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Abstract

Functional neuroimaging reveals both increases (task-positive) and decreases (task-negative) in neural activation with many
tasks. Many studies show a temporal relationship between task positive and task negative networks that is important for
efficient cognitive functioning. Here we provide evidence for a spatial relationship between task positive and negative
networks. There are strong spatial similarities between many reported task negative brain networks, termed the default
mode network, which is typically assumed to be a spatially fixed network. However, this is not the case. The spatial structure
of the DMN varies depending on what specific task is being performed. We test whether there is a fundamental spatial
relationship between task positive and negative networks. Specifically, we hypothesize that the distance between task
positive and negative voxels is consistent despite different spatial patterns of activation and deactivation evoked by
different cognitive tasks. We show significantly reduced variability in the distance between within-condition task positive
and task negative voxels than across-condition distances for four different sensory, motor and cognitive tasks - implying
that deactivation patterns are spatially dependent on activation patterns (and vice versa), and that both are modulated by
specific task demands. We also show a similar relationship between positively and negatively correlated networks from a
third ‘rest’ dataset, in the absence of a specific task. We propose that this spatial relationship may be the macroscopic
analogue of microscopic neuronal organization reported in sensory cortical systems, and that this organization may reflect
homeostatic plasticity necessary for efficient brain function.
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Introduction

Functional neuroimaging studies often show increases and

decreases in regional metabolism and blood flow. The pattern of

increases in brain activity is highly variable, depending on the

specific task demands. In contrast, decreases in activation appear

superficially to have a similar spatial pattern, regardless of the

nature of the task. Relative deactivation is often observed in the

lateral and medial inferior parietal lobes and the ventromedial

prefrontal cortex. Collectively these regions are termed the default

mode network (DMN) [1,2]. A similar spatial distribution has been

observed in data acquired in the absence of any explicit task [3]

and in homologous regions from resting data in non-human

primate species [4] and in rodents [5].

We use the terms task positive (TP) and task negative (TN) to

mean the specific pattern of relative activation and relative

deactivation evoked by a specific task, without restricting this to

any canonical functional brain networks (e.g., TN does not

necessarily correspond to the DMN). The existence of a temporal

relationship (often, seen as an anti-correlation) between some TP

and TN networks is thought to be important for efficient cognitive

functioning [6,7]. For example, many cognitive tasks that require

an external focus evoke increases in activity within fronto-parietal

networks associated with cognitive control, which are tightly

coupled with decreases in activity within the DMN [8,9]. Although

deactivation roughly consistent with a canonical DMN is reported

for many different tasks, the precise pattern of regional deactiva-

tion varies with the specific task requirements [9–11]. This

indicates that there is no fixed task negative spatial distribution,

but that instead this may be malleable, depending on task

demands.

The spatial structure of the task negative network is not fixed

but it is not clear why this would be. It could be as a result of a

given task requiring disengagement of different neural regions

depending on the cognitive requirements of the task (which is likely

to be an important part of the explanation). However, in addition,

it could reflect some other ongoing homeostatic process, whereby

activation in a given region may involve deactivation elsewhere in

the brain (Figure 1A). Such homeostatic processes are frequent in

biological systems. In FMRI data, these putative homeostatic

mechanisms could reflect vascular, metabolic or electrophysiolog-

ical processes. If there are homeostatic processes involved in

patterns of activation and deactivation with task, then there may

be a spatial component to this with an optimal spatial relationship
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between activated and deactivated regions (Figure 1B). If there is

an optimal distance for balancing activation, then this should

manifest itself in TN patterns of activation that are ‘‘molded’’ to

TP patterns (Figure 1C), such that TN voxels are located at this

optimal distance from the TN voxels. Further, this specific spatial

dependency between TN and TP should be relatively conserved

across tasks, such that if the TP and TN voxels were from different

tasks, the spatial dependency should be affected (Figure 1C).

It is important to note that we are not proposing that a

homeostatic process is enough to account for the whole TN

pattern observed in FMRI studies. We believe that cognitive

factors will play an important role and that the TN pattern will

reflect this. We also note that a homeostatic process does not

require perfect balancing between TP and TN networks (i.e.,

exactly equal amount of deactivation to activation) depending on

the specific homeostatic mechanism and its function. These factors

mean that observing different numbers of evoked TN voxels versus

evoked TP voxels for a given task is still consistent with some form

of homeostatic process.

To test the hypothesis that there is a consistent spatial

dependency between TP and TN patterns that may reflect some

form of underlying homeostatic process, we performed an analysis

of the minimal distances between TP and TN voxels evoked by

different task conditions. An overview of the analytical method as

applied to FMRI whole-brain data is presented in Figure 2. We

predicted that if there is a consistent spatial dependency between

TP and TN networks, then, for a given task, the distance between

TP and TN voxels should be relatively preserved i.e., there would

be a lower variability in distance between TP and TN voxels (top

row, Figure 2) than would be expected if the TP and TN were

taken from different tasks (bottom row, Figure 2). Further, if the

spatial relationship between positive and negative networks reflects

a general phenomenon of macroscopic neural organization, then it

should be apparent in the absence of any task, as fluctuations in a

network that occur without a task should also have spatially

dependent anti-correlated networks. Therefore, we also investi-

gated whether there is a spatial relationship between TP and TN

voxels from resting data, acquired without an explicit task.

Methods

Participants
For Datasets 1, 2 and 3, all participants gave written consent,

were checked for contraindications to MRI scanning and had no

history of significant neurological or psychiatric illness. The

Hammersmith, Queen Charlotte’s and Chelsea research ethics

committee awarded ethical approval for the study. Dataset 1

involved 21 neurologically healthy adult subjects (mean (SD) age

44 (9) years, 11 female). These subjects were scanned while

alternating between viewing a static chequerboard, performing a

simple finger tapping task or the rest condition with no explicit

task. The raw data from Dataset 1 has been previously published

in a completely different analysis and context [12]. Dataset 2

involved 18 neurologically healthy adult subjects (mean (SD) age

29 (6), 9 female) who performed a working memory task and a

cued autobiographical memory task. Dataset 3 involved 68

neurologically healthy adult subjects (age range approximately

between 22–35 and approximately equal numbers of males and

females) who were scanned as part of the Human Connectome

Project (http://www.humanconnectome.org) [13], following ap-

proval by appropriate institutional review boards in the University

of Washington at St Louis and the University of Minnesota.

MR Imaging acquisition and analysis
For Datasets 1 and 2, images were acquired using a 3 Tesla MR

scanner (InteraTM, Philips Medical Systems, Best, Netherlands)

with an 8-channel head coil. A high-resolution T1-weighted

sequence was acquired for all subjects.

Figure 1. Rationale for experiment. We suggest that, in part, the spatial distribution of task negative networks may reflect underlying
homeostatic processes in addition to cognitive factors. We predict that: (A) activation evoked by a task requires deactivation elsewhere in the brain;
further, (B) this deactivation will occur at some optimal distance from the location of activation; therefore, (C) this pattern of deactivation will, to some
degree, be ‘‘molded’’ to the pattern of activation, with a consistent distance between task positive and task negative voxels (top), rather than a
relationship where distances are not consistent but are both long and short (bottom).
doi:10.1371/journal.pone.0098500.g001
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Dataset 1. A single run was acquired while subjects

performed simple visual or motor tasks. T2*-weighted gradient

echo-planar images (EPI) were collected with whole-brain

coverage, with the following parameters: TR = 3 s; TE = 30 ms;

alpha = 90u, 2.262.2 axial slices, slice thickness 2.75 mm. Qua-

dratic shim gradients were applied to correct magnetic field

inhomogeneity. Subjects observed a flashing chequerboard or

tapped their right or left finger on their thigh. The experiment

used a blocked design with visual stimulation, finger tapping or a

baseline rest condition, alternating in blocks of 24 s. There were

150 acquisitions, lasting 7.5 min.

Dataset 2. Data were acquired while subjects performed two

separate runs: i) a 2-back working memory task; ii) an autobio-

graphical memory task. T2*-weighted gradient echo planar images

were collected with whole-brain coverage, with the following

parameters: repetition time, 2 s; echo time, 30 ms; alpha = 90u; 31

slices; slice thickness 3.25 mm; interslice gap of 0.75 mm;

acquisition in ascending order (resolution: 2.19, 2.19, 4.0 mm).

Quadratic shim gradients were used to correct for magnetic field

inhomogeneities within the brain. The 2-back working memory

task was a blocked design. There were five 36 second blocks of

task, interspersed with 10 second rest blocks. During the task,

subjects saw single pictures presented sequentially on the screen.

Stimuli were presented for 1.75 s with an inter-stimulus interval of

0.5 s (16 stimuli per block). Target stimuli occurred in 20% of

trials. Subjects responded with a finger press when the picture was

the same as that presented two pictures previously. Subjects were

instructed to respond as quickly and as accurately as possible. The

autobiographical memory task involved cued retrieval of person-

ally relevant memories. Preparation for the involved subjects

Figure 2. Schematic showing task positive (TP) and task negative activations (TN). The illustration schematically shows how the minimum
distance between TP and TN voxels (small colored circles) was calculated on two hypothetical tasks. This is done for the TP and TN voxels from the
same task and for TP voxels from one task and TN voxels from the other task. If there is no consistent spatial consistent relationship between the TP
and TN networks that is sensitive to task demands, then we would expect identical distributions (i.e., represented by the width and height of the
distribution) in each of the four cases. The schematic shows the experimental hypothesis that there is a spatial relationship, i.e., variance in TP-TN
distance increases between different-tasks (top versus bottom) relative to within the same task (left versus right), indicating a consistent spatial
dependency.
doi:10.1371/journal.pone.0098500.g002
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providing a list of written memory cues (e.g., ‘‘Remember the

engagement party’’) at least two days prior to scanning. In the

scanner, these cues were visually presented and the subjects were

asked to think about the autobiographical memory cued. As with

the 2-back task, five 36 second blocks of the autobiographical

memory task were interspersed with 10 second rest blocks. The

written prompts for the subject’s memories were presented for 17.5

seconds with an inter-stimulus interval of 0.5 s (2 stimuli per

block).

Dataset 3. This data was collected as part of the Human

Connectome Project. It was composed of 1400 gradient-echo echo

planar images, collected with whole-brain coverage, with the

following parameters: repetition time = 720 ms; echo

time = 33.1 ms; flip angle = 52 deg; FOV = 2086180 mm

(RO6PE); Matrix = 104690 (RO6PE); Slice thickness 2.0 mm;

72 slices with 2.0 mm isotropic voxels; Multiband factor = 8; Echo

spacing = 0.58 ms; and bandwidth = 2290 Hz/Px. For each par-

ticipant, two runs were acquired one with the phase encoding

direction of the images from right-to-left phase encoding and the

other from left-to-right.

For Datasets 1 and 2, whole-brain fMRI data were analyzed

individually with standard general linear models analysis tools

from the FSL library (FEAT version 5.98). For all runs from all

subjects, image pre-processing involved realignment of EPI images

to remove the effects of motion between scans, spatial smoothing

using a 6 mm full-width half-maximum Gaussian kernel, pre-

whitening using FMRIB’s improved linear model (FILM) and

temporal high-pass filtering using a cut-off frequency of 1/50 Hz

to correct for baseline drifts in the signal. FMRIB’s Linear Image

Registration Tool was used to register EPI functional datasets into

standard MNI space using the participant’s individual high-

resolution anatomic images. FMRI data of each individual subject

were analyzed using voxel-wise time series analysis within the

framework of the General Linear Model (GLM). To this end, a

design matrix was generated with a synthetic hemodynamic

response function and its first temporal derivative. The time-

courses from motion parameters were also included to attempt to

account for noise related to head motion. For dataset 1,

timecourses of visual stimulation and left and right finger tapping

were modeled in the design matrix for each subject, with rest as an

implicit baseline. For dataset 2, each run was analyzed separately,

with a simple design matrix modeling the blocks when tasks were

being performed (either 2-back or autobiographical memory task)

versus the implicit rest baseline.

T-statistic images for each individual participant, for each task

were calculated. These statistical maps were then thresholded

(both positive to derive task positive maps and negative values for

task negative maps), binarized, resampled into

4 mm64 mm64 mm voxel resolution and then used to assess

the spatial relationship between TP and TN (see below) voxels.

To illustrate the approximate distributions of TP and TN voxels

used in the spatial variability analyses, group maps were created

from the individual t-stat images. Each subject’s t-stat maps was

thresholded at t.3, binarized and subsequently the mean across

subjects was calculated, to create a proportion overlap map. The

proportion overlap maps for TP and TN voxels are presented

below. Voxelwise higher-level group GLM results, corrected for

multiple comparisons are not presented, since our hypothesis does

not involve asking whether any specific voxel is active at the group

level or not.

For Dataset 3, the data was preprocessed as part of the Human

Connectome Project [14]. In brief, this included: (i) correction for

field inhomogeneities, (ii) motion correction of the data; (iii)

transfomation and resampling into 2 mm62 mm62 mm MNI152

standard space. In addition, the data: (i) was high-pass filtered

using a 100 second filter; (ii) spatially smoothed with a 5 mm

FWHM Gaussian kernel; (iii) downsampled into

4 mm64 mm64 mm (this was done for computational reasons,

given the size of the datasets). Subsequently, an independent

component analysis (ICA, using Melodic 3.13) was conducted on

each individual’s data, extracting 70 components. To derive

whole-brain group networks, the 70 components from each subject

were entered into a temporal concatenation group ICA, extracting

20 components. This hierarchical approach (running individual

ICA before concatenating the results and running a higher-order

ICA) was done because of the large size of the dataset (1400 whole

brain images for 68 subjects). Non-noise components from the

group-level analysis were then selected and used to assess spatial

relationship.

Assessing the spatial relationship between TP and TN
Figure 2 illustrates the general approach to measuring the

spatial relationship between the TP and TN. To do this, we

estimated the minimum Euclidean distance in number of voxels

from each TP voxel to the nearest TN voxel. This resulted in a

distribution of distances that was then used to calculate the

variability of distances, for each subject for each experiment. Two

measures of variation of minimum distances (the Gini coefficient

and the coefficient of variation) were calculated as well as the

mean minimum distance for each subject. The Gini coefficient is a

standardized measure of the equality of a frequency distribution

(with a value of 0 meaning that there is no variability and a value

of 1 meaning maximal variability) and the coefficient of variation

is simply the standard deviation scaled by the mean distance. Both

are standardized measures of the variability of a distribution that

are unaffected by the mean value of the distribution. Standard-

ization was done because there are different numbers of voxels

activated or deactivated in different tasks (e.g., because of

differences in the sensitivity of the tasks, regional differences in

neural signal and non-neural noise sources etc). These different

numbers of voxels could alter the mean distances between the TP

and TN, and as a result affect non-standardized measures of

variability. Below, we report results with the Gini coefficient;

however, the coefficient of variation provided qualitatively the

same pattern of results.

There were two tasks within both Datasets 1 and 2, resulting in

four possible TP to TN distributions of minimal distance for each

dataset (task 1 TP to TN; task 1 TP to task 2 TN; task 2 TP to task

2 TN; and task 2 TP to task 1 TN: see Figure 2). Variability

measures based on these distributions were subsequently com-

pared in a general linear model, with within/across-task and task-

type as repeated measures factors. Under the null hypothesis, if

there was no spatial relationship between TP-TN voxels, then the

variability would be the same if the TP and TN voxels were taken

from the same task or from different tasks. Therefore, we were

primarily interested in the comparison of variability of within

versus across tasks. Using real patterns of TP and TN voxels from

different tasks to formulate the null hypothesis is preferable to

using randomly generated data (e.g., comparing the TP pattern of

activation with randomly placed TN voxels). This is primarily

because it is not clear how to randomly place TN voxels in a way

which is biologically plausible: in the real brain voxels are not

spatially independent both because of the spatial extent of neural

activity (extending across multiple neighboring voxels) as well as

non-neural constraints such as vasculature and non-neural noise

sources which are shared by nearby voxels. Therefore, comparison

of real versus random placements of voxels does not form a simple

null hypothesis to test for the presence of a TP-TN spatial

Spatial Dependencies between Large-Scale Brain Networks
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relationship. Equally, using spatial overlap (e.g., correlation or

mutual information) between t-statistic maps to assess spatial

dependency is not appropriate since the specific question addresses

whether there is a consistent spatial dependency between non-

overlapping TP and TN networks that is persists across tasks.

For a given t-threshold, the minimum distribution of distances

was calculated separately for each participant and for each task;

statistics summarizing the distribution of distances were taken to a

higher-level for comparison across participants. For a given

dataset, the same t-threshold was applied to every subject’s data,

to both tasks, and for TP and TN maps equally. No explicit

statistical comparisons were made between dataset 1 and dataset 2,

where participants, MR acquisition parameters, and task design

parameters such as length of task blocks, differed. Instead all

analyses were constrained to within a dataset, where everything

(task block length, number of blocks, participants, acquisition

parameters) apart from the cognitive and perceptual task demands

were held constant across tasks and so could not explain

differences in the distribution of TP and TN voxels. To show

the robustness of results, the data was thresholded at a range of t-

values in the range t = 1.7 (nominally approximately p = 0.05) to 3

(p,0.005; at t thresholds greater than 3, increasing numbers of

subjects had no voxels activated for either the TP or TN in at least

one task). Qualitatively similar results were found across the range

of t-values; therefore, we present results at voxel thresholds of t = 2

and t = 3. Correcting the voxelwise statistics for multiple compar-

isons was not appropriate at this stage because the hypothesis was

not about the presence of voxel specific activation, but rather the

brain-wide distribution of TP to TN distances.

Non-neural phenomena such as vascular stealing have been

hypothesized to result in relative decreases in activation that are

spatially adjacent to areas of increased activity [15]. If vascular

stealing does occur then the TN voxels can be assumed to be of

two types: (i) vascular stealing TN voxels that are spatially near to

the TP voxels and (ii) other TN voxels (e.g., putative DMN voxels)

that are not theoretically spatially near to the TP voxels. Type (i)

TN voxels would be more frequent in within-task comparisons of

TP-TN minimal distances than across-task comparisons and

would have short minimal distances. Whereas type (ii) TN voxels

would (under the null hypothesis) be equally likely for both within

and across task analyses. Therefore, if type (i) TN voxels exist, they

would make the mean minimal distance lower for the within task

analyses than the across task analyses. They would also result in a

difference in the skewness (towards short distances) for the within-

task analyses. This logic also applies to any other phenomena that

might lead to nearby decreases in activation, e.g., surround

inhibition. To ensure that differences between within and across-

task spatial variability were not dependent on this type of artifact,

we calculated the mean and the skewness of each frequency

distribution of distances. As a further check, we also repeated the

spatial variability analyses, excluding all TP to TN distances at or

below a minimum Euclidean distance of two voxels (8 mm). The

minimum distance analysis was performed to test if the results are

consistent even without nearby voxels, which are more likely to

share vasculature. Results below are presented both including all

TP to TN distances and excluding Euclidean distances less than

two voxels.

Assessing the spatial relationship at rest
For Dataset 3, the general procedure was similar; however,

instead of using individual subjects’ data, group maps were used.

Each non-noise component was thresholded using either z = 2,

z = 3 or z = 4 and binarized, resulting in positively and negatively

coupled networks for each component. The minimum Euclidean

distance from positive to negative voxels was calculated for each

positive voxel, and a distribution of distances and measures of

variability (i.e., Gini-coefficient) calculated. Just as with the task

data, under the null hypothesis that there is no spatial relationship

between positively and negatively-coupled networks, then assessing

distance from positive and negative networks from different

components should result in the same variability as from when

both positive and negative networks are from the same compo-

nent. To test this, variability in distances for voxels from positive

and negative networks within a component were compared to

variability for networks from across components.

Results

Task positive and task negative regions at the group level
The pattern of relative activation (TP) and deactivation (TN) for

two tasks (a visual checker board or a finger tapping task) was

analyzed across subjects (Figure 3). This showed the expected

pattern of activation in visual occipital regions (lighter warm

colors) for the visual task and sensorimotor parietal, frontal and

cerebellar regions for the motor task (darker warm colors).

Whereas the tasks evoked highly distinct spatial patterns for

relative activation (TP), the patterns of relative deactivation (TN)

were more similar across the two tasks, with some overlapping

regions within the lateral parietal and occipital regions. However,

despite this broad similarity, the visual (light blue) and motor (dark

blue) tasks evoked different patterns of deactivation, with the visual

TN voxels being generally more posterior. Therefore, the group

data demonstrate distinct patterns of activation and deactivation,

i.e. spatially different TP and TN networks.

The distance between task positive and task negative
voxels is less variable within a task than across tasks

To assess whether there is task-dependent modulation of the

spatial relationship between the TP and TN voxels, the distance

between TP and TN voxels was calculated and the variability of

these distances was then compared within a task and across

different tasks. Figure 4 shows the variability in the distances (as

measured by the Gini coefficient) between visual and motor TP

voxels and TN voxels - either across or within tasks, both at the

group level (Figure 4A; 4B: plotting normalized frequency

distributions of distances for across and within tasks) and for

individuals (Figure 4C: plotting Lorenz curves for each individual’s

distribution of distances for within and between subject, the closer

the line is to the 45o line, the less variability for that individual). A

repeated measures general linear model showed that within-task

variability was significantly lower than across-task variability

(F(1,20) = 59.8, p,0.001), consistent with a task-dependent

modulation of the TP-TN network spatial relationship. Similar

results were also obtained using non-parametric approaches (e.g.,

Wilcoxon signed-rank tests). This result was observed using a

threshold of t.3 to define TP and TN voxels, and the same

pattern of results was observed: when the threshold was t.2

(F(1,20) = 67.7, p,0.001). Qualitatively similar results were found

using a different measure of variability (the coefficient of

variability), also at t.3 and t.2 (see Figure 4D). The reduced

variability in distance within task could not be explained by

differences in the mean minimum distance between TP and TN

voxels (Figure 4E), where mean distances were not significantly

different in the within versus across task comparison, or between

the two tasks.

It is possible that non-neural factors could affect the distance

distribution differently for within than across task. One possible

confound is that it is logically possible for TP and TN from

Spatial Dependencies between Large-Scale Brain Networks
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different tasks to overlap, but not within the same task. It is also

theoretically possible that the underlying vasculature might

influence the results. For example, a ‘‘vascular steal’’ between

voxels with shared vascular was proposed as an explanation of

negative BOLD effects [16] (although many studies show that

negative BOLD is neural not vascular in origin e.g., [17]). Either

of these possibilities would theoretically introduce an artefactual

skew in the distribution. To rule out these possibilities, we

examined the skewness of the distances as well as their variability.

We found no significant effect of within- versus across-task

(F(1,20) = 0.029, ns) on skewness. As a further demonstration that

the result are not an artifact of vascular stealing, we also reran the

variability analyses while removing distances that were a minimum

Euclidean distance of 2 or fewer voxels apart (therefore, ensuring

that nearby voxels that might share microvasculature are not

included in the analysis). As with the prior analyses, even while

removing small distances, there was a significant main effect of

within the same condition versus across different conditions

(F(1,20) = 33.9, p,0.001).

A consistent spatial relationship between task-positive
and task-negative networks are seen across cognitive
tasks and individuals

The same pattern of results is seen in a different set of subjects

performing two different tasks that evoke very different patterns of

activation and deactivation: a working memory 2-back task and a

cued autobiographical memory task. Figure 5A shows the pattern

of TP and TN voxels across subjects. This shows some overlap

with the TP regions for both tasks (e.g., in medial prefrontal

regions) but also considerable spatial differences (e.g., in visual,

parietal and retrosplenial regions). Similarly, the TN regions were

different between the two tasks. Figure 5B shows the variability in

TP-TN distances for the different tasks (both within- and across-

tasks) for thresholds of t.3 and t.2. We observed the same

pattern of lower within versus across task variability in TP-TN

distance (thresholded at t.3: F(1,14) = 58.2, p,0.001; thresholded

at t.2: F(1,17) = 59.8 p,0.001; and with a minimum distance of

at least two voxels: F(1,14) = 12.8, p,0.005). As with the previous

dataset, there was no evidence of a difference in skewness when

comparing within versus across tasks (F(1,14) = 0.3, ns).

The same reduction in variability is present for positive
and negatively correlated networks derived without an
explicit task

As a final investigation of a spatial relationship, we also

considered positively and negatively covarying networks defined in

the absence of an explicit task i.e. a ‘resting state’ condition. An

independent component analysis was run on 68 subjects’ data

acquired at rest as part of the Human Connectome Project.

Twenty independent components were extracted: of these, seven

components were judged to be noise (because they were

predominantly either outside the brain or within white matter or

CSF), leaving 13 putative neural components. These components

are presented in Figure 6A. In all components, brain regions with

significant positive and negative correlation are apparent. Each

component was thresholded into both a negative and a positive

network, resulting in 13 positive and 13 negative networks. The

minimum Euclidean distance between positive and negative voxels

was compared either within a component (e.g., positive voxels

from component 1 with negative voxels from component 1) or

across components (e.g., positive voxels from component 1 with

negative voxels from component 2). This resulted in a distribution

of minimum distances, the variability of which was assessed with

the Gini-coefficient. Figure 6B shows this variability in minimum

Euclidean distance between positive and negative networks from

the 13 components, at the threshold z.2. This shows that the

lowest variability is found along the diagonal, where the positively

and negatively-coupled networks come from the same component.

Eight of the 13 components had lowest variability within a

component (i.e., lie on the diagonal of Figure 6B) compared to any

of the other components (three of the five components that did not

show lowest within component, were predominantly restricted to

Figure 3. Motor and visual task activation. Voxels that are activated (t-threshold.2 for .20% of subjects) for the motor condition are in red
(task positive: task . rest) and voxels deactivated are in dark blue (task negative: rest . task) colors. The visual condition is in yellow (task positive)
and light blue (task negative). We note that the both conditions are from the same run in the same participants with the same acquisition parameters
(i.e., block length, number of TRs, length of TR, echo time etc). Therefore, the difference in the spatial distribution between the two TN networks is
unlikely to be because of differences in statistical power between the conditions.
doi:10.1371/journal.pone.0098500.g003
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the occipital lobe). A t-test comparing within- versus between-

components revealed significantly lower variability in minimum

distances within a component (t(167) = 4.87, p,0.001), a result

that was replicated at different z thresholds (z.3, t(167) = 2.68, p,

0.01; z.4, t(167) = 1.99, p,0.05). These results are, therefore, in

agreement with the results from the two task datasets, in suggesting

a spatial relationship between positive and negative networks.

Discussion

Across four different tasks, with very different cognitive and

sensorimotor requirements, the minimum distance between task

positive (TP) and task negative (TN) voxels display less variability

than would be expected by chance. Similar results for positively

and negatively-coupled networks are found for ‘rest’ data. These

results show that although TP and TN networks are task-

dependent, the spatial relationship between them is relatively

preserved. Moreover, it suggests that the spatial organization of

TP and TN voxels are inter-dependent. For example, a visual

stimulus activating occipital regions will be accompanied by a

mirroring pattern of deactivation in occipital and medial parietal

regions, whereas finger tapping activating motor cortical regions

will be accompanied by more dorsal and anterior deactivation.

This relationship can be considered as a spatial analogue of the

temporal relationship (e.g. anti-correlations) frequently reported

between some task positive and task negative networks [18–21],

and provides an important explanatory principle for the organi-

sation of patterns of brain network activity.

There are a number of possible explanations for the existence of

the spatial dependency between TP and TN networks that we

have systematically demonstrated. One possibility is that due to

the extremely high metabolic demands of neural activity [22], any

change in regional activity must be accompanied by some amount

of balanced deactivation across space. This inclination for a spatial

relationship between the networks may reflect a requirement of the

global system to maintain a critical level of activity, perhaps

implying that functional brain systems compete for what is a finite

metabolic quota. Similarly, the spatial relationship that we observe

between TP and TN networks may exist in order to prevent

decompensation and runaway excitation. The implication is that

for any particular TP pattern, an accompanying and spatially

predictable TN network is required in order to stabilize the global

metabolic activity. It has been argued that the brain operates at or

near a critical state [23–28]. This is proposed to allow optimal

Figure 4. Variability in distance for motor and visual tasks.
Variability in the distance between task positive and task negative
(measured by the Gini coefficient) voxels for the motor and visual tasks,
comparing intra-task versus inter-tasks. 4A: the average Gini coefficient
using a t-threshold .3, before calculating distance. 4B: the normalized
frequency distribution of minimum TP-TN distances for both within
task (in blue) and across task (in red). For each individual, the
distribution of distances was divided by the mean and centered on
zero to normalize it to allow calculation of the group mean frequency
distribution (solid lines) and the standard error (shaded areas) above
and below the mean. 4C: individual subjects’ Lorenz curves (a graphical
representation of the Gini coefficient). For each subject, the distances
from smallest to largest are plotted against the cumulative frequency:
blue is within task, red is TP-TN distance between tasks (the closer the
line is to the 45o line, the lower the variability). The intra-task curves
(blue lines) are on average closer to the 45o line than the inter-task
curves (red lines) for both visual and motor task positive voxels; 4D: the
analysis repeated using a more liberal threshold of t.2; 4E: the mean
TP-TN minimum distance for within (blue) and across task (red) with
standard error bars.
doi:10.1371/journal.pone.0098500.g004
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information processing and the rapid and efficient exploration of

multiple different network states. Consistent spatial relationships

are observed in critical systems across spatial scales [23,29]. By

analogy with this literature on criticality, the existence of spatial

relationships between networks may allow the brain to maintain

useful, persistent dynamics, without crossing into either highly

stable or unstable states (analogous to sub-critical or super-critical,

e.g., having epileptic seizures).

A related explanation is that the spatial relationship of

competitive systems has benefits for efficient information process-

ing. A model of balanced activity where neurons with a positive

response are coupled to neurons with negative responses has been

proposed to operate at the neuronal level within primary visual

and auditory cortices [30]. At the neuronal level such a coupling

explanation arises because neurons use an efficient coding in

which redundant information is discarded [31]. Receptive fields of

mammalian visual and auditory cortices are spatially organized,

operate across a range of spatial scales, and can be understood as

banks of Gabor (or wavelet) filters [32–34]. These filters remove

statistical redundancy and increase independence between neuro-

nal responses to natural stimuli. However natural sounds and

images exhibit strong statistical dependencies that cannot be

eliminated with linear operations alone. [30] proposed a simple

and efficient solution to this problem by demonstrating that linear

filter banks are optimal for coding as long as the output of each

filter is rectified (divided) by a weighted sum of the spatially linked

(and time/frequency conjoint) filter outputs. Therefore, positive

neuronal responses to a sensory input are intrinsically coupled to

negative responses. We suggest that this property, found in sensory

cortex, may be present at a larger spatial scale, and describe the

system-level patterns of activation observed here at the macro-

scopic scale. Similarly, this phenomenon may not be limited to just

sensory stimuli but may describe a more general organizational

principle that applies to all information processing in the brain.

An alternative and less interesting explanation is that the

observed spatial pattern is a result of local changes in cerebral

blood flow or volume, possibly reflecting hemodynamic processes.

As blood flow increases in task positive regions, to meet local

metabolic needs, neighboring regions experience compensatory

reductions in blood flow (‘‘vascular steal’’), leading to local changes

in BOLD [15,16]. These haemodynamic factors are unlikely to

explain our results for a number of reasons. Firstly, while vascular

stealing has not been definitely ruled out as an explanation of

findings of negative BOLD, a number of studies have robustly

shown that negative BOLD reflects underlying neural activity

[17]. Secondly, the TP and TN networks and the resting state

networks do not correspond to vascular anatomy, in either their

overall organization or the way they dynamically change with task

context. Thirdly, we showed that there is no difference in mean

distance or skewness of the distance distribution when comparing

within versus across task data, and finally we observe the spatial

relationship even when only considering task positive and task

negative voxels that are a minimum distance (.8 mm) apart,

which would eliminate much of the microvasculature proposed to

explain the ‘‘vascular steal’’.

We have examined the relationship between TP and TN at a

single spatial scale, but a similar relationship between excitation

and inhibition has been proposed to operate at the microscopic

level [30]. Therefore, it is possible that the spatial relationship we

describe between activation and deactivation is a feature of the

critical organization of the brain. Future work should investigate

how this relationship operates across scales, and test the hypothesis

that the spatial inter-dependence between activation and deacti-

vation is scale-free (scale-free temporal characteristics have been

reported within both TP and TN regions [35]. Equally, further

work is needed to evaluate different methods for measuring spatial

differences between task-evoked patterns of activation and

deactivation across different tasks. Here, we used Euclidean

distances in three-dimensional MNI space since we wanted to

allow for both small (intraregional) distances as well as interre-

gional distances. An alternative to our approach would be to

measure variability on distances between activation and deactiva-

tion on a two-dimensional unfolded cortical surface. The

underlying structural connectivity pattern might also reflect the

interaction between TP and TN networks, and diffusion imaging

could be used to assess if the long-range white-matter tract

organization reflects these spatial patterns. For example, future

work could investigate if the graph-theoretic path-length between

TP and TN regions is shorter and more consistent than expected

by chance.

Whatever the explanation of the spatial dependencies, their very

existence challenges some of our understanding of the functional

role of task-evoked changes in activation and, in particular, the

role of a canonical DMN [1] and its relationship to observed task

negative networks. The canonical DMN is reported to be broadly

similar across a range of externally focused tasks; the work

presented here suggests that the precise boundaries of deactivation

are molded in a way that reflects the pattern of task positive

activation. One possibility is that the DMN can be thought of as

containing a core of regions (the DMN proper with specific

functional mappings onto e.g., stimulus independent thought) that

consistently show relative deactivation by a range of tasks,

Figure 5. Working memory task activation. A second example using two different, cognitive tasks from a separate dataset. In this case, a 2-back
working memory task and an autobiographical memory task. A: TP and TN voxels (t.2, present in .20% of subjects) are presented for the two tasks.
B: variability of minimum distances between TP and TN at either a threshold of t.3 or t.2. Again, the subjects, stimulus and acquisition parameters
are the same in both tasks, meaning that differences in TP and TN distributions are unlikely to be artifacts relating to statistical power.
doi:10.1371/journal.pone.0098500.g005
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Figure 6. Variability of distances at rest. A: Thirteen non-noise independent components calculated from the Human Connectome Project
resting state data (thresholded at z.2). Each component consists of both positively covarying and negatively covarying networks of brain regions. B:
The Gini coefficient of the distribution of minimum Euclidean distances between positive and negative networks for different components; values
along the diagonal are within a component, non-diagonal values are from across components.
doi:10.1371/journal.pone.0098500.g006
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combined with more peripheral regions that adaptively respond to

the specific neural or metabolic requirements of the task.

Alternatively, the DMN may not be a single coherent network

at all, but instead is a convenient fiction; i.e., there is a separate

TN network for each TP network, and the DMN represents a

subset of all possible TN networks that have somewhat similar

spatial distributions. Future work will be needed to disambiguate

these two possibilities and further explore its implications for

networks similar to TN networks that are observed at rest.

In summary, we provide evidence for the existence of spatial

relationships between task positive and task negative networks that

are consistent across tasks and individuals and exist even in the

absence of an explicit task. One possible interpretation is that there

is a homeostatic organization of dynamic changes in large-scale

network activity, where global activity is balanced to prevent

decompensation and perhaps to promote efficient neural coding.
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