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Abstract

Listening to vocal music has been recently shown to improve language recovery in stroke survivors. The neuroplastic-
ity mechanisms supporting this effect are, however, still unknown. Using data from a three-arm, single-blind, random-
ized controlled trial including acute stroke patients (N=38) and a 3 month follow-up, we set out to compare the
neuroplasticity effects of daily listening to self-selected vocal music, instrumental music, and audiobooks on both
brain activity and structural connectivity of the language network. Using deterministic tractography, we show that the
3 month intervention induced an enhancement of the microstructural properties of the left frontal aslant tract (FAT) for
the vocal music group compared with the audiobook group. Importantly, this increase in the strength of the structural
connectivity of the left FAT correlated with improved language skills. Analyses of stimulus-specific activation changes
showed that the vocal music group exhibited increased activations in the frontal termination points of the left FAT dur-
ing vocal music listening compared with the audiobook group from acute to 3 month poststroke stage. The increased
activity correlated with the structural neuroplasticity changes in the left FAT. These results suggest that the beneficial
effects of vocal music listening on poststroke language recovery are underpinned by structural neuroplasticity changes
within the language network and extend our understanding of music-based interventions in stroke rehabilitation.
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(s )

Poststroke language deficits have a devastating effect on patients and their families. Current treatments
yield highly variable outcomes, and the evidence for their long-term effects is limited. Patients often receive
insufficient treatment that is predominantly given outside the optimal time window for brain plasticity.
Poststroke vocal music listening improves language outcome, which is underpinned by neuroplasticity
changes within the language network. Vocal music listening provides a complementary rehabilitation strat-
egy that could be safely implemented in the early stages of stroke rehabilitation and seems to specifically
\target language symptoms and recovering language network. /
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Introduction

Rapid aging of the population leads to a massive
growth in the prevalence of stroke (Feigin et al., 2014),
which incurs enormous socioeconomical challenges
(Olesen et al., 2012). Poststroke aphasia—an impairment
of speech production and/or comprehension—occurs in
up to 40% of stroke patients (Pedersen et al., 2004) and
has a devastating impact on the individual, decreasing
quality of life more than any other stroke-induced impair-
ment (Lam and Wodchis, 2010).

Language functions are underpinned by a left-lateral-
ized network comprising frontal, temporal, and parietal
brain regions and the white matter pathways intercon-
necting them (Hickok and Poeppel, 2007; Saur et al.,
2008; Rauschecker and Scott, 2009; Alyahya et al., 2020;
Hula et al., 2020). In poststroke language impairments,
the language network is disrupted because of hypoperfu-
sion and consequent brain tissue damage (Fox, 2018),
and recovery relies on the ability of the spared neurons to
remodel the injured network (Kiran et al., 2019). Aphasia
treatments aim to achieve functional gains by promoting
neuroplasticity processes within the language network
(Cramer, 2008, 2018). Better aphasia outcomes have
been associated with functional neuroplasticity changes
within the language network, mainly in the left hemi-
sphere, during both spontaneous recovery (Saur et al.,
2006) and after treatments (Fridriksson, 2010; Fridriksson
et al., 2012; Van Hees et al., 2014a; Hartwigsen and Saur,
2019). Studies evaluating treatment-related structural
connectivity changes in aphasia are sparse, but have
linked better outcomes with plasticity changes in the left-
hemispheric white matter tracts (Van Hees et al., 2014b).

Current treatments have, however, shown highly variable
outcomes and the evidence for their long-term effects is
scarce (Brady et al., 2016). It is vital to pursue new rehabilita-
tion methods that are inexpensive and both independent of
and complementary to the traditional rehabilitation strat-
egies. In this vein, music-based interventions have emerged
as promising rehabilitation strategies in many neurologic
diseases, including stroke (Winstein et al., 2016; Sihvonen et
al., 2017c). In neurologic rehabilitation, music provides a
multidomain stimulus that increases activity-dependent
neuroplasticity in the brain and provides a fertile environ-
ment for recovery (Murphy and Corbett, 2009; Sarkdmé and
Soto, 2012). In stroke patients, daily music listening during
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the subacute poststroke stage has been found beneficial for
improving cognitive and emotional recovery (Sarkdmo et al.,
2008; Baylan et al., 2020) and increasing gray matter volume
in frontolimbic regions (Sarkamo et al., 2014) compared with
standard care. Recently, using data pooled together from
two randomized controlled trials (RCTs), we showed that the
vocal (sung) component of music is crucial for its rehabilita-
tive efficacy: compared with instrumental music and audio-
books, vocal music listening improved language recovery
and verbal memory, especially in patients with aphasia, and
was coupled with increased gray matter volume in temporal
regions and enhanced functional connectivity of the default
mode network (Sihvonen et al., 2020).

While vocal music listening promotes poststroke lan-
guage recovery, little is known about the specific lan-
guage-related neural mechanisms supporting this effect.
An interesting hypothesis is that vocal music listening in-
duces neuroplasticity effects on the language network,
especially in the regions linked to connected speech after
stroke (e.g., the left frontal regions and their underlying
white matter tracts; Alyahya et al., 2020). Evaluating the
possible neurobiological mediators of recovery and treat-
ment effects is of great importance for improving our
understanding of aphasia rehabilitation, and for optimiz-
ing current and future approaches (Copland, 2020).

The present study sought to unveil the neuroplasticity
effects of vocal music in both the brain function and the
structural connectivity of the language network. To do
so, we assessed longitudinally a subsample of 38 stroke
patients from our previous music intervention study
(Sihvonen et al., 2020) using diffusion-weighted imaging
(DWI) and task-related functional MRI (fMRI). We hy-
pothesized that poststroke vocal music listening induces
neuroplasticity changes in the language network that, in
turn, underpin the enhanced recovery of language skills
(Sihvonen et al., 2020).

Materials and Methods

Subjects and study design

Fifty stroke patients were recruited from 2013 to 2016
from the Turku University Hospital for a three-arm RCT
(ClinicalTrials.gov: trial NCT01749709). Inclusion criteria
were acute unilateral stroke; right handedness; age
<80years; capability to communicate in Finnish; resi-
dence in Southwest Finland; ability to cooperate; and
normal hearing. Patients with prior neurologic or psychi-
atric disease or substance abuse were not included. The
study was approved by the Ethics Committee of the
Hospital District of Southwest Finland and performed in
conformance with the Declaration of Helsinki. All pa-
tients gave informed consent, and received standard
stroke treatment and rehabilitation. Baseline MRI scans
and behavioral assessments were performed <3 weeks
poststroke (mean, 12d; SD, 5.5). Patients were then ran-
domly allocated to vocal music group (VMG; N=17), in-
strumental music group (IMG; N=17), and audiobook
group (ABG; N = 16). The randomization was stratified for
lesion laterality (left/right) and performed as block ran-
domization (10 blocks of three consecutive patients for
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Table 1: Baseline demographic and clinical characteristics of the patients
Vocal music Instrumental music Audiobook
group (N=12) group (N=15) group (N=11) p Value
Demographic
Sex (male/female) 5/7 11/4 7/4 0.239 (x?)
Age (years) 54.1 (16.9) 53.6 (10.3) 62.0 (12.0) 0.218 (F)
Education (years) 14.7 (3.6) 13.8 (3.9) 12.5(4.4) 0.450 (F)
Music background (prestroke)
Formal music training® 0.6 (1.5) 0.0 (0.0 0.9(1.9 0.218 (H)
Instrument playing® 1.8 (2.4) 1.2(1.9) 1.8 (2.4) 0.762 (H)
Music listening prior to stroke? 4.5(1.0) 4.9(0.3) 4.1(1.6) 0.265 (H)
Clinical
Stroke type (infarct/haemorrhage) 10/2 9/6 7/4 0.398 (x?)
Verbal fluency® 8.4 (5.4) 9.5 (5.3) 8.3 (3.3) 0.715 (H)
Naming® 18.3(1.8) 17.5 (2.0) 17.4(1.7) 0.444 (H)
Auditory comprehension 27.5(5.5) 27.7 (3.5) 24.6 (5.1) 0.112 (H)
Amusia overall® (no/yes) 5/7 9/6 2/9 0.103 (x?
Amusia scale’ (no/yes) 5/7 10/5 5/6 0.370 (x?
Amusia rhythm? (no/yes) 3/9 7/8 0/11 0.028 (x2)
Lesion laterality (left/right) 6/6 7/8 7/4 0.676 (x?)
Lesion volume (cm®) 49.0 (54.1) 66.0 (53.8) 55.6 (55.7) 0.712 (F)

Data are the mean (SD), unless otherwise stated. Significant group differences are shown in bold. F, One-way ANOVA; H, Kruskal-Wallis test; x?, 2 test.
2Likert scale 0-5 (0, never; 1, rarely; 2, once a month; 3, once a week; 4, two to three times a week; 5, daily).

® Classification based on Verbal Fluency Test.
¢ Classification based on shortened Boston Naming test.
9 Classification based on shortened Token Test.

¢ Classification based on the MBEA Scale and Rhythm subtest average score (<75% cutoff).

fClassification based on the MBEA Scale subtest score (<73% cutoff).
9 Classification based on the MBEA Rhythm subtest score (<77 % cutoff).

left and right lesions), with the order within the blocks
being drawn by a random number generator. The ran-
domization list was generated by a laboratory engineer
not involved in the data collection and the persons per-
forming the patient recruitment had no access to it (allo-
cation concealment). During follow-up, six patients were
excluded because of refusal to participate at follow-up,
and six patients because of incomplete MRI data. Thirty-
eight of the remaining patients (15 female and 23 male;
mean age, 56.1years; SD, 13.4) completed the inter-
vention and 3 month postintervention MRI and behav-
ioral assessments, and were included in statistical
analyses (VMG, N=12; IMG, N=15; ABG, N=11;
Table 1). The groups did not differ between clinical var-
iables (Table 1) such as stroke type (p =0.398), lesion
laterality (p=0.676), or lesion volume (p=0.712), nor
did the study groups differ between the National
Institutes of Health Stroke Scale scores at the acute
stage (F(o2,38y = 0.872, p=0.627; Wilks’ lambda =
0.442; individual categories. p =0.153-0.994). Patients
with both ischemic and hemorrhagic strokes were in-
cluded to reflect the real-world clinical population
undergoing rehabilitation as well as to increase the
generalization of the effects of this intervention. In clin-
ical populations, the prevalence of poststroke cogni-
tive impairments has not been shown to differ between
ischemic and hemorrhagic strokes (Lo et al., 2019).

Intervention

After baseline assessments, each patient was con-
tacted by a professional music therapist who informed
them of their group allocation and interviewed them about
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prestroke leisure activities, including music listening and
reading. Other researchers were blinded to the group allo-
cation of the patients. The therapist provided the patients
with a portable MP3 player, headphones, and a collection
of listening material individually selected to match the
music or literature preferences of the patient as closely as
possible. The listening material was vocal music with
sung lyrics in VMG, instrumental music (with no sung lyr-
ics) in IMG, and narrated audiobooks (with no music) in
ABG. All material was in a language that the patients
understood best (mostly Finnish or English). The patients
were trained in using the players, instructed to listen to the
allocated material by themselves daily (minimum 1 h/d) for
the following 2 months in the hospital or at home, and
asked to keep a listening diary. During the 2 month inter-
vention period, the music therapist kept regular contact
with the patients to encourage listening, provide more ma-
terial, and help with the equipment if needed.

MRI data acquisition

Patients were scanned on a 3 T Siemens Magnetom
Verio scanner with a standard 12-channel head matrix
coil at the Department of Radiology of Turku University
Hospital. The MRI protocol comprised high-resolution
T1-weighted anatomic images, DWI data (TR=11,700
ms; TE =88 ms; acquisition matrix=112 x 112; 66 axial
slices; voxel size=2.0x2.0x2.0 mms) with one non-
diffusion-weighted volume and 64 diffusion-weighted
volumes (b=1000 s/mm?), and task-fMRI using a sin-
gle-shot T2*-weighted gradient-echo EPI sequence
(280 functional volumes; 32 slices; slice thickness =3.5
mm; TR=2010 ms; TE=30 ms; flip angle=80°; voxel
size=2.8 x 2.8 x 3.5 mm?).
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During a block design task-fMRI, the patients were pre-
sented with 15 s excerpts of well known Finnish songs
with (1) sung lyrics (vocal, 6 blocks) and (2) without
sung lyrics (instrumental, 6 blocks), (3) well known
Finnish poems (speech, 6 blocks), and (4) no auditory
stimuli (rest, 18 blocks) through MR-compatible head-
phones using Presentation software (version 16.3,
Neurobehavioral Systems). The order of the auditory
blocks was randomized across subjects and time, and
the rest blocks were presented in between the auditory
blocks. Intervention listening material was not used in
the task-fMRI excerpts.

MRI data preprocessing

MRI data were preprocessed using Statistical Parametric
Mapping software [SPM8, Wellcome Department of
Cognitive Neurology, UCL (www.fil.ion.ucl.ac.uk/spm/)]
under MATLAB version 8.4.0. The fMRI images were ini-
tially realigned, and a mean image of the whole task-
fMRI run was created. Individual images were reor-
iented according to the anterior commissure. Cost
function masking was applied to achieve optimal nor-
malization of the lesioned brain tissue, with no postre-
gistration lesion shrinkage or out-of-brain distortion
(Brett et al., 2001; Andersen et al., 2010; Ripollés et al.,
2012). Cost function masking was performed by man-
ually depicting the stroke lesions slice by slice to the in-
dividual T1 images using MRIcron software package
(http://people.cas.sc.edu/rorden/mricron/index.htmil;
Rorden and Brett, 2000). All lesion tracing was con-
ducted by one person (author A.J.S.) experienced in
this matter (Sihvonen et al., 2016, 2017a). Task-fMRI
data were normalized to Montreal Neurological Institute
space using Unified Segmentation (Ashburner and
Friston, 2005) and resampled into isotropic 2 x 2x
2mm? voxel size. Finally, the preprocessed task-fMRI
data were smoothed using an isotropic spatial filter
(FWHM =8 mm).

The statistical evaluation of the task-fMRI data was
based on a least-squares estimation using the general
linear model at both time points (acute/3 month). At the in-
dividual level, the different task conditions (vocal/instru-
mental/speech) were modeled with a box-car regressor
waveform convolved with a canonical hemodynamic re-
sponse function. Data were high-pass filtered to a maxi-
mum of 1/128Hz, and serial autocorrelations were
estimated using an autoregressive model (AR[1] model).
In addition, confounding factors from head movement
were included in the model. A block-related design matrix
was created including the conditions of interest (Vocal/
Instrumental/Speech). After model estimation, main ef-
fects for each condition against rest were calculated (e.g.,
Vocal > Rest).

DTI data preprocessing

The processing of DWI data started by correcting eddy
current distortions and head motion using the FMRIB
Software Library [FSL version 5.0.8, University of Oxford
(www.fmrib.ox.ac.uk/fsl); Smith et al., 2004; Jenkinson et
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al., 2012]. Next, the gradient matrix was rotated using FSL
fdt rotate bvecs to provide a more accurate estimate of
diffusion tensor orientations (Leemans and Jones, 2009).
Following this, brain extraction was performed using the
Brain Extraction Tool (Smith, 2002). Then, the diffusion
tensors were reconstructed using the linear least-squares
algorithm included in Diffusion Toolkit version 0.6.2.2
(Ruopeng Wang, Van J. Wedeen (trackvis.org/dtk),
Martinos Center for Biomedical Imaging, Massachusetts
General Hospital, Charlestown, MA).

Dissections of individual white matter tracts were per-
formed using TrackVis (version 0.6.0.1, Build 2015.04.07)
following commonly used published guidelines for the
number and positioning of the regions of interest (Catani
et al., 2002; Sihvonen et al., 2017b). All analyses were per-
formed by one person (author A.J.S.) experienced in vir-
tual dissections (Sihvonen et al., 2017b). Deterministic
tractography analysis focused on three white matter
tracts integral to the language network and language skills
(Catani et al., 2005, 2012; Dick and Tremblay, 2012; Dick
et al., 2019; Alyahya et al., 2020): the left arcuate fascicu-
lus (AF; long segment), the inferior fronto-occipital fasci-
culus (IFOF), and the left frontal aslant tract (FAT). After
dissections, fractional anisotropy (FA) values of each
tract, representing white matter integrity, were collected
using MATLAB toolbox, “along-tract statistics” (Colby et
al.,, 2012) and imported into IBM SPSS Statistics 27.
Lower FA values in left-hemispheric tracts have been as-
sociated with greater aphasia severity (Rosso et al.,
2015). Deterministic tractography dissections and place-
ment of regions of interest have been described in detalil
previously (Sihvonen et al., 2017b).

Language assessment

Language assessment was performed in both time
points (acute, 3months) using the standard Verbal
Fluency Test (Lezak et al., 2012); the shortened Token
Test (De Renzi and Faglioni, 1978); and the shortened
Boston Naming test (a 20-item version including every
third of the original 60line drawings with a maximum
score of 20; Morris et al., 1989; Laine et al., 1993), blinded
to the group allocation of the patient. In our previous
study (Sihvonen et al., 2020), the individual tests corre-
lated significantly with each other (acute stage in all:
r=0.46-0.84, p < 0.001) and a summary score was calcu-
lated by adding up the raw test scores used in the analy-
ses. To follow our previous study, and to maintain
continuity and uniformity, as well as to conform the small-
er sample size, the summary score was used in the cur-
rent analyses.

Statistical analyses

In deterministic tractography analysis, multivariate
ANOVA with change (3 month minus acute) in FA values
of the left AF, IFOF, and FAT as dependent variables and
Group as a factor was performed. Total brain volume
(TBV) and cross-listening (i.e., listening to material not
part of the protocol) were included as covariates in the
analysis (Sihvonen et al., 2020). In addition, the groups
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Figure 1. Structural and functional neuroplasticity changes (3 month > Acute). A, Significant tractography results showing increased
FA in the left FAT for VMG > ABG (3 month > Acute). Correlations to change in language skills score within the Vocal music group
are shown in the scatter plot. B, Significant fMRI-task results showing increased activity between VMG and ABG (3 month > Acute)
during vocal music condition. Correlations to increased FA of the left FAT are shown in the scatter plot. Data reported in the histo-

grams are the mean = SEM. *p < 0.017. L, left; R, right.

showed significant differences in the prevalence of rhythm
amusia (p=0.028; Table 1), and therefore the Montreal
Battery of Evaluation of Amusia (MBEA) Rhythm Subtest
score (Peretz et al., 2003) was also included as a covariate in
the analysis. Results were corrected for post hoc multiple
comparisons using the Bonferroni adjustment.

Statistical analyses of the preprocessed task-fMRI data
were conducted using SPM8. To evaluate longitudinal
changes, three flexible factorial ANOVAs with Time
(Acute/3 month) and Group (VMG/IMG/ABG) as factors
were performed using the Vocal > Rest, Instrumental >
Rest, and Speech > Rest conditions. To focus analyses
on the language network, analyses were constricted to
the left hemisphere using an explicit mask. All task-fMRI
result (spmT) maps were thresholded at an uncorrected
p <0.001 at the voxel level, and standard SPM familywise
error cluster-level correction based on random field
theory with a pvalue <0.05 was used (Eklund et al.,
2016). Because of three conditions, a-level was set to
p <0.017, and only clusters surviving this threshold are
reported. Similar to tractography, TBV, cross-listening,
and MBEA Rhythm Subtest score were included as cova-
riates in the task-fMRI analysis (Table 1).

Correlation analyses (Spearman, two-tailed) were per-
formed between the significant tractography and fMRI
changes (3 month > Acute) and the changes in language
skills.

Data availability

The data that support the findings of this study are
available from the corresponding author, A.J.S., on rea-
sonable request.
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Results

Structural neuroplasticity

In the multivariate ANOVA, there was a statistically
significant difference in the longitudinal change (3
month > Acute) in the microstructural properties of the
left-hemispheric tracts between the groups (Fge0 =
2.859; p=0.016; Wilks’ lambda = 0.605, partial 5°=
0.222). Therefore, three separate univariate ANOVAs
(i.e., one for each tract) were performed, and a-level
was settop <0.017.

Separate univariate ANOVAs for each tract revealed a
significant effect on the FA values of the left FAT, indicat-
ing that the longitudinal change (3 month > Acute) in the
microstructural properties of this tract differed between
the groups (F.30) = 4.819, p=0.015; partial 1?=0.231).
Post hoc t tests corrected for multiple comparisons
(Bonferroni) revealed that the VMG showed a significantly
greater increase in FA values over time than the ABG
(p=0.017; Fig. 1A), whereas there were no significant dif-
ferences between the IMG and ABG or VMG and IMG.
Importantly, the FA change in the left FAT correlated with
improved language skills (rs=0.71, p=0.021) within the
VMG. There were no significant interactions for the other
tracts (AF, IFOF).

Functional neuroplasticity

Similarly, there was a significant Group x Time interac-
tion for the Vocal > Rest condition revealing that the VMG
showed greater longitudinal (3 month > Acute) activation
increase than the ABG in a specific left frontal cluster
(p=0.016; T=4.63; size=216 voxels) located in the
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superior/middle frontal gyrus and the precentral gyrus
(Fig. 1B). The increased activity in the significant clus-
ter correlated with the increased FA in the left FAT
r¢«=0.49, p=0.002) across the whole sample.
Correlation between the increased activity and im-
proved language skills was nonsignificant. No other
significant interactions were detected for the other
task conditions (Instrumental > Rest, Speech > Rest).

Discussion

This study set out to determine the poststroke vocal
music listening induced functional and structural neuro-
plasticity changes in the language network possibly sup-
porting the improved language skills. Our two main
findings were that, compared with listening to audiobooks
(1) daily poststroke vocal music listening enhanced left
FAT structural connectivity, which was linked to better re-
covery of language skills; and (2) vocal music listening led
to increased stimulus-specific functional changes in the
superior frontal termination areas of the left FAT that were
linked to improved structural connectivity in the left FAT.
The present study not only extends previous results on
the rehabilitative effects of music listening after stroke
(Sarkamo et al., 2008, 2014; Baylan et al., 2020; Sihvonen
et al., 2020), but also reveals novel information about the
neural mechanisms (i.e., functional and structural reor-
ganization of key regions within the language network)
that support language recovery in stroke via vocal music
listening. This evidence is important in evaluating treat-
ment mediators of music-based rehabilitation strategies
(Sihvonen et al., 2017¢), and in improving our understand-
ing of aphasia rehabilitation.

Connecting the inferior frontal gyrus with dorsomedial
frontal areas and anterior cingulate cortex, the left FAT
has recently been recognized as an important tract for
speech production (Catani et al., 2012; Thiebaut de
Schotten et al., 2012; Dick et al., 2014, 2019; Sierpowska
et al., 2015). Damage to the FAT underlies disease-related
speech impairments in patients with poststroke aphasia
(Basilakos et al., 2014; Halai et al., 2017; Alyahya et al.,
2020) and primary progressive aphasia (Catani et al.,
2013; Mandelli et al., 2014), as well as in patients with re-
sected frontal gliomas (Kinoshita et al., 2015). Moreover,
neuroplasticity changes in the inferior frontal and dorso-
medial termination points of the left FAT have been shown
to underpin better aphasia outcomes both after targeted
rehabilitation and also in patients showing spontaneous
recovery (Saur et al., 2006; Schevenels et al., 2020). En
masse, while studies evaluating direct aphasia treatment-
related structural changes in the left FAT are lacking, its
role in regaining language functions after poststroke
aphasia as well as a potential target for aphasia treat-
ments stands to reason. The present study suggests that
this avenue for poststroke language recovery could be
targeted by listening to vocal music.

The sensory and motor environment during the acute
stroke stage has a crucial role in the recovery. However,
in clinical practice, patients often receive rehabilitation in
suboptimal intensity, frequency, and timing (Murphy and
Corbett, 2009; Foley et al.,, 2012), and remain largely
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inactive and unstimulated during the critical acute stage
(Bernhardt et al., 2004; De Wit et al., 2005). In other
words, the prerequisites for poststroke rehabilitation ex-
ploiting activity-dependent neural plasticity are often not
met (Cramer et al., 2011). Music listening could respond
to these unmet needs of recovering stroke patients.
First, music listening serves as a multimodal stimulus,
akin to “enriched environment” where neural stimulation is
achieved by increasing stimuli from the physical and social
surroundings during the rehabilitation (Nithianantharajah
and Hannan, 2006). Studies on healthy subjects have re-
vealed that mere music listening induces a widespread acti-
vation pattern in the brain (Schmithorst, 2005; Samson et
al., 2011; Alluri et al., 2012; Zatorre and Salimpoor, 2013;
Koelsch, 2014). In acute stroke patients, music listening ac-
tivates a similar network of brain regions (Sihvonen et al.,
2017d). This increased neural stimulation supports neural
plasticity in the recovering brain by increasing, for example,
dendritic spine density and neurotrophic factor levels
(Nithianantharajah and Hannan, 2006).

Second, language and music processing have been
shown to be supported by common neural networks
(Maess et al., 2001; Koelsch et al., 2002; Callan et al.,
2006; Schon et al., 2010; Kunert et al., 2015); that is, lan-
guage network engagement can be modulated by music.
This modulatory effect can be enhanced by listening to
music with sung lyrics (i.e., vocals), which binds linguistic
and musical information into a unified representation:
vocal music engages bilateral frontotemporal areas more
extensively than speech (Callan et al., 2006; Schoén et al.,
2010) or music without vocals (i.e., instrumental music;
Brattico et al., 2011; Alluri et al., 2013), even in patients
with acute stroke (Sihvonen et al., 2017d). Importantly,
vocal music engages the left inferior and dorsomedial
frontal termination areas of the left FAT, which have been
implicated in the auditory—-motor processing of music
(Zatorre et al., 2007) and singing (Callan et al., 2006).
Crucially, the left dorsomedial frontal areas (superior fron-
tal gyrus and anterior cingulate) showed increased gray
matter volume after the music listening intervention in our
previous stroke study (Sarkdmo et al., 2014), and the an-
terior cingulate is also the frontal hub of the default mode
network where we previously reported enhanced func-
tional connectivity induced by the vocal music listening
(Sihvonen et al., 2020). The present results elaborate the
activity-dependent neuroplasticity effects of poststroke
vocal music listening by elucidating its effects on modu-
lating communal neural structures for speech and music,
underpinning language recovery after stroke.

Regarding the real-world shortcomings in rehabilitation
intensity, frequency, and timing, poststroke vocal music
listening could be implemented with minimal professional
input early in the rehabilitation process (i.e., acute stage).
One hour daily patient-led music listening has been
shown to be enough in terms of intensity to produce be-
havioral (Sarkamo et al., 2008; Sihvonen et al., 2020) and
neuroplasticity (Sarkdamo et al., 2014; Sihvonen et al.,
2020) gains, and, if implemented, could increase the re-
ceived daily rehabilitation (De Wit et al., 2005) and possi-
bly provide better aphasia outcomes (Bhogal et al., 2003).
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In turn, this could provide better long-term outcomes by
increasing mood and ameliorating social isolation
(Doogan et al., 2018).

The present study has some potential limitations. While
the randomization to groups was stratified for lesion later-
ality, the groups showed significant differences for the
prevalence of rhythm amusia, the inability to perceive mu-
sical rhythm. However, the number of patients with
rhythm amusia in each group was largely similar (ranging
from 8 to 11). Moreover, the prevalence of amusia and
aphasia in the current sample was similar to those in pre-
vious studies (Sihvonen et al., 2019), making it represen-
tative of the real-world population. Most importantly,
despite these group differences, vocal music listening
was still effective. To fill the inclusion criteria, patients
were required that have some degree of verbal communi-
cation and speech comprehension. This means that pa-
tients with global or severe aphasia were not able to
participate, and aphasic patients in the current study have
mild to moderate aphasia. This impedes us from making
any conclusion on the effects of vocal music listening in se-
vere forms of poststroke language impairments, and in the
future, these effects should be studied. This very limitation
can also contribute to the observed pattern of results: in dif-
ferent forms and severities of aphasia, improved outcomes
can be underpinned by structural neuroplasticity changes in
white matter pathways other than the left FAT (Alyahya et
al., 2020; Hula et al., 2020; Gajardo-Vidal et al., 2021). How
vocal music listening can target those and possibly mediate
recovery is as yet unknown. Moreover, the current sample
size prevented us from performing separate analyses for
aphasic and nonaphasic patients.

Future research on the effects and the most active in-
gredients of music listening in poststroke rehabilitation is
still needed. One crucial aspect of music is its capacity to
evoke and regulate emotions, provide joy and comfort,
and relieve stress (Saarikallio, 2011). Emotionally engag-
ing music activates multiple brain circuits related to dopa-
minergic signaling reward and emotion, the engagement
of which has been shown to be directly proportional to the
intensity of the experience (Blood and Zatorre, 2001;
Salimpoor et al., 2011; Ferreri et al., 2019). The engage-
ment of crucial brain regions related to dopamine, motiva-
tion, and pleasure could partly explain the cognitive—
emotional gains induced by music listening in neurologic
rehabilitation (Sihvonen et al., 2017c). Importantly, the
music in the study was self-selected by the patients to
maximize personal relevance and emotional arousal, and
this could have further enhanced the benefits of post-
stroke music listening. Future studies should include on-
line (i.e., while the patients listen to music as part of their
daily therapy) subjective (e.g., self-reports of pleasure)
and objective (e.g., physiological responses via wearable
technology that does not hinder the musical experience;
Pelofi et al., 2021) measures evaluating the emotional
arousal and pleasure of the music material. Furthermore,
vocal music listening could be used as an adjuvant ther-
apy in connection with traditional speech therapy to pro-
vide neural stimulation and fertile ground for recovery
(Nithianantharajah and Hannan, 2006). As a receptive
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form of music-based rehabilitation, music listening could
also support the effects of melodic intonation therapy
(Albert et al., 1973), an active, singing-based treatment,
the goal of which is to restore propositional speech, that
has been related to neuroplasticity effects in the right AF
(Schlaug et al., 2009). Furthermore, it would be extremely
interesting to investigate whether the beneficial effects of
vocal music listening are accessible in patients with differ-
ent lesion locations affecting the language system (i.e.,
temporoparietal and frontal strokes; Stockert et al., 2020)
and in patients with different aphasia severities and sub-
types. Future studies using larger samples should assess
the effect that music listening has on more specific lan-
guage- and auditory-related functions and how this inter-
acts with hemispheric damage. This is of particular
importance for language-related functions thought to be
supported by bilateral regions in the temporal cortex
(Hickok and Poeppel, 2007).

In conclusion, the present results suggest that the posi-
tive effects of music listening on stroke recovery are
underpinned by structural and functional reorganization
of the left hemisphere language network for vocal music.
Clinically, the results provide further evidence that vocal
music listening is a feasible tool to stimulate the language
network and promote language recovery after stroke.
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