL570 
(Affymetrix Human Genome U133 Plus 2.0 Array). The 
validation dataset Ⅰ GSE15459 (samples  =  192) which 
was also based on platform GPL570 was acquired and pro-
cessed in the same way. The validation data Ⅱ GSE84437 
(n = 433) which was based on platform GPL6947 was log2 
transformed and normalized using R package “limma.” 
The stomach adenocarcinoma (STAD) RNA-seq read 
counts data were retrieved from The Cancer Genome 
Atlas database (TCGA, https://portal.gdc.cancer.gov/) 
and were divided into cancer group (samples  =  342) 
and normal group (samples = 30), which were normal-
ized and selected for differentially expressed gene (DEG) 
analysis using R package “DESeq2”.22 The immune-
related genes (IRGs) were derived from the ImmPort 
database (https://immpo​rt.niaid.nih.gov/). In total, 1211 
overlapped genes from the GSE62254 and TCGA-STAD 
datasets and the IRGs were filtered for further analysis. 
The Venn diagram of overlapped IRGs was plotted using 
R package “VennDiagram” (https://CRAN.R-proje​ct.org/
packa​ge=VennD​iagram). All analyses were carried out 
by R version 3.6.1.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6947
https://portal.gdc.cancer.gov/
https://immport.niaid.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=VennDiagram
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2.2  |  Identification of prognostic 
genes by weighted gene co-
expression network

The training dataset GSE62254 was used to construct the 
weighted gene co-expression network analysis (WGCNA) 
using “WGCNA” package according to the protocol in R 
software.19 Briefly, a similarity matrix between un-signed 
gene expression profiles was constructed based on pair-
wise Pearson correlation. Then, the similarity matrix was 
converted to an adjacency matrix using a power adjacency 
function. The power was chosen based on the scale-free 
topology criterion according to the scale-free topology 
index (R2) as 0.9.23 Next, the adjacency matrix was trans-
formed into a topological overlap matrix (TOM) to de-
tect modules.24 The modules were cut using the dynamic 
tree cut algorithm.24 We cut the genes into modules by 

[blockwiseModules] method with following parameters: 
minModuleSize  =  20, mergeCutHeight  =  0.2, deep-
Split = 2, and verbose = 3.

To extract co-expressed genes most related to OS for 
further analysis, the modules and external clinical traits 
were related by calculating the module eigengenes (MES), 
which were the representatives of all genes in a module. 
The modules with p  <  0.05 were selected as survival-
correlated modules.

For each gene in the modules of interest, the survival 
difference was analyzed by univariate Cox regression 
analysis using R package “survival”.25 Survival-related 
genes were identified with p < 0.05. Subsequently, Gene 
Ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways analysis of the 
survival-related gene set were performed using R package 
“clusterProfiler”.26

F I G U R E  1   Flow diagram of the study. Data processing, analysis, and validation are shown in the picture

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
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2.3  |  Identification of DEGs and 
construction of a prognostic classifier

Differentially expressed genes (DEGs) between cancer 
samples and normal samples in TCGA-STAD were identi-
fied using R package “deseq2”.22 DEGs need to satisfy the 
following criterions: log2|fold change (FC)|≥1 and p < 0.05. 
DEGs were visualized using R package “pheatmap” 
(https://CRAN.R-proje​ct.org/packa​ge=pheatmap). The 
intersection of survival-related genes and DEGs was cho-
sen as candidate genes for the construction of the classifier.

LASSO is a method to reduce the estimation variances 
in high-dimensional predictors.20 To screen out the most 
representative prognostic biomarkers, the expression data 
of the candidate genes were integrated into the LASSO 
regression by R package “glmnet”.27 After selection of the 
key genes influencing the OS of the patients, the multi-
variate Cox regression analysis was performed to attain 
the coefficients of the genes using R package “survival”.28 
Then the RS of each sample was calculated using the for-
mula: RS  =  Σ (Coef of gene*Expression level of gene). 
The samples were divided into high RS group and low RS 
group with the median cut-off of RS.

2.4  |  Verification of the signature

The RS of the GSE15459 dataset and the GSE84437 dataset 
was calculated using the formula above. Time-dependent 
ROC curve and calibration plot in 1, 3, and 5 years were used 
to assess the accuracy of the signature. Samples were divided 
into high RS group and low RS group according to the me-
dian cut-off. Kaplan–Meier plot was performed to explore the 
prognostic difference between high RS and low RS groups.

2.5  |  Construction of nomogram

Nomogram is a device to predict the prognosis for clini-
cal convenience.29 The index of concordance (C-index) 
and calibration plot were used to assess the discrimina-
tion ability of the nomogram using a bootstrap manner 
under 1000 resampling. The construction and valida-
tion of the nomogram were through R package “rms” 
(https://CRAN.R-proje​ct.org/packa​ge=rms). The area 

under the curve (AUC) of the ROC curve was calculated 
to detect the accuracy of the nomogram using R package 
“timeROC”.30

2.6  |  Estimation of immune infiltration

The gene expression data from GSE62254 were adopted 
to explore the relationship between the high and low 
RS groups. First, we applied ESTIMATE (Estimation 
of Stromal and Immune cells in MAlignant Tumor tis-
sues using Expression data) algorithm to calculate the 
immune score and the stromal score of the samples by 
R package “estimate”.31 The correlation curve was plot-
ted to see if there was relationship between OS and im-
mune or stromal score by R package “ggpubr” (https://
CRAN.R-proje​ct.org/packa​ge=ggpubr). Subsequently, 
we uploaded the expression data to CIBERSORTx (Cell 
type Identification By Estimating Relative Subsets Of 
RNA Transcripts, https://ciber​sortx.stanf​ord.edu/runci​
berso​rtx.php) to calculate immune cell type fractions 
based on the default signature matrix at 100 permuta-
tions.32 The visual display of the relationship between 
immune infiltration and the signature was presented via 
R package “vioplot” (https://github.com/TomKe​llyGe​
netic​s/vioplot), and the relationship between immune 
infiltrating cells was presented via R package “corrplot” 
(https://github.com/taiyu​n/corrplot).

2.7  |  Gene set enrichment analysis 
(GSEA)

GSEA analysis (http://softw​are.broad​insti​tute.org/
gsea/index.jsp) was applied to identify the potential 
functions of the signature in dataset GSE62254 between 
high RS and low RS groups.33 The whole genome of 
RNA-seq data in GSE62254 was adopted as gene list and 
the high and low RS groups were used as the phenotype 
labels. The metric for ranking genes parameter was 
Signal2Noise. The reference gene set was “c2.cp.kegg.
v6.2.symbols.gmt.” The number of permutations was 
1000. We selected an ordered list of significant enriched 
pathways with nominal p  <  0.01 and false discovery 
rate (FDR) <25%.

F I G U R E  2   Overlapping IRGs were analyzed by WGCNA. (A) The scale-free fit index for soft-thresholding powers. Left: the relationship 
between the soft-threshold and scale-free R2. Right: the relationship between the soft-threshold and mean connectivity. Different modules 
are labeled in different colors. (B) Dendrogram of differentially expressed genes clustered in the training dataset. (C) Heatmap of the 
correlation between module eigengenes and different clinical information of the GSE dataset (OS, Sex, Death, and Age). (D) GO analysis of 
survival-correlated genes in yellow module. (E), KEGG pathway analysis of survival-correlated genes in yellow module

https://CRAN.R-project.org/package=pheatmap
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
https://CRAN.R-project.org/package=rms
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
https://cibersortx.stanford.edu/runcibersortx.php
https://cibersortx.stanford.edu/runcibersortx.php
https://github.com/TomKellyGenetics/vioplot
https://github.com/TomKellyGenetics/vioplot
https://github.com/taiyun/corrplot
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
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3   |   RESULTS

3.1  |  Construction of weighted gene 
co-expression network and identification 
of survival relevant modules

Based on 1211 overlapping IRGs (Figure S1), the co-
expression network was constructed using the WGCNA 
approach. The power 3 was chosen based on a scale-free 
R2 (R2  =  0.9, Figure  2A). Nine modules were identified 
(Figure  2B). Then, the relationship between modules 
and clinical traits was explored (Figure  2C). The clini-
cal information of interest includes: OS, sex, death, and 
age. Results showed that five modules correlated with OS 
(MEbrown: r = −0.19, p = 0.001; MEyellow: r = −0.23, 
p = 7e-05; MEpink: r = 0.14, p = 0.01; MEblue: r = 0.16, 
p  =  0.006; MEmagenta: r  =  0.16, p  =  0.006) Therefore, 
we chose all five modules for further analysis. By applying 
univariate Cox regression analysis to all IRGs in the yel-
low module, 266 genes were identified of prognostic value 
(p < 0.05, Table S1).

Functional analysis of these genes was performed by 
GO analysis (Figure  2D, Table  S2) and KEGG pathway 
analysis (Figure  2E, Table  S3). The biological processes 
were enriched in regulation of chemotaxis, ameboidal-
type cell migration, and cell chemotaxis. The cellular 
components were enriched in collagen-containing extra-
cellular matrix, proteasome accessory complex, and prote-
asome regulatory particle. The molecular functions were 
enriched in signaling receptor activator activity, receptor 
ligand activity, and growth factor activity. KEGG path-
way analysis showed that the top 10 significant pathways 
were Melanoma, pathways in cancer, natural killer cell-
mediated cytotoxicity, cytokine–cytokine receptor interac-
tion, renal cell carcinoma, focal adhesion, axon guidance, 
MAPK signaling pathway, chronic myeloid leukemia, and 
B-cell receptor signaling pathway.

3.2  |  Construction of the 
prognostic classifier

To construct a stable model specific for GC, 87 candidate 
genes to build the classifier were obtained from the intersec-
tion of 4383 DEGs in TCGA-STAD and 266 survival-related 
genes. The visualization of DEG analysis of TCGA-STAD 

was represented in volcano plot (Figure S2A) and heatmap 
(Figure S2B). Using the expression data of 87 candidate 
genes in GSE62254, the LASSO analysis screened out 10 
genes (BMPR1B, GHR, IL11RA, INHBB, NPR3, OBP2A, 
PTN, R3HDML, TAC1, and TPM2) as the most repre-
sentative genes to construct the signature (Figure  3A,B). 
Multivariate Cox regression analysis of the 10 IRGs was 
carried out to explore the relationship of each gene and OS 
(Table 1), which indicated that 2 IRGs were protective fac-
tors including OBP2A and R3HDML, while 8 IRGs were 
risk factors including BMPR1B, GHR, IL11RA, INHBB, 
NPR3, PTN, TAC1, and TPM2. The RS of each patient 
was computed according to the Cox regression coefficient 
and the expression value of each gene using the formula: 
RS = (0.12784 × BMPR1B expression) + (0.02741 × GHR 
expression)  +  (0.3035  ×  IL11RA expres-
sion) + (0.34105×INHBB expression) + (0.15621 × NPR3 
expression)  +  (−0.84737  ×  OBP2A expres-
sion) + (0.0486 × PTN expression) + (−0.78119 × R3HDML 
expression)  +  (0.03729  ×  TAC1 expres-
sion) + (0.17652 × TPM2 expression).

In order to assess the prediction ability of RS, tROC 
curve was plotted and the results showed that RS could 
effectively predict 1, 3, and 5-year OS of the training data-
set with the AUC of 0.681, 0.741, and 0.72, respectively 
(Figure  3C). We presented the distribution of RS and 
samples’ survival status in Figure 3D. The Kaplan–Meier 
analysis showed that the high RS group represented worse 
prognosis (p < 0.0001, Figure 3E).

3.3  |  Verification in two external datasets

The RS was calculated as the formula above in GSE15459 
and GSE84437 for the validation. Time-dependent 
ROC curve showed that the accuracy of predicting 1, 3, 
and 5-year OS in GSE15459 was 0.57, 0.619, and 0.694 
(Figure  4A), and the accuracy in GSE84437 was 0.559, 
0.624, and 0.585 (Figure 4B). All samples in the two vali-
dation datasets were divided into two groups using the 
median cut-off in each dataset. The distribution of RS 
and the relationship between OS and RS in the datasets 
are shown in Figure  4C,D. The Kaplan–Meier analysis 
showed that the high RS group had significantly worse 
OS in GSE15459 (p = 0.0043, Figure 4E) and GSE84437 
(p  =  0.013, Figure  4F). The univariate and multivariate 
Cox regression analyses showed that the 10 IRGs classifier 

F I G U R E  3   Identification of the signature and stratification of patients using RS. (A) least absolute shrinkage and selection operator 
method (LASSO) coefficient profiles of the 87 prognosis-correlated genes. (B) Determination of the number of the components of the 
classifier. The vertical lines are plotted according to the minimum criteria and 1-standard error criterion. The left vertical line represents the 
10 IRGs finally identified. (C) The time-dependent ROC curve predicting the 1-year, 3-year, and 5-year survival rates. (D) Distribution of RS 
and the relationship between OS and RS. The high-risk and low-risk groups were stratified at optimal cut-off calculated by X-tile software. 
(E) Kaplan–Meier curve showing OS in high RS and low RS groups

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
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was an independent prognostic factor in the training data-
set and the two validation datasets (Table 2). The expres-
sion of 10 IRGs in high RS and low RS groups showed that 
8 risk factors expressed higher in the high RS group, while 
2 protective factors expressed higher in the low RS group 
in the training dataset, the TCGA dataset, and the two 
validation datasets (Figure S3).

3.4  |  Development and 
assessment of the nomogram

For the convenience of clinical practice, we developed a 
nomogram of RS and clinical information using the train-
ing dataset GSE62254 (Figure  5A). Instructions: Draw a 
straight line upward from each IRG and sum all IRG’s 
points to attain total points, then draw a straight line 
downward from the “Total Points” axis to find the pa-
tients’ survival possibility in 1, 3, and 5 years. The c-index 
was 0.7555135 which indicated that the model had good 
discrimination ability. Figure 5B–D shows that the nomo-
gram showed good performance on account that the cali-
bration plots were close to the 45° line.

3.5  |  Immune infiltration analysis

The difference between high and low RS groups was sig-
nificant in the stromal score (p < 0.001), while no differ-
ence is shown in the immune score (Figure  6A), which 
indicated that the overall level of immune infiltration was 
similar among GC patients. The negative correlation was 
observed between the stromal score and OS in the correla-
tion plot (r = −0.16, p = 0.0047, Figure 6B).

Since the 22 subsets of leukocyte were reported to hold 
promising prognostic value in cancers,34 to investigate 
if the imbalance of these infiltrating immune cells were 
correlated with the signature we identified and OS, the 

expression profiles were further uploaded to CIBERSORTx 
to compute the fractions of the 22 immune infiltrating 
cells.

The differences of 22 infiltrating immune cells were 
analyzed between high and low RS groups (Figure 6C). 
Eight subtypes of infiltrating cells showed difference 
between high RS and low RS groups (p  <  0.05). Five 
cell fractions were downregulated in the high RS group 
including T cells CD8 (p  =  0.002), T cells CD4  mem-
ory activated (p  <  0.001), NK cells resting (p  <  0.01), 
Macrophages M0 (p  =  0.042), and Macrophages M1 
(p = 0.035), while three cell fractions were upregulated 
in the high RS group including, T cells CD4 memory rest-
ing (p = 0.003), T cells gamma delta (p < 0.01), and Mast 
cells resting (p = 0.02).

The Pearson correlation was applied to explore the 
relationship between infiltrating immune cells and OS 
(Table S4, Figure S4). The positive correlation was observed 
in three cell fractions including T cells CD4  memory 
activated (r  =  0.16, p  =  0.0048), Plasma cells (r  =  0.13, 
p = 0.022), and NK cells resting (r = 0.11, p = 0.048), while 
negative correlation was observed in Macrophages M2 
(r = −0.12, p = 0.032). Figure 6D shows the correlations 
between 22 immune infiltrating cells, which indicated that 
there were weakly relationships between those cell types.

3.6  |  GSEA analysis of 
potential pathways

There were six pathways enriched in the high RS group 
and three pathways enriched in the low RS group 
(Figure 7). The pathways enriched in the high RS group 
were axon guidance (nominal p  =  0.004, FDR  =  0.196, 
NES  =  1.58, gene size  =  128), adherens junction 
(nominal p  =  0.008, FDR  =  0.248, NES  =  1.67, gene 
size  =  66), dilated cardiomyopathy (nominal p  =  0.008, 
FDR = 0.162, NES = 1.66, gene size = 88), hypertrophic 

Symbol Coefficient p value HR
Low 
95% CI

High 
95% CI

BMPR1B 0.12784 0.3497 1.1364 0.8693 1.486

GHR 0.02741 0.8168 1.0278 0.8151 1.296

IL11RA 0.3035 0.382 1.3546 0.6859 2.675

INHBB 0.34105 9.75E−05 1.4064 1.1847 1.67

NPR3 0.15621 0.5495 1.1691 0.701 1.95

OBP2A −0.84737 0.1554 0.4285 0.1331 1.38

PTN 0.0486 0.7633 1.0498 0.7651 1.44

R3HDML −0.78119 0.0834 0.4579 0.1891 1.109

TAC1 0.03729 0.5914 1.038 0.9058 1.189

TPM2 0.17652 0.5758 1.1931 0.6428 2.214

T A B L E  1   Information for 10 IRGs 
signature screened by LASSO Cox 
regression

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254


6554  |      CHEN et al.

F I G U R E  4   Validation of the signature in two external datasets. (A) The time-dependent ROC curve predicting the 1-year, 3-year, and 5-
year survival rates of GSE15459. (B) The time-dependent ROC curve predicting the 1-year, 3-year, and 5-year survival rates of GSE84437. (C) 
Distribution of RS and the relationship between OS and RS in GSE15459. (D) Distribution of RS and the relationship between OS and RS in 
GSE84437. (E) Kaplan–Meier curve analysis between the high RS and low RS groups of GSE15459. (F) Kaplan–Meier curve analysis between 
the high RS and low RS groups of GSE84437

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
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cardiomyopathy HCM (nominal p = 0.008, FDR = 0.221, 
NES = 1.66, gene size = 1.66), WNT signaling (nominal 
p  =  0.008, FDR  =  0.205, NES  =  1.56, gene size  =  146), 
and TGF-beta signaling pathway (nominal p  =  0.0097, 
FDR = 0.179, NES = 1.60, gene size = 81). The pathways 
enriched in the low RS group were one carbon pool by 
folate (nominal p  <  0.001, FDR  =  0.123, NES  =  −1.85, 
gene size  =  16), homologous recombination (nominal 
p = 0.006, FDR = 0.136, NES = −1.74, gene size = 26), 
and DNA replication (nominal p = 0.009, FDR = 0.112, 
NES = −1.73, gene size = 36).

4   |   DISCUSSION

With the development of transcriptome analysis methods 
such as quantitative PCR and microarray, the molecular 
signatures predicting clinical outcomes have been devel-
oped in GC and several approaches were adopted to dis-
tinguish the subtypes of GC based on gene expression.35–38 
However, these researches were genome-wide, which 
was inconvenient for clinical practice. Recently, signa-
tures derived from the whole genome to predict the long 
time survival of GC patients consisting of a few genes 
were invented to improve the clinical management.39–42 
Nevertheless, the genes involved in the classifiers did not 
overlap, probably because of the high heterogeneity of 
GC. There is still development and improvement space 
for new signatures.

Previous studies demonstrated that immune features 
significantly affected the survival of GC patients.38,43 
Additionally, a signature of 14 immune-related gene pairs 
based on 25 genes was established by defining a gene pair 
that the expression of one gene was stably higher than the 
other,44 but the biological connection of genes in a gene 
pair was uncertain and they used univariate Kaplan–
Meier curve analysis to screen out survival-related genes 
to put in LASSO analysis which was only suitable for 
dichotomous outcomes. After construction of the classi-
fier, they only used Kaplan–Meier curve to evaluate the 
model. In our study, we applied WGCNA analysis to all 
IRGs to identify co-expressed gene modules and subse-
quently correlated these modules with clinical traits. The 
signature in this paper was built based on the IRGs in the 
interested co-expressed gene module. To screen out the 
survival-related genes, univariate Cox regression analysis 
was adopted, which was suitable for continuous variables 
as gene expression profiles. Furthermore, we constructed 
a nomogram for clinical convenience and used time-
dependent ROC curve and calibration plot for evaluation.

BMPR1B, GHR, IL11RA, INHBB, NPR3, OBP2A, PTN, 
R3HDML, TAC1, and TPM2 were used to build the sig-
nature. Previous studies stated the correlation between 
some of these IRGs and GC. GHR regulates GC cell 
growth and apoptosis through controlling G1 cell cycle 
progression via PI3K/AKT signaling pathway.45 IL11RA 
was reported to have common copy number alteration in 
GC cell lines.46 Tachykinin-1 (TAC1) is centrally involved 

T A B L E  2   Univariate and multivariate Cox regression analysis of clinical information and RS

Univariate Cox regression analysis Multivariate Cox regression analysis

Training dataset

Risk factors HR (95%CI) p value Risk factors HR (95%CI) p value

Gender (male vs. female) 0.90(0.65–1.27) 0.559 Gender (male vs. female) 1.07(0.75–1.52) 0.716

Age (≥60 vs. <60) 1.24(0.88–1.74) 0.217 Age (≥60 vs. <60) 2.10(1.46–3.00) <0.001

Stage 3.41(2.34–4.96) <0.001 Stage 1.32(0.89–1.96) 0.175

RS 2.72(2.15–3.44) <0.001 RS 2.76(2.13–3.58) <0.001

Validation dataset I

Risk factors HR (95%CI) p value Risk factors HR (95%CI) p value

Gender (male vs. female) 1.4(0.91–2.17) 0.127 Gender (male vs. female) 0.76(0.48–1.21) 0.542

Age (≥60 vs. <60) 0.98(0.64–1.51) 0.936 Age (≥60 vs. <60) 1.02(1.00–1.03) 0.07

Stage 2.79(2.14–3.64) <0.001 Stage 3.07(2.31–4.07) <0.001

RS 1.39(1.08–1.79) 0.011 RS 1.58(1.21–2.08) <0.001

Validation dataset II

Risk factors HR (95%CI) p value Risk factors HR (95%CI) p value

Gender (male vs. female) 1.26(0.93–1.70) 0.141 Gender (male vs. female) 1.24(0.91–1.67) 0.171

Age (≥60 vs. <60) 1.79(2.34–2.39) <0.001 Age (≥60 vs. <60) 1.94(1.45–2.61) <0.001

RS 1.54(1.14–2.07) 0.005 RS 1.72 (1.27–2.33) <0.001
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in gastric secretion, motility, mucosal immunity, and cell 
proliferation and was silenced by promoter hypermethyl-
ation in GC.47 miRNA‑183‑5p.1 restricts TPM1 (tropomy-
osin 1), TPM2, and TPM3 and promotes cell proliferation, 
migration, and invasion.48

For the better understanding of the RS and the immune 
infiltration, we applied the ESTIMATE algorithm and 
utilized the CIBERSORTx web tool. A previous study re-
vealed the stromal score predicted poor prognosis in GC.49 
The stromal score was higher in the high RS group, which 
indicated that stromal changes in the progression of GC 
might be hazardous. CD4+ T-cell response was reported 
to be harnessed to mediate the regression of a metastatic 
epithelial cancer.50 The latest research shows that CD4+ T 
cells augment immune-mediated elimination of tumors.51 
In our analysis, CD4 memory T cells activated were dis-
tinctly downregulated in high RS group compared to low 

RS group and were notably correlated with RS, which 
might provide information for further experiment on treat-
ment of GC. Our study also found that macrophages M1 
were significantly downregulated in high RS group and 
negatively correlated with RS. Macrophages M1 inhibit, 
whereas macrophages M2 promote gastric tumor progres-
sion.52 The strategies reconverting M2 to M1 were proposed 
in anti-cancer treatment.53,54 The treatments targeting im-
mune infiltrating cells are worth continuing excavation.

Nine pathways were differentially enriched between 
high RS and low RS groups by GSEA analysis. TGF-beta 
shapes the TME to restrain anti-tumor immunity by 
restricting T-cell infiltration.55 WNT signaling-targeted 
therapeutics combined with immune checkpoint block-
ers might be applicable to treat cancers with immune 
invasion,56 and WNT inhibitors could be effective anti-
metastatic drugs for GC.57

F I G U R E  5   Construction of the nomogram. (A) The nomogram for predicting survival possibilities. (B–D), The calibration plot of the 
nomogram for predicting 1-year, 3-year, and 5-year survival rates
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F I G U R E  6   Immune infiltration analysis. (A) The violin plot of the difference in stromal score and the immune score between high 
RS and low RS groups. (B), The correlation plots of the relationship of OS and the stromal score, along with the relationship of OS and 
the immune score. (C) The violin plot showed the difference in 22 immune infiltrating cells between high RS and low RS groups. (D) The 
correlation plots of the nine immune infiltrating cells related to RS
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However, there are still limitations in the present 
research. First, our research is retrospective and a pro-
spective validation cohort is needed. Additionally, the 
number of IRGs detected on different platforms was dif-
ferent and not complete which meant several genes were 
not involved in the analysis. Finally, the underlying mech-
anism of the signature genes was not fully identified and 
further experimental studies are needed for the better un-
derstanding of their functions.

5   |   CONCLUSIONS

In summary, we successfully developed and validated a 
10 IRGs signature which could effectively predict the OS 
of GC patients. The signature was also correlated with 
multiple types of immune infiltrating cells and significant 

pathways. In addition, a nomogram based on these IRGs 
was constructed for clinical convenience. Therefore, our 
study could provide information for further immune-
related work and precise immunotherapy in GC.
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