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This paper presents the implementation and quantitative evaluation of a multiphase three-dimensional deformable model in a
level set framework for automated segmentation of brain MRIs. The segmentation algorithm performs an optimal partitioning
of three-dimensional data based on homogeneity measures that naturally evolves to the extraction of different tissue types in
the brain. Random seed initialization was used to minimize the sensitivity of the method to initial conditions while avoiding
the need for a priori information. This random initialization ensures robustness of the method with respect to the initialization
and the minimization set up. Postprocessing corrections with morphological operators were applied to refine the details of the
global segmentation method. A clinical study was performed on a database of 10 adult brain MRI volumes to compare the level
set segmentation to three other methods: “idealized” intensity thresholding, fuzzy connectedness, and an expectation maximiza-
tion classification using hidden Markov random fields. Quantitative evaluation of segmentation accuracy was performed with
comparison to manual segmentation computing true positive and false positive volume fractions. A statistical comparison of the
segmentation methods was performed through a Wilcoxon analysis of these error rates and results showed very high quality and
stability of the multiphase three-dimensional level set method.
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1. INTRODUCTION

Segmentation of three-dimensional anatomical brain images
into tissue classes has applications in both clinical and re-
search settings. Although numerous methods to segment
brain MRI for extraction of cortical white matter, gray mat-
ter, and cerebrospinal fluid (CSF) have been proposed for the
past two decades, little work has been done to evaluate and
compare the performance of different segmentation methods
on real clinical data sets, especially for CSF.

Segmenting three-dimensional anatomical brain images
into tissue classes has applications in both clinical and re-
search settings. As a clinical example, segmentation can pro-
vide volumetric quantification of cortical atrophy and thus
aid in the diagnosis of degenerative diseases. These volumet-
ric measurements apply to the research setting as well, where
segmentation can also be used to define regions of interest for

quantifying the physiological responses measured with fMRI
or PET acquired on the same patients and coregistered with
the MRI data. Clinical studies based on quantitative mea-
surements of cortical brain structures include Alzheimer’s
disease [1–3], epilepsy [4], schizophrenia [5], cerebrovascu-
lar deficiency [6], and multiple sclerosis [7].

Several methods have been proposed in the literature to
segment brain MRI. A good review of these methods can be
found in [8] and we can distinguish two general families.

(1) Statistical methods

The first family of methods is based on classification of brain
tissues into different classes, based on intensity values (direct
values of features computed from these values). Gray val-
ues thresholding is the most intuitive classification approach
[9]. One common difficulty with this method is the selection
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of the threshold level. Many selection approaches have been
proposed based on histograms [10, 11], combination of
morphological operators and region growing [12], and so
forth. Derived from a statistical framework, Bayesian analy-
sis [13, 14] is a popular classification method for brain tissue
where automatic segmentation is performed with expecta-
tion maximization (EM) [4]. The freely distributed statistical
parametric mapping (SPM) software tool [15] is widely used
by neuroradiologists for clinical research. Additional classi-
fication methods include clustering [16, 17], fuzzy classifi-
cation [18], neural networks [19], deterministic annealing
[7]. Hybrid “neuro-fuzzy” methods, see [2, 20, 21], com-
bining fuzzy logic and neural networks perform an unsu-
pervised learning process. Another class of statistical meth-
ods is based on Markov Random Field (MRF) [22–25]. MRF
model encodes spatial information through the mutual in-
fluences of neighboring voxels for class assignments. A major
issue with MRF-based classification methods is the require-
ments for training the model and setting the MRF param-
eters which typically require supervised learning and a pri-
ori information from manual labeling or from an atlas. In
this context, classification and nonuniform registration are
sometimes combined together for more robustness [1, 26].
Finally, these statistical methods can be applied to multispec-
tral MRI (i.e., MRI data of the same patient acquired with
different protocols such as T1-weighted, T2-weighted, pro-
ton diffusion) using multivariate statistics. Several applica-
tions of multispectral brain MRI classification have been pre-
sented in the literature [25–27].

(2) Deformable models

The second family of segmentation methods deals with geo-
metric deformable models, including active surfaces [28] and
level-set-based deformable models. The level set implemen-
tation framework for surface propagation offers the advan-
tages of easy initialization, computational efficiency, and the
ability to capture deep sulcal folds. Two coupled level set
surfaces were proposed by Zeng et al. [29] for cortex seg-
mentation from 3-D MR images, assuming a constant thick-
ness range of the cortical mantle. A combination of joint-
prior shape appearance models with a level set deformable
model was proposed by Yang and Duncan [30]. This method
was motivated by the observation that the shapes and gray
levels variations in an image had some consistent relations
building a MAP shape-appearance prior model provided
some configurations and context information to assist the
segmentation process. The model was formulated in a level
set framework rather than using landmark points for para-
metric shape description. Goldenberg et al. [31] proposed
a geometric variational formulation for the propagation of
two coupled bounding surfaces, similar to Zeng et al. [29].
The authors put forward an efficient numerical scheme for
the implementation of a geodesic active surface model. Sev-
eral external driving forces, derived from brain MRI, have
been proposed based on image gradient [32], image intensity
[33], and probability density function [28] of tissue classes.
Combining classification and deformable models has been

proposed by Ballester et al. [34] combining Bayesian analy-
sis and active surface method, and Shen et al. [35] combin-
ing geometric deformable model and statistical information
about the shapes of interest.

Automation of the segmentation process is critical for ap-
plications in clinical research where the number of cases to
process is large and the time available for experts to ana-
lyze the data is very limited. Several of the aforementioned
methods were developed in a supervised or semi-automated
framework still requiring operators’ intervention. Full au-
tomation can be achieved using automatic parameter tuning
[10], automated initialization [12], and combination with at-
las information [4].

This paper presents the comparison of the three “clas-
sical” segmentation methods: histogram-based threshold-
ing, tissue classification based on fuzzy connectedness, and
maximum-likelihood classification with hidden MRF using
the FSL-FAST software tool. We also present in this paper the
implementation of a new three-dimensional automated seg-
mentation method of brain MRI using a four-phase three-
dimensional active contour implemented with a level set
framework. This multiphase level set framework was ini-
tially proposed by Vese and Chan [36] to simultaneously de-
form coupled level set functions without any prior models
or shape constraints. This framework achieves a global parti-
tioning of the image data into 2N homogeneous areas using
N level set curves, solely based on average gray values mea-
sures.

These four segmentation methods were applied to a set
of ten clinical T1-weighted MRIs for segmentation of corti-
cal tissues: white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF). Segmentation errors are reported with
comparison to manual labeling. The segmentation methods
were also compared in a statistical framework to assess their
relative performance and overall “quality.”

2. METHOD

We present in this section the four segmentation methods
that were applied to ten brains T1-weighted MRI and com-
pared together. Manually labeled data was available for this
comparative study. This “ground truth” was used to optimize
the parameter settings of the three “classical” segmentation
methods, as detailed below.

2.1. Intensity thresholding

Intensity thresholding (IT) is the easiest and fastest segmen-
tation method, often adopted for preprocessing of medical
images and preregistration problems [9]. Segmentation of
the three brain cortical tissues is performed via threshold-
ing of voxel values within adjacent intervals. The position
of the interval bounds was initialized as follows: we used
the manually labeled data to mask the MRI data and com-
pute the means of the three cortical tissues of interest. These
mean values were used to initialize the threshold values at the
two interfaces CSF/GM and GM/WM. The Tanimoto index
[37] was calculated according to the manually labeled data.
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Finally, the simplex method [38] was applied to maximize
the Tanimoto value and identify optimal interval bounds cor-
responding to a minimization of the segmentation error.

2.2. Fuzzy connectedness

Classification of homogeneous objects using fuzzy connect-
edness (FC) was introduced by Falcão et al. [18]. This
method can be used to extract homogeneous tissues in a
volume given an initial set of seed points and prior statis-
tics defining these tissues. The source code for this method
was obtained from the freely distributed insight segmenta-
tion and registration toolkit (ITK) [39] sponsored by the Na-
tional Library of Medicine. Segmentation of the different tis-
sues was performed via thresholding of the real-valued fuzzy
connectedness maps. The threshold levels were also deter-
mined via minimization of the segmentation error using the
simplex method [38].

2.3. Hidden Markov random field-expectation
maximization

The FAST software tool [40] is a publicly available automated
segmentation tool for brain MRI volumes. This software tool
is part of the FSL comprehensive library of functional and
structural brain image analysis tools, distributed by the Ox-
ford Centre for Functional Magnetic Resonance Imaging of
the Brain (FMRIB) at the University of Oxford, UK. Brain
MRI volumes were segmented into three tissue types (WM,
GM, and CSF) with simultaneous correction of RF bias-field.
The segmentation process is based on hidden Markov ran-
dom field (HMRF) models. Fitting of the HMRF model to
the data was performed via maximum likelihood with ex-
pectation maximization (EM). A thorough description of the
algorithm was published in [41].

2.4. Multiphase three-dimensional level set

The multiphase three-dimensional level set (M3DLS) seg-
mentation method performing a minimal partitioning of the
image data into piecewise constant objects, based on the
Mumford-Shah functional [42], was introduced by Chan and
Vese [43].

2.4.1. Energy functional

This method uses a deformable model controlled by a
homogeneity-based energy functional to segment piecewise
constant or piecewise smooth volumetric data u0. Assuming
a piecewise-constant data with an object, of value c1, and a
background, of value c2, separated by the contours C, the
proposed energy functional is defined as

F
(
C, c1, c2

) = μ
(
length (C)

)
+ υ
(
area (inside C)

)

+ λ1

∫

inside (C)

∣∣u0 − c1
∣∣2
dΩ

+ λ2

∫

outside (C)

∣
∣u0 − c2

∣
∣2
dΩ,

(1)

where μ ≥ 0, υ ≥ 0, λ1, λ2 > 0 are fixed parameters.

c00

c10 c11 c01

c1 c2

Figure 1: Partitioning of the image into four phases using two
curves (average intensity values are designed as c00, c10, c01, c11).

Segmentation of the data is performed via minimization
of the functional F with respect to (C, c1, c2). This energy
functional can be extended to the segmentation of multiple
homogeneous objects in the image by using several curves
{c1, c2, . . . , ci}. In the case of two curves the following energy
functional is used:

F
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)

= μ1 length
(
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)

+ μ2length
(
c2
)

+ υ1 area
(
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(
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(2)

The set of parameters (λ1, λ2, λ3, λ4,μ1, ν1,μ2, ν2) takes real
positive values. The two closed curves (c1, c2) split the do-
main Ω into four phases defined by their relative positions as
illustrated in Figure 1. Inside these four phases, u0 has mean
intensity values (c00, c01, c10, c11).

Minimization of this energy functional deforms simul-
taneously the two curves and identifies four homogeneous
areas defined by the intersection of the two curves.

2.4.2. Level set formulation

Minimization of the functional in (1) and (2) can be per-
formed within a level set framework. This framework, intro-
duced by Osher and Sethian [44], provides an effective im-
plicit representation for evolving curves and surfaces, which
has found many applications in image segmentation, denois-
ing and restoration as reviewed in [45]. In this framework,
a given curve C (being now the boundary ∂w of an open
set ω ∈ Ω) is represented implicitly, as the zero level set
of a scalar Lipschitz function φ : Ω → R (called level set
function), such that

φ(x) > 0 on ω,

φ(x) < 0 on Ω\ω,

φ(x) = 0 on ∂ω.

(3)
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The level set function φ is typically defined as the signed dis-
tance function of spatial points defined on Ω to the curve C.
Once φ is computed, we define its associated Heaviside func-
tion H and Dirac function δ as

H(φ) =
⎧
⎨

⎩
0, if φ ≥ 0,

1, if φ < 0,

δ(φ) = d

dφ
H(φ).

(4)

Using these two functions, the different components of the
functional in (1), parameterized with the contour curve C,
can be reformulated as integrals, parameterized with the level
set function φ and defined over the entire domain Ω.

(a) Length of the curve C:

Length(C) = Length(φ = 0)

=
∫

Ω

∣
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∣
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∫

Ω
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(5)

(b) Area inside the curve C:

Area(C) = Area(φ < 0) =
∫

Ω
H(φ)dΩ. (6)

(c) Homogeneity of u0 inside and outside the curve C:
∫
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(7)

Minimization of the energy functional leads to the expres-
sion of the associated Euler-Lagrange equations for deriva-
tives with respect to (c1, c2,φ). The first two derivatives, with
respect to (c1, c2), lead to the following results, used for com-
putation of the mean statistics:

c1(φ) =
∫
Ω u0(x)H
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(8)

The third partial derivative of F(φ, c1, c2), with respect to φ,
leads to the following dynamic equation:

∂φ

∂t
=δε(φ)
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(9)

This segmentation framework is extended to the detection
of multiple objects via the introduction of multiple level set
functions {φ1,φ2, . . . } and the computation of mean data
values in areas of constant values defined via the combination
of their Heaviside functions (H(φ1)×H(φ2)× · · · ). In this
study we implemented the segmentation functional with two
level set functions generating four phases. We can introduce

the binary functions χ (also called characteristic functions)
that define the four regions:

χ1(φ)=Hε(φ), χ0(φ)=(1−Hε(φ)
)
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(10)

The Euler-Lagrange equations, for the four-phase configura-
tion, lead to the following equations defining the mean values
of each phase:
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The partial derivatives with respect to the two level set func-
tions define the following system of equations:
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(12)

We present in the next section details regarding the numeri-
cal implementation of this system.

2.4.3. Numerical implementation

Segmentation was performed via iterations of the system of
equations defined in (12), deforming the two level set fronts
(φ1,φ2) until convergence to a stable position was reached.

The iterative scheme was organized as follows.

(1) Initialize the system for time n = 0, with (φn
1 ,φn

2 ) de-
fined as the distance functions from an initial set of
curves.

(2) For time n > 0, while the system is unstable,

(a) compute the average values in the four phases
(cn11, cn10, cn01, cn00);

(b) compute the curvature and homogeneity terms
of the speed, defined for each points in the spatial
domain Ω;

(c) compute (φn+1
1 ,φn+1

2 ) from (12) with the speed
term (from (b)) and (φn

1 ,φn
2 );

(d) evaluate the stability of the system. Iterate at time
n + 1 if the system is not stable.
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(3) When the system is stable, extract the four phases as bi-
nary volumes corresponding to (χn+1

11 , χn+1
10 , χn+1

01 , χn+1
00 ).

In our implementation, the segmentation was initialized
with two level set functions defined as the distance function
from two sets of initial curves. The curves were defined as 64
cylinders centered at regularly spaced seed locations across
the entire data volume. The two sets of cylinders were slightly
shifted from each other as illustrated in Figure 2.

Note that such initialization does not use any a priori
information on the location of particular tissues or on the
anatomy of the brain and does not require manual input by
the user. As commented by Vese and Chan [36], this type
of initialization also brings some robustness to the method,
limiting the risks of convergence of the minimization process
to local minima.

The level set algorithm was implemented with a regu-
larized Heaviside function and a semi-implicit scheme as
proposed by Vese and Chan [36] and extended to three di-
mensions. In this scheme, the speed term at time n was
computed with the curvature derived semi-implicitly (us-
ing (φn

i ,φn+1
i )i=1,2) while the homogeneity force term was

computed explicitly with (cni )i=1,2. This semi-implicit scheme
provides unconditional stability for any temporal and spa-
tial discretization parameters. This means that we can set
the time increment to an arbitrary high value to speed up
the segmentation process without altering the stability of the
minimization process.

2.5. Addressing the inhomogeneity issue

All four segmentation methods tested in this work per-
form a partitioning of the volumetric data into three tissue
classes and a background relying on a strong assumption
of tissue homogeneity for WM, GM, and CSF. The notion
of homogeneity is then translated into a statistical frame-
work (HMRF-EM, homogeneous tissue is characterized by
its mean and variance), a fuzzy connectivity (FC, homoge-
neous tissue is characterized by high affinity measures to
a prior seed point given a statistical model), or a distance
measure (M3DLS, homogeneous tissue is characterized by its
mean intensity value; IT, interval bounding values).

Even though homogeneity-based segmentation methods
are widely used for brain MRI segmentation, it is well known
that there are strong tissue inhomogeneities in MRI volumes
of the following four origins: (1) biological tissues are in-
herently heterogeneous with internal structures and multi-
molecular components which contribution are integrated in
the recorded MRI signal, (2) the MRI acquisition system is
degraded by inherent statistical noise, (3) design of the MRI
acquisition system suffers from inhomogeneity of the radio-
frequency (RF) field (this phenomenon is also referred to as
RF bias-field), (4) MRI imaging systems have limited spatial
resolutions which generate partial volume effects (i.e., mixing
of MRI signals from adjacent tissues) at tissue interface loca-
tions.

The first two sources are inherent to the modality but
have minor impacts on the cortical structures that we are try-
ing to segment. The other two sources generate artifacts that

(a) (b)

Figure 2: Initialization of the four-phase level set segmentation
method. (a) Original MRI slice with two sets of circles initialized
over the entire image. (b) Corresponding partitioning of the image
domain into four phases defined by the overlap of the two level set
functions obtained from the cylindrical shapes.

tend to become undetectable by simple visual inspection as
MRI scanner technology improves, but that still constitute
the major source of error and failure of homogeneity-based
segmentation algorithms.

(a) RF bias-field: elaborated algorithm has been devel-
oped to correct RF bias-field [46–49]. We compared
two methods commonly used and available in free-
software packages. The first method was proposed by
Styner et al. [47] and is available in the ITK package
[50]. The second method was proposed by Ashburner
and Friston [46] and is available in the FSL software
package [40].

(b) Partial volume effect introduces inhomogeneities at
tissue interfaces that can be modeled in a statistical
framework by manipulating tissue mixture models as
in [24, 51, 52]. Mixed classes are created and if neces-
sary assigned to one of the “true” tissue classes con-
stituting the mix. Neither the statistical HMRF-EM
method nor the three other methods tested in this
work included such correction and initial experiments
on clinical data sets revealed misclassification of tis-
sue labels for voxels located at tissue interfaces. We
therefore derived a postprocessing sequence, based on
morphological operators to correct for misclassifica-
tions at interfaces between GM and WM and between
the CSF and WM or GM.

2.6. Postprocessing

A simple postprocessing scheme was designed to correct for
pixel assignment at tissue interfaces. After the level set seg-
mentation was completed, WM, GM, and CSF structures,
corresponding to separate phases, were saved as binary vol-
umes. These volumes were then used as masks applied to the
original data and a Gaussian fit of the histograms of each
phase was performed. Each phase was then characterized by
the mean and standard deviation (μphase, σphase) of the fitted
Gaussian distribution. Interface voxels were tested against the
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phase parameters as follows. First, the GM mask was dilated,
to correct for the under segmentation of this thin structure.
An interval of intensity values of [μGM ± 3σGM] was selected.
All new voxels, from the dilated mask, with intensity values
inside this interval were included in the GM phase while vox-
els with intensity values outside the interval were removed
from the phase and assigned to the adjacent WM phase. This
process was iterated until no new points were added to the
GM phase. A similar process was then applied to the CSF
phase with dilation of the binary mask. An interval of inten-
sity values of [μCSF ± 4σCSF] was selected. Finally, a 3D con-
nectivity algorithm was performed to remove isolated voxels
in the three phases. This simple postprocessing approach has
provided very robust performance on the ten clinical MRI
cases segmented for this study.

A second postprocessing correction was needed to com-
pare results from the different segmentation methods to
manual labeling. Indeed, manual labeling did not include
sulcal CSF and labeled the outer most layer of cortical brain
tissue as gray matter. This was an arbitrary assignment made
by the manual expert, that does not take into account partial
volume effects in these voxels. A similar arbitrary classifica-
tion had to be applied to the segmented data, before compar-
ison to manual labels. This problem was especially impor-
tant for the FAST HMRF-EM classification which is based
on an anatomical model with sulcal CSF, leading to overes-
timation of the CSF on the MRI data. This oversegmenta-
tion of sulcal CSF lead to very high false positive errors when
compared to manual labeling. Sulcal CSF was removed from
the segmented data, after postprocessing of interface voxels,
for all segmentation methods, as follows. Given the spatial
resolution of the data (0.86 mm2 × 3 mm slice thickness),
a 2-voxels dilation of the manually labeled CSF ventricles
was performed in axial views, and one 1-voxel dilation was
performed in the longitudinal direction. The dilated ven-
tricle masks were applied to the segmented CSF mask and
segmented voxels outside the dilated manual mask were as-
signed to the GM phase.

3. EXPERIMENTS

3.1. Data sets

3.1.1. Clinical T1-weighted MRI

We applied our segmentation to one phantom and ten T1-
weighted MRI volumes acquired on healthy young volun-
teers. Axial slices were 1.5 mm thick with an in-plane (hy-
phen) resolution of 0.86 mm. These images were resliced
coronally (3 mm slice thickness) and labeled via a labor-
intensive (40 hours per brain) manual method in which ex-
pert raters with extensive training in neuroanatomy choose
histogram thresholds on locally hand-drawn regions of inter-
est. This labeled data was used as a “ground truth” for evalu-
ation of the segmentation accuracy.

MRI volumes were preprocessed to remove all noncor-
tical brain tissue by using the manually labeled data sets as
binary masks. This preprocessing is illustrated in Figure 3.
To determine the practicality of masking out subcortical gray
matter on naı̈ve images, we constructed from a library of

(a) (b)

(c) (d)

Figure 3: MRI brain data. (a) Original slice with cortical structures.
(b) Original data with noncortical structures removed. (c) Manually
labeled data on cortical structures. (d) Simplified manually labeled
data used for the “ground truth.”

labeled atlases two probabilistic atlases in which each voxel
was assigned a likelihood of being made of cortical gray mat-
ter or subcortical gray matter. Less than 0.1% of the vox-
els in the whole brain simultaneously had over 20% chance
of being made of both gray matter and subcortical gray
matter. Such statistical finding confirms that one can apply
a population-based method for masking out subcortical gray
matter for the purpose of applying cortical segmentation
methods without introducing significant errors.

3.1.2. Mathematical brain phantom

A mathematical brain phantom was built from one manu-
ally labeled MRI data set to validate the performance of the
multiphase level set segmentation algorithm in an ideal case.
A constant intensity value was applied for each tissue cor-
responding to the average intensity value of the MRI data
under the manual mask. This phantom data is illustrated in
Figure 3.

3.2. Validity of homogeneity hypothesis

Prior to segmentation, we evaluated the homogeneity of the
three cortical tissues: WM, GM, and CSF, computing the
mean and variance statistics of the intensity distribution for
each tissue within each slice. These statistical measurements
were performed on axial slices across the entire data volumes
for the ten MRI cases available for the study, masking the data
with the manually labeled data.

Results, illustrated in Figure 4 for three typical cases,
showed very stable estimates of intensity mean and variance
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Figure 4: Intensity distributions and statistics for (a, d) WM, (b, e) GM, and (c, f) CSF. (a–c) Average values on consecutive slices within
three MRI data sets represented with different line styles for the three MRI cases. (d–f) Fit of the volume histograms to Gaussian distributions
for one MRI data set.

values for each tissue across the whole volume, corroborating
the accuracy of the homogeneity assumption for the three
tissues, and the absence of strong bias-field inhomogeneity.
Lower mean intensity values on extremity slices were com-
puted on small tissue samples (less than 10 voxels) corre-
sponding to small anatomical structures with relatively high
partial volume effects.

A Gaussian fit was performed on the histogram of the
entire gray level distribution of the three brain tissues for
each case. We observed that the three tissue types have well-
separated average values suggesting that global homogeneity
measurements could separate tissue types for each patient.
Nevertheless, the agreement between the volume histograms
and the fitted Gaussian distribution was evaluated with a chi-
squared test. Results for the different tissues did not show a
systematic agreement between the data and the Gaussian fit,
at level 0.05, except for the gray matter. Therefore, despite
reasonable homogeneity, we need further investigation be-
fore being able to introduce additional constraints based on
a priori Gaussian statistics to the method as proposed, for
example, by Baillard et al. [28].

3.3. Quantitative evaluation of segmentation
performance

Segmentation errors were measured using the recent meth-
odology from Udupa et al. [39] for comparison of segmenta-

Cseg

CML

FP

TP

FN

Figure 5: Quantitative measures of segmentation accuracy with
volume fraction overlap and differences.

tion methods. Accuracy of the object contours obtained with
the proposed segmentation method, referred to as CSeg, was
evaluated by comparing the results to our “ground truth”
segmentation of each object, using manually labeled con-
tours, referred to as CML. The overlap and difference between
the two contours were measured via counting the true posi-
tive (TP), false positive (FP), and false negative (FN) voxels
as illustrated in Figure 5. These quantities are reported as vol-
ume fractions (VF) of the true delineated object volume CML

as follows.
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(i) FNVF = fraction of tissue defined in CML that was
missed by the segmentation method CSeg.

(ii) FPVF = fraction of tissue defined in CSeg falsely iden-
tified by the segmentation method.

(iii) TPVF = fraction of the total amount of tissue in the
segmentation CSeg which overlaps with the true object
CML.

We point out here that TPVF + FNVF = 1, so that we
only need to observe TPVF and FPVF measures to evaluate
the segmentation method.

4. RESULTS

4.1. Evaluation of bias-field correction

In order to evaluate the two bias-field correction methods
and their effects on the homogeneity of the tissues, we ap-
plied the intensity thresholding (IT) segmentation before
and after bias-field correction, providing three groups of re-
sults for the ten MRI cases: segmentation of original data
(RAW), segmentation of corrected data with the ITK soft-
ware tool (ITK), and segmentation of corrected data with
the FSL software tool (FSL). The IT segmentation method
was selected as it only relies on good separation of the tis-
sue range of intensities, without any additional constraint or
model. The FSL bias-field correction did not need any pa-
rameter setting, and the corrected data was generated along
with the segmentation via HMRF-EM. The bias-field cor-
rection with the ITK toolkit used the following parameters:
mean and standard deviation of the three tissue classes were
calculated from the “ground truth,” the input and output
mask with nonbrain tissues removed were also generated
from the “ground truth,” the degree of the method was set
to 2, growing parameter was set to 1.05, shrinking parame-
ter was set to 0.9 (suggested values), and a maximum of 2000
iterations were performed with an initial step size of 1.02.

Effects of bias-field correction on IT segmentation are il-
lustrated with bar plots of TPVF, in Figure 6.

We observed that the bias-field correction methods did
not improve and even degraded the TPVF accuracy of the
IT segmentation method. The ITK method provided similar
accuracy for all cases and all tissues while the FSL method
tended to degrade TP performance, except for the CSF on
one MRI case. Based on homogeneity results presented in
Figure 4, these results and the difficulty involved with param-
eter settings of the bias-field correction methods, we decided
to exclude bias-field correction for this study.

4.2. Comparison of segmentation methods

The level set segmentation was initialized for the phantom
and MRI clinical cases with two sets of regularly spaced cylin-
ders as illustrated in Figure 2. A stable behavior of the four
phases was observed after 10 iterations.

4.2.1. Brain phantom

Segmentation of the brain phantom was performed with
three phases corresponding to the cortical tissues and the

Table 1: Error measurements for the segmentation of the brain
phantom.

Tissue FPVF TPVF

WM 0 100%

GM 0.2% 100%

CSF 0% 84.6%

4th phase to the background. In Table 1, we observed almost
perfect segmentation of the brain structures, demonstrating
the inherent ability of the multiphase level set framework,
initialized with small regular cylinders, to the following.

(a) Identify the four homogeneous phases.
(b) Extract highly convoluted surfaces.
(c) Perform topology splitting and merging of the evolv-

ing front, enabling the identification of separate struc-
tures within a single phase (such as the three ventricles
for the CSF) that exist as different spatial objects.

Computation of homogeneity-based speed terms for phases
with small structures, such as the CSF, suffered from higher
estimation inaccuracy. In the absence of a curvature term, the
homogeneity-based speed terms generate a k-means classifi-
cation of the image data with poor quality extraction of these
small structures. In this context, the curvature term of the
deformable model plays a critical role in the M3DLS to pre-
serve small structures shapes and sizes. Partial volume effect
was not simulated in the phantom and therefore no postpro-
cessing was applied.

We used this phantom to tune the parameters of the seg-
mentation method set to

λ1 = λ2 = λ3 = λ4 = 0.01, υ = 0,

μ = 4.10−8 ×Volume size/Diagonal distance,

Δt = 104, Δx = Δy = Δz = 1.

(13)

The parameter associated with the curvature term is de-
fined proportional to the data volume size (Volume size) and
inversely proportional to the diagonal distance of the vol-
ume data (Diagonal distance). By doing so, we consider this
diagonal distance as the unitary distance of our domain of
definition Ω. Setting the constant speed term υ to zero elimi-
nates the use of a constant inflating force on the model. This
type of constant force should be used with caution as it can
override the homogeneity-based speed term when driving
the deformable contour and force it to move in only one di-
rection (i.e., constant inflation or deflation).

4.2.2. Clinical brain MRI

We present in Figure 7 a three-dimensional rendering of each
segmented structure for one MRI clinical case segmented for
this study.

Visual rendering of the three cortical structures con-
firmed the overall high performance of the multiphase seg-
mentation method to extract homogenous objects that cor-
respond to distinct anatomical tissues.
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Figure 6: Evaluation of bias-field correction on IT segmentation
on the 10 MRI cases. Bar plots of TPVF of (top left) GM, (top right)
WM, (bottom) CSF.

The segmentation method was able to handle multi-
ple challenges without any a priori information or shape
constraints that include the extraction of highly convoluted
white matter surfaces, the extraction of separate ventricular

structures for the CSF, and handling of different volume
sizes of the three structures in a simultaneous segmentation
scheme.

Accuracy of the object contours obtained with the pro-
posed multiphase level set deformable model and the three
other segmentation methods was evaluated by comparing
segmentation results to the manual ground truth. Bar plots
of error measurements for the segmentation of the ten
clinical cases and average errors are reported in Figures 8,
9, and 10. Because TPVF and FNVF are both relative mea-
sures with respect to the ground truth volume, we have
TPVF + FNVF = 1. Therefore, we only generated plots for
TPVF and FPVF.

We can make the following observations based on the
results presented in these graphs for segmentation of GM,
characterized as a thin structure with large surface area:
HMRF generates the highest TPVF and FC the lowest. IT
and M3DSL perform well (TPVF > 85%) and stably over
the 10 cases. FC generates over-segmentation of the GM
with high FPVF (up to 48%), followed by HMRF-EM (up to
25%). M3DSL (FPVF < 18%) generates low and stable over-
segmentation errors, and IT (FPVF < 10%) does not generate
this type of error. Overall, IT provides the best performance
for TPVF and FPVF, followed by M3DLS, with good perfor-
mance. FC showed lower sensitivity and HMRF-EM lower
selectivity.

We can make the following observations based on the
results presented in these graphs for segmentation of WM
(characterized as a large structure): IT and M3DSL generated
high stable and similar TPVF (TPVF > 90%), FC generated
low TPVF on 2 cases, while HMRF-EM systematically gener-
ated lower TPVF. All segmentation methods generated very
low over-segmentation errors. M3DLS and FC showed FPVF
errors up to 10%. Overall, IT and M3DLS showed the highest
sensitivity with very good specificity.

We can make the following observations based on the re-
sults presented in these graphs for segmentation of the CSF
(characterized as small disconnected structures): HMRF-EM
was the only segmentation method to show very high TPVF
(> 90%). All other three methods generated variable errors
over the 10 cases with M3DLS generating the smaller range
of errors (50% < TPVF < 80%). In particular, IT performed
very poorly, certainly due to the absence of shape constraint.
HMRF showed large over-segmentation errors (above 10%
and up to 30%), while M3DSL showed very low FPVF er-
rors (< 5%). Overall, HMRF-EM showed perfect sensitivity
along with poor selectivity (i.e., over segmented the CSF) and
M3DLS showed the best tradeoff of sensitivity versus speci-
ficity.

The four segmentation methods were compared statisti-
cally using a characteristic index of their performance. For
this task, the Tanimoto index (TI) was selected [37]. This
index is a quantitative parameter used to evaluate the seg-
mentation results and is defined as

TI = TPVF
1 + FPVF

. (14)

Because TI populations do not follow a normal distribu-
tion, a nonparametric analysis was performed for the four
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(a) (b) (c)

Figure 7: Segmentation of one MRI data set. Three-dimensional rendering of segmented volumes for (a) WM, (b) GM, and (c) CSF.
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Figure 8: TPVF and FPVF errors for segmentation of GM.
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Figure 9: TPVF and FPVF errors for segmentation of WM.
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Figure 10: TPVF and FPVF errors for segmentation of CSF.
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Figure 11: Box plot of TI values, over the four segmentation methods (IT, M3DLS, FC, HMRF-EM) for the 10 clinical cases. for GM, WM
and CSF.

methods over the 10 segmented cases, measuring the differ-
ences of the TI indexes. Small p values (below 0.05) indi-
cate a significant statistical difference between the methods
[53]. Distributions of the TI index over the 10 cases for each
method are plotted in Figure 11.

Box limits are placed at the lower and upper quartile
values. The median value is indicated by a line inside each
box. Whiskers are lines extending from each end of the box
to show the extent of the rest of the data (1.5 interquartile
ranges). Outliers, identified with red crosses, are data with
values beyond the ends of the whiskers. If there is no data
outside the whisker, a dot is placed at the bottom whisker.

These results illustrate graphically the average perfor-
mance and the variability of performance of individual seg-
mentation methods. We observed that M3DLS and HMRF-
EM generated the most stable performance over the three

tissue types, with mean performance higher with M3DLS for
WM and GM.

Evaluation of the statistical differences of results from the
four segmentation methods was performed with a Wilcoxon
signed rank test for paired data. Significance values for the
three tissue types for each pair of segmentation methods are
reported in Table 2.

From these results we see the following.

(1) For GM, the two best methods, M3DSL and IT were
not statistically different.

(2) For WM, the two best methods, M3DSL and IT were
statistically different. The two weakest methods, FC
and HMRF-EM were not statistically different.

(3) For CSF, the two best methods, M3DSL and HMRF-
EM were statistically different. On the other hand,
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Table 2: Significance values for GM, WM, and CSF for 6 pairs of
segmentation methods.

p GM WM CSF

IT—M3DSL 0.103 0.005 0.017

IT—FC 0.005 0.005 0.333

IT—HMRF-EM 0.005 0.005 0.005

M3DSL—FC 0.005 0.047 0.114

M3DSL—HMRF-EM 0.005 0.005 0.005

FC—HMRF-EM 0.009 0.386 0.005

FC was not statistically different from M3DSL and IT.
Therefore, for CSF, HMRF-EM is superior to the three
other methods. Compared with IT and FC, M3DLS
has a higher mean, and smaller variance, which shows
better performance and more stability.

Specific problems for segmentation of the CSF phase

As observed in the error plots and illustrated in Figure 11, all
methods except HMRF-EM performed significantly poorly
on CSF than on WM and GM, corresponding to under seg-
mentation of the ventricles, whose pixels were assigned to
white matter. On the other hand, the HMRF-EM segmen-
tation was very sensitive but provided poor specificity. Very
low resolution at the ventricle borders explains in part this
result. In addition, manual labeling of the MRI data for the
ventricle can also bear some error as localizations of its bor-
ders are difficult even for an expert performing manual trac-
ing. We illustrated in Figure 12 CSF segmentation with the
different methods with a three-dimensional rendering of the
two lateral ventricles and a section of the third ventricle.

We also recall that manual labeling is only used as a
method of reference, and does not provide a real “ground
truth” to the segmentation problem. In that context, Kiki-
nis et al. reported in [54] a variation in volumetric measure-
ments between manual observers in the order of 15% for
WM, GM, and CSF.

5. DISCUSSION

This study used a 3D implementation of a segmentation
framework initially proposed by Chan and Vese [43]. A sin-
gle illustration of the ability of the method to segment a brain
MRI slice was illustrated in their paper. No group has previ-
ously implemented and tested this method on a whole-brain
MRI dataset, with fixed parameter settings, which is a critical
aspect for the demonstration of the ability of such a segmen-
tation approach to be an efficient clinical tool. We chose to
use a whole-brain MRI data set in order to establish a bench-
mark of the performance of existing brain MRI segmenta-
tion tools, as well as to develop a new automated and robust
segmentation tool that would alleviate the need for a priori
knowledge such as tissue statistics and the need for manual
initialization.

We can compare our segmentation error to results re-
ported by Zeng et al. [29] and Niessen et al. [55]. In Zeng

et al. [29], the authors tested their algorithm for the segmen-
tation of frontal lobes on seven high-resolution MRI datasets
from a randomly chosen subset of young autistic and control
adult subjects. They ran a coupled-surfaces level set algo-
rithm to isolate the brain tissue and segment the cortex. The
average TPVF and FPVF for the cortical GM in the frontal
lobe were 86.7% and 20.8%. In Niessen et al. [55], a “hy-
perstack” segmentation method, based on multiscale pixel
classification, was tested for 3D brain MRI segmentation.
A supervised segmentation framework with manual poste-
diting was applied to a probabilistic brain phantom for es-
timation of segmentation error. First, a binary segmenta-
tion of the brain phantom was performed to evaluate the
minimal segmentation error due to partial volume effects.
The study reported a volume fraction of misclassified pixels
(FPVF+FNVF) around 20% for WM, GM, and CSF. “Hyper-
stack” segmentation was applied with and without a proba-
bilistic framework. Optimal (FPVF + FNVF) errors were ob-
tained with the probabilistic version reporting 10% for WM,
21% for GM, and 25% for CSF.

In our case we proposed a fully automated segmentation
method with no a priori information, leading to the follow-
ing conclusions.

(a) For GM, we showed that the M3DLS method was sta-
tistically equivalent to the idealized IT with average
(FPVF + FNVF) equal to 11.39% for IT and 14.23%
for M3DLS.

(b) For WM, M3DLS produced an average (FPVF+FNVF)
equal to 13.56%, superior to HMRF-EM with 21.64%
and FC methods with 19.57%.

(c) For CSF, M3DLS, which produced an average (FPVF +
FNVF) equal to 32.56%, was found statistically supe-
rior to FC with (FPVF + FNVF) equal to 45.0% and
48.92% for IT.

The random initialization ensured robustness of the method
to variation of user expertise and biased or erroneous input
information that could be influenced by variation in image
quality or user expertise. The method is automated, given
that the set of parameter values selected on the brain phan-
tom is suited for the clinical data.

Comparing the M3DLS method to the other ones, we
see automation as a major advantage compared to the su-
pervision required by FC segmentation and stability of per-
formance over clinical cases and tissue types as a major ad-
vantage over the HMRF-EM method. The IT was set up with
ideal parameters and cannot be considered as a potential seg-
mentation method. It was just proposed to test ideal cluster-
ing based on voxel intensity.

Noncortical structures

Using two simultaneous level set functions limits the seg-
mentation process to the extraction of four homoge-
neous phases, corresponding to four tissue types at most.
Segmentation of several other noncortical brain structures
including the thalamus, the caudate, the putamen, the palla-
dium, the hippocampus, and the amygdale is important for
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Figure 12: CSF segmentation. Three-dimensional rendering of the ventricles extracted with: (a) IT, (b) M3DLS, (c) FC, (d) HMRF-EM, and
(e) manual labeling.

detection of neurological diseases such as schizophrenia or
Alzheimer’s disease. As shown in a recent study for man-
ual labeling of whole brain MRI data [56], these structures
have greatly overlapping grayscale distributions which ex-
plains the failure of simple thresholding methods to perform
efficient extraction of these individual more subtle struc-
tures. On the other hand, as long as the histograms show
reasonable compactness (with a small standard deviation),
the homogeneity-based proposed method should be capa-
ble of segmenting them into separate phases. For the present
study, we only focused on cortical structures. Subcortical
structures were therefore removed prior to segmentation us-
ing the manually labeled data to mask them, as illustrated in
Figure 3. For future applications of the method to data sets
without the benefit of manually labeled data, we can either
use the labeling software used by clinicians to remove these
structures or use an in-house “intelligent manual segmenta-
tion tool” such as the one designed by Barrett et al. [57].

6. CONCLUSION

This paper presented a novel clinical application and quan-
titative evaluation of a recently introduced multiphase level
set segmentation algorithm using T1-weighted brain MRIs.
The segmentation algorithm performed an optimal parti-
tioning of a three-dimensional data set based on homogene-
ity measures that naturally evolved toward the extraction of
different tissue types and cortical structures in the brain.
Experimentation on ten MRI brain data sets showed that
this optimal partitioning successfully identified regions that
accurately matched WM, GM, and CSF areas. This sug-
gests that by combining the segmentation results with fidu-
cial anatomical seed points, the method could accurately ex-
tract individual structures from these tissues. Random ini-
tialization was used to speed up the numerical calculation
and avoid the need for a priori information input. A regu-
lar initial partitioning of the data added some robustness to
the presence of local minima during the optimization pro-
cess. Comparison to three other segmentation methods was
performed with individual assessment of segmentation per-
formance, statistical comparison of the performance, and

evaluation of the statistical difference between the methods.
Results showed very high quality and stability of the M3DLS
method.

Future work will include postprocessing of the seg-
mented volumes to extract individual structures such as the
ventricles as well as incorporation of available coregistered
T2-weighted MRI and PET data to improve the segmenta-
tion performance by running the algorithm on vectorial-type
data. Such extension of the method has been proposed for
color images but never for multimodality clinical data.
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