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Thanatin is an antimicrobial peptide (AMP) generated by insects for defense against
bacterial infections. In the present study, we performed cDNA cloning of thanatin
and found the presence of multiple precursor proteins from the bean bug, Riptortus
pedestris. The cDNA sequences encoded 38 precursor proteins, generating 13 thanatin
isoforms. In the phylogenetic analysis, thanatin isoforms were categorized into two
groups based on the presence of the membrane attack complex/perforin (MACPF)
domain. In insect-bacterial symbiosis, specific substances are produced by the immune
system of the host insect and are known to modulate the symbiont’s population.
Therefore, to determine the biological function of thanatin isoforms in symbiosis, the
expression levels of three AMP genes were compared between aposymbiotic insects
and symbiotic R. pedestris. The expression levels of the thanatin genes were significantly
increased in the M4 crypt, a symbiotic organ, of symbiotic insects upon systemic
bacterial injection. Further, synthetic thanatin isoforms exhibited antibacterial activity
against gut-colonized Burkholderia symbionts rather than in vitro-cultured Burkholderia
cells. Interestingly, the suppression of thanatin genes significantly increased the
population of Burkholderia gut symbionts in the M4 crypt under systemic Escherichia coli
K12 injection. Overgrown Burkholderia gut symbionts were observed in the hemolymph
of host insects and exhibited insecticidal activity. Taken together, these results suggest
that thanatin of R. pedestris is a host-derived symbiotic factor and an AMP that controls
the population of gut-colonized Burkholderia symbionts.

Keywords: Riptortus pedestris, Burkholderia insecticola, symbiosis, thanatin isoforms, multiple precursor
proteins

INTRODUCTION

The bean bug, Riptortus pedestris (Hemiptera: Alydidae), possesses a specialized symbiotic organ
in the posterior midgut region (named M4 crypt), where numerous crypts harbor specific
gut symbionts, Burkholderia insecticola, recently reassigned to the genus Caballeronia (Kikuchi
et al., 2005, 2007, 2011). These symbionts are orally acquired by R. pedestris nymphs from the
environment of every generation, and are easily cultivated and genetically manipulated (Kim
et al., 2013b,c, 2014, 2016b, 2017; Lee et al., 2015). Based on these physiological characteristics,
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the Riptortus-Burkholderia symbiosis system has been recognized
as a promising experimental model for studying insect-microbe
interaction at the molecular and biochemical levels (Kim et al.,
2016a). Notably, this model has several experimental advantages
for studying insect symbiosis. By controlling the oral infection of
Burkholderia cells, we can generate Burkholderia gut symbiont-
colonized insects (Sym-insect) and gut symbiont-non-colonized
insects (Apo-insect) in the laboratory (Kikuchi et al., 2007;
Kim et al., 2015a; Lee J. B. et al., 2017). Additionally, as
a large number of naïve Burkholderia gut symbionts can be
collected from M4 crypts, it is feasible to study biochemical
differences between in vitro-cultured Burkholderia cells and
in vivo-colonized symbiotic cells (Kim et al., 2013c, 2015b;
Byeon et al., 2015). Accordingly, we recently reported unexpected
observations and extended our understanding of how this
symbiont interacts with host insects at the molecular and
biochemical levels (Lee et al., 2019, 2020).

Insects have an immune system that comprises cellular
and humoral immune responses (Hoffmann, 2003). When
entomopathogenic microorganism infection occurs, the cellular
immune response is activated, and the pathogen is immediately
eliminated by phagocytosis, encapsulation, and nodulation
(Lavine and Strand, 2002; Strand, 2008). At the same time, the
humoral immune response of the insect is activated sequentially,
and as a result, antimicrobial peptides (AMPs) are produced in
the insect’s fat body tissue and secreted into the hemolymph to
eradicate the infective pathogens (Lemaitre et al., 1997; Vallet-
Gely et al., 2008). However, this type of immune response has
been extensively studied in holometabolous insects (complete
metamorphic), but not in hemimetabolous insects (incomplete
metamorphic) (Kanost and Gorman, 2008; Hillyer, 2016; Yan and
Hillyer, 2020).

For R. pedestris insect, we isolated and identified three
types of AMPs, riptocin, defensin, and thanatin isoforms, from
the hemolymph. These AMPs were found to exhibit effective
antimicrobial activity against invasive pathogens (Kim et al.,
2015b). In addition, we successfully purified a peptide trialysin
from the salivary glands of R. pedestris to confirm the immune
response in the oral infection route. Of note, this protein has been
reported to play a crucial role in distinguishing gut commensal
symbionts from pathogens (Lee D. J. et al., 2017).

Among these AMPs, thanatin isoforms have only been found
in the hemipteran insect, Podisus maculiventris (spined soldier
bug), which belongs to the same order as R. pedestris (Fehlbaum
et al., 1996). Because the thanatin peptide has no sequence
homology with other insect defense molecules, its exact role
and significance in insects have not been elucidated. In previous
study, we found that thanatin isoforms of R. pedestris were
synthesized in the midgut region in which the gut symbiont
resided (Park et al., 2018). However, we did not demonstrate why
R. pedestris insects should control their gut bacterial populations
with thanatin isoforms under infection. Therefore, we conducted
a study to suggest the exact role of thanatin isoforms in
the R. pedestris–Burkholderia symbiosis model. Based on these
results, we hypothesized that thanatin isoforms can be unique
AMPs that play an important role in hemimetabolous insects and
symbiotic relationships. As the gut immune system of R. pedestris

in a symbiotic condition has not been clearly elucidated, in this
study, we investigated the gut immune response of host insects
associated with thanatin isoforms and demonstrated the effect of
this AMP on gut symbionts. Here, we found that the expression
levels of only thanatin genes were increased in the M4 crypt of
Sym-male insects compared to the two other AMPs tested upon
systemic bacterial injection. Further, we revealed that thanatin
isoforms not only function as AMPs, but also modulate the
population of gut symbionts.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
The Burkholderia insecticola symbiont RPE75, a rifampicin-
resistant mutant derived from the RPE64 strain (Kikuchi et al.,
2011), was cultured until mid-log phase at 30◦C in YG-RIF
medium (0.5% yeast extract, 0.4% glucose, and 0.1% NaCl
supplemented with 30 µg/ml rifampicin) (Lee J. B. et al.,
2017). Escherichia coli K12, Serratia marcescens Db11, and
Staphylococcus aureus RN4220 cells were cultured until mid-log
phase at 37◦C in Luria-Bertani medium (Gibco, United States)
without any antibiotic substance (Kim et al., 2015a). All bacterial
strains were incubated with vigorous shaking.

Insect Rearing and Burkholderia
Symbiont Infection
The bean bugs,R. pedestris, were reared in our insect laboratory at
28◦C under a photoperiod of 16 h light and 8 h dark, as previously
described (Lee et al., 2020). Nymphal insects were reared in
clean plastic containers containing soybean seeds and distilled
water containing 0.05% ascorbic acid (DWA). Upon reaching
adulthood, the insects were transferred to larger containers
(35 cm long, 35 cm wide, and 40 cm high); soybean seeds were
added to the containers as food, and cotton pads were attached to
the walls for egg laying. Eggs were collected daily and transferred
to new cages for hatching. A cotton dish was soaked in in vitro-
cultured Burkholderia (107 cells/ml of DWA) was provided to
the second instar nymphs for 12 h to generate Burkholderia-
harboring Sym-insects (Lee et al., 2019). After the insects were
fed the inoculum solution for 2 days, fresh DWA was provided
instead of the inoculum solution.

cDNA Cloning of Thanatin Isoforms From
Riptortus pedestris
To obtain cDNA sequences of thanatin AMPs in the fat
body, we used a Gene Racer kit (Invitrogen, United States)
(Lee D. J. et al., 2017). After mRNA isolation from the fat
body of 3-day-old R. pedestris male adults, truncated and
non-mRNAs were removed with calf intestinal phosphatase
by dephosphorylation of their 5′ phosphates according to the
manufacturer’s instructions. The mRNA was then decapped
with tobacco acid phosphatase. The ligated mRNA was reverse-
transcribed using a GeneRacer oligo dT primer and Superscript
III reverse transcriptase (50◦C, 1 h). To obtain the 5′ ends, cDNA
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was amplified using a GeneRacer 5′ forward primer and a gene-
specific 5′ reverse primer or a GeneRacer 5′ nested forward
primer and a gene-specific 5′ nested reverse primer with Phusion
High-Fidelity DNA polymerase (NEB, United States). The PCR
conditions were as follows: 95◦C for 30 s, followed by 35 cycles
of 95◦C for 30 s, 65◦C for 30 s, and 68◦C for 2 min, and
finally 68◦C for 5 min. To obtain the 3′ ends, the cDNAs were
amplified using a GeneRacer 3′ reverse primer and a gene-specific
3′ forward primer or a GeneRacer 3′ nested reverse primer and
a gene-specific 3′ nested forward primer. The PCR conditions
were as follows: 95◦C for 30 s, followed by 35 cycles of 95◦C
for 30 s, 65◦C for 30 s, and 68◦C for 2 min, and finally 68◦C
for 5 min. The primer sets used for RACE-PCR are listed in
Table 1. To determine the nucleotide sequence of the target PCR
products, PCR amplification mixtures were cloned using a TOPO
TA cloning kit (Invitrogen, United States) and sequenced.

Susceptibility Assay Against Thanatin
Isoforms
Escherichia coli K12, S. marcescens Db11, S. aureus RN4220,
and cultured-Burkholderia cells were cultured in LB and YG
medium and washed with 10 mM phosphate buffer (PB; pH 7.0)
to remove the medium components. Gut-colonized Burkholderia
cells were collected from the fifth-instar nymphs of Sym-insects
by dissection of the M4 crypt and washed twice with 10 mM
PB to remove substances from R. pedestris (Byeon et al., 2015;
Kim et al., 2015b). To test the antimicrobial activity of thanatin
isoforms, the bacterial cells were suspended in 10 mM PB to
103 cells/50 µl for each sample and subsequently incubated with
50 µl of synthesized thanatin solution (Anygen, South Korea) at
concentrations of 0.2, 0.4, 1, 2, or 4 µg/ml for 2 h at 30◦C. After
incubation, the reaction mixtures were spread on LB or YG agar
plates containing selective antibiotics. The colonies grown after
48 h of incubation at 30◦C were counted.

Thanatin Expression Upon Immune
Challenging
qRT-PCR was performed as previously described (Kim et al.,
2015a; Lee J. B. et al., 2017). Briefly, E. coli K12 and S. marcescens
Db11 cells were adjusted to 1.0 × 107 cells/ml in 10 mM PB.
Two microliters of the bacterial cells were systemically injected

TABLE 1 | Primer set used for RACE-PCR.

Name Primer sequence (5′→3′)

5′ ends

GeneRacer 5′_F CGACTGGAGCACGAGGACACTGA

gene-specific 5′_R CCGGTCTTCCTGTTGCAGTAAATTAT

GeneRacer 5′ nested_F GGACACTGACATGGACTGAAGGAGTA

gene-specific 5′ nested_R TTATCGGTACTCTCCCCCTTTTCTG

3′ ends

GeneRacer 3′_R GCTGTCAACGATACGCTACGTAACG

gene-specific 3′_F ATGACTTCATCAAGATGCATGTTGGTG

GeneRacer 3′ nested_R CGCTACGTAACGGCATGACAGTG

gene-specific 3′ nested_F GCTAGCTTGCCTAGCTTGTATTGG

into 3-day-old R. pedestris male adults for immune induction.
After incubation at 28◦C for 3 h, immune-challenged fat body
and all five midgut regions were collected from the insects
by dissection. Total RNA was isolated using TRIzol reagent
(Invitrogen, United States), according to the manufacturer’s
recommendations. Thereafter, 500 ng of total RNA was
converted to cDNA using TOPscript RT DryMix containing
oligo-dT primers (Enzynomics, South Korea). The synthesized
cDNAs were diluted 20-fold, and qRT-PCR was performed
on a QuantStudioTM3 Real-Time PCR System (Thermo Fisher
Scientific Inc., United States). The PCR cycling condition was
as follows: 95◦C for 10 min, followed by 40 cycles of 95◦C for
10 s, 60◦C for 15 s, and 72◦C for 20 s. The primer sets used
for qRT-PCR are listed in Table 2. The comparative CT (11CT)
method was used to calculate the relative gene expression levels
based on the elongation factor 1α gene (EF1α) of R. pedestris
(GenBank accession #AB591382) as an endogenous control gene
(Lee J. B. et al., 2017). All analyses were performed using the
QuantStudioTM Design & Analysis Software Ver 1.5.2 (Thermo
Fisher Scientific Inc., United States).

RNA Interference
RNA interference (RNAi) was performed as described previously
(Lee J. B. et al., 2017). Double-stranded RNA (dsRNA) for
silencing the thanatin genes (target) and the ampicillin-resistant
gene (mock control) were synthesized using the primers listed in
Table 3. Each recombinant plasmid was constructed by cloning
the PCR products that were amplified from R. pedestris fat
body cDNA with sense and antisense primers into the pT7Blue
T-vector (Novagen, United States). Each T-cloned plasmid was
amplified by PCR using a specific primer set containing the
T7 promoter region. The cycling conditions were as follows:
95◦C for 10 min, followed by 35 cycles of 95◦C for 30 s, 65◦C
for 30 s, and 72◦C for 1 min, and finally 72◦C for 10 min.

TABLE 2 | Primer set used for qRT-PCR.

Name Primer sequence (5′→3′)

Thanatin_F ATCTTGCAGAACTCCAGCGC

Thanatin_R CTGTTGCAGTAAATTATCGGTACT

Riptocin_F TCCGAAGCTGAGGGTCTTCCCG

Riptocin_R TCCGCATCCAAGTTCGCGTCC

Defensin_F TCGGTCGGACTGAGACTGAA

Defensin_R TTGCCGCCTTTGTATCCCTT

EF1α_F CCTGCATCCGTTGCTTTTGT

EF1α_R GGCATCGAGGGCTTCAATAA

TABLE 3 | Primer set used for RNAi.

Name Primer sequence (5′→3′)

dsRNA-thanatin_F GACTTCATCAAGATGCATGTTG

dsRNA-thanatin_R AGTAAATTATCGGTACTCTCCC

Target-T7_F TAATACGACTCACTATAGGG GATCTACTAGTCATATGGAT

Target-T7_R TAATACGACTCACTATAGGG GACGGCCAGTGAAT

β-Lactam_T7_F TAATACGACTCACTATAGGG CTATGTGGCGCGGTATTAT

β-Lactam_T7_R TAATACGACTCACTATAGGG CAGAAGTGGTCCTGCAACT
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After purification of the product with a PCR purification kit
(Enzynomics, South Korea), both sense and antisense strands
of the transcript were simultaneously synthesized using the
MEGA-script RNAi kit (Ambion, United States) with 500 ng of
template DNA at 37◦C for 2 h, according to the manufacturer’s
instructions. The synthesized RNA product was treated with
DNase I and RNase to remove the template DNA and ssRNA at
37◦C for 30 min. The dsRNAs were purified using the MEGAclear
kit (Ambion, United States) and quantified using a Nanodrop
2000 (Thermo Fisher Scientific, United States). The Sym-male
insects were treated with dsRNA 200 ng/µl in DNase/RNase-
free water using a glass capillary and an air-pressure injector
(Picospritzer, Parker, United States). Briefly, two microliters of
thanatins dsRNA or DNase/RNase-free water (for mock control)
were systemically injected into the joint of the hind leg that
connects to the thorax of the insect. The dsRNA-treated insects
were reared in clean plastic containers, and colony-forming units
(CFUs) in M4 crypts and hemolymph were measured on 4 days
after dsRNA injection and 3 days after E. coli cells injection.

Measurement of Symbiont Titers in the
M4 Region
Bacterial cells were washed with 10 mM PB and suspended
in Grace’s Insect Medium (Gibco, United States) to 1.0 × 107

cells/ml bacterial solutions (Kim et al., 2013a; Lee et al., 2020).
Briefly, two microliters of thanatins dsRNA were systemically

injected into 3-day-old R. pedestris male adults for immune
suppression. In addition, two microliters of the bacterial cell
suspensions were injected into the joint of the hind leg that
connects to the thorax of the insect. E. coli K12 cells were injected
24 h after dsRNA injection. Individual M4 crypts dissected from
R. pedestris 3 days after inoculation were collected in 100 µl
of PB, homogenized using a plastic pestle, and serially diluted
with PB. The diluted samples were spread onto YG-RIF agar
plates and colonies grown at 30◦C were counted 2 days later. The
symbiont titers for each insect were evaluated. The survival rate
was evaluated 7 days later after the bacterial septic injections.

Identification of Symbiotic Burkholderia
Cells in Host Hemolymph
To detect gut-colonized symbionts penetrating the M4 crypt
into the host hemolymph, each R. pedestris insect with its legs
removed was immersed in 200 µl of 10 mM PB (Kim et al.,
2015b). After homogenization via vortexing, the insects were
removed, and the buffer was serially diluted to measure CFUs.
The diluted samples were spread onto YG-RIF agar plates.
Colonies grown at 30◦C were counted 2 days later.

Tree Analysis
The protein sequences of the thanatin isoforms from R. pedestris
were compared. The protein sequences were aligned with
ClustalW using MegAlign (ver. 7.1.0.). Phylogenetic trees for

FIGURE 1 | Multiple precursor proteins of thanatin isoforms in R. pedestris. Structure analysis of precursor molecules (green: signal peptide region; blue: repetitive
sequence). Black and yellow boxes indicate the region of antimicrobial activity and MACPF domain.
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the alignment were calculated via the neighbor-joining method
and the Jones–Taylor–Thornton model. The bootstrap tree
was obtained from the protein sequence using the Molecular
Evolutionary Genetic Analysis-X software.

Statistical Analysis
The statistical significance of data was determined by unpaired
Student’s t-test or one-way ANOVA with Tukey’s correction
using SPSS 23 and GraphPad Prism 8 software.

RESULTS

Thanatin Isoforms With Repeated
Specific Regions
First, to identify thanatin isoforms in R. pedestris, total RNA
was collected from insect fat body and cDNA was synthesized
by RACE-PCR. We cloned putative target DNA fragments
encoding precursor proteins of thanatin isoforms, ranging from
125 to 148 residues in length. The InterPro protein families
database1 was used to identify the functional domain of the
thanatin isoforms. Thanatin precursor proteins contain a signal
peptide at the N-terminus. Four repetitive sequences cleaved

1https://www.ebi.ac.uk/interpro/

by trypsin, which did not contain any conserved motifs, were
identified (Figure 1).

Three Active Forms of Thanatin Isoforms
Structurally active thanatin isoforms derived from 38 precursor
proteins were aligned, and their frequencies were investigated.
The C-terminus region had three main active forms: KEV, KRL,
and KRM (Figure 2A). When thanatin isoforms in R. pedestris
were compared with those of P. maculiventris, their active
sequences showed similarities and harbored a conserved cysteine
disulfide bridge (Figure 2B). The phylogenetic analysis showed
that thanatin isoforms can be categorized into two groups: with
(upper clade, O) or without (bottom clade, X) the membrane
attack complex/perforin (MACPF) domain (Figure 2C).

Antimicrobial Activity of Thanatin KEV
Isoform Against Gut Colonized
Symbionts
To evaluate the antimicrobial activity of the thanatin KEV
isoform as an AMP in R. pedestris, the antibacterial activities
against E. coli K12, S. marcescens Db11, S. aureus RN4220,
cultured Burkholderia, and symbiotic Burkholderia were
measured. The Staphylococcus strain, a gram-positive bacterium,
had high resistance to the thanatin KEV isoform (Figure 3A).
When the KEV isoform was incubated with gram-negative

FIGURE 2 | Alignment of active thanatin isoforms. (A) The alignment of amino acid sequences and frequency of thanatin isoforms. (B) Comparison of amino acid
sequences and structure between thanatin KRM isoform from R. pedestris and thanatin of P. maculiventris. The line between cysteine residues represents a disulfide
bond. (C) Phylogenetic tree using precursor sequences of thanatin isoforms. Thanatin precursor proteins with (upper clade, O) or without (bottom clade, X) the
membrane attack complex/perforin (MACPF) domain.
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FIGURE 3 | Measurement of the antibacterial activity of thanatin isoforms. The antibacterial activity of thanatin isoforms against (A) S. aureus RN4220, (B) E. coli
K12 and S. marcescens Db11, (C) cultured Burkholderia and symbiotic Burkholderia cells. The CFUs were calculated and normalized using AMP-untreated CFUs
set to 100%. Data are expressed as mean ± SD (n = 3) and are representative of three independent experiments.

bacterial cells, the growth of the E. coli cells was markedly
reduced, but S. marcescens was not killed by the thanatin
KEV isoform (Figure 3B). In contrast to in vitro-cultured
Burkholderia cells, in vivo-colonized symbionts living in the M4
crypt of R. pedestris were highly susceptible to the KEV isoform
(Figure 3C). Other main isoforms showed similar antibacterial
activity to the KEV isoform (Supplementary Figure S1).

Modulation of Thanatin Isoforms by
Burkholderia Gut Symbiont
Based on the above results, thanatin isoforms could be closely
involved in the control of symbiotic bacteria colonization
as well as the defense response of insects against invasive
pathogens. To investigate the expression of thanatin isoforms
against systemic bacterial injection in insect midgut regions, total
RNA was extracted from Sym-male insect, and the target DNA
fragments were amplified with gene-specific primers (Table 2).
Interestingly, the expression levels of thanatin genes were
comparatively high in the M4 crypt, where the symbiotic bacteria
reside, whereas it was not expressed in the other midgut regions
of M1 to M4B (Figure 4A). Further, the expression of thanatin
genes was not detected without immune-challenge despite the
presence of Burkholderia gut symbionts in the M4 crypt (mock-
injected and non-injected; Figure 4A). To determine whether

riptocin and defensin genes, which are other AMPs of R. pedestris,
were also expressed in the symbiotic organ M4 crypt, their
expression was evaluated. The expression of thanatin genes after
a bacterial challenge with E. coli or S. marcescens cells was higher
than that of the riptocin and defensin genes (Figure 4B). We
also measured the mRNA levels of the thanatin genes in the
M4 crypt of Apo-R. pedestris without symbionts. Expression of
thanatin isoforms in Apo-R. pedestris was not detected despite
induction of immune response by systemic E. coli or S. marcescens
injection (Figure 4C). Taken together, these results demonstrate
that the Burkholderia gut symbiont modulates the expression of
thanatin isoforms.

Control of Gut Symbiont Population by
Thanatin Isoforms During Systemic
Bacterial Injection
Based on the unique expression of the thanatin isoforms in
Sym-R. pedestris, we hypothesized that thanatin isoforms may
play another role in the M4 crypt. To elucidate the interaction
between the Burkholderia gut symbiont and thanatin isoforms in
the M4 crypt, the expression of thanatin genes was suppressed by
RNAi. The expression level of the thanatin genes was completely
reduced from 1 day after injection of thanatin dsRNA in both fat
body and M4 crypts (Figure 5A). Changes in symbiotic bacterial
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FIGURE 4 | The expression levels of thanatin genes in R. pedestris. (A) mRNA expression levels of thanatin genes in each midgut region (M1, M2, M3, M4B, and
M4) of the Sym-male insect upon gram-negative E. coli K12 and S. marcescens Db11 injection. (B) mRNA expression levels of three AMP genes in the M4 crypt of
the Sym-male insect upon gram-negative E. coli K12 and S. marcescens Db11 injection. (C) mRNA expression levels of thanatin genes in the M4 crypt of both the
Apo-insect and Sym-male insect upon gram-negative E. coli K12 and S. marcescens Db11 injection. The ampicillin resistance gene (amp) was used as a
mock-control in the RNAi experiment. The expression levels of the thanatin genes were normalized to the expression level of (A,C) E. coli K12-injected insect or (B)
mock-control, which was set as 1. Error bars indicate the standard deviation of the mean (n = 6). Asterisk indicates a significant difference between each group
(∗p < 0.01; unpaired t-test). (A; M1, M2, M3, and M4B vs. M4), (B; Riptocin or Defensin vs. Thanatins), and (C; Apo insect-M4 crypt vs. Sym insect-M4 crypt).

growth were monitored in the M4 crypt following systemic
E. coli K12 injection. Interestingly, the suppression of thanatin
genes significantly increased the population of Burkholderia gut
symbionts (Figure 5B).

Insecticidal Activity and Growth of Gut
Symbiont in the Hemolymph of Host
Insect
We evaluated the health parameters of host insect to determine
the impacts on R. pedestris that can be caused by an increase
in the symbiont population in the M4 crypts. Briefly, the
survival rate of thanatins knock-downs Sym-R. pedestris was
examined after systemic injection with E. coli cells. In addition,
to prevent epithelial damage of M4 crypts by systemically
injected E. coli cells, an appropriate 104 CFUs was used in
the experiment to induce an insect immune response but not
cause any harm to the insects. The survival rate of thanatins-
suppressed Sym-R. pedestris was found to be markedly lower
than that in the control group under the context of systemic
injection with E. coli cells (Figure 6A). In contrast, the survival
rate of thanatins-suppressed Apo-R. pedestris did not show
any statistically significant differences (Figure 7). These results

suggest that overgrown symbiont in the M4 crypts by co-injection
with RNAi and E. coli cells adversely affect the survival of host
insects. Since systemically injected E. coli cells would have been
cleared by riptocin AMPs in the hemolymph of insects, it can be
expected that overgrown Burkholderia cells are directly linked to
insect survival. Based on these results, we investigated whether
overgrown symbiont cells were observed in the hemolymph.
Burkholderia gut symbiont cells were found to grow rapidly in the
hemolymph 3 days post-injection (Figure 6B). Taken together,
when the gut symbiont grows out of control in the host, survival
of the host decreases, while at the same time gut symbionts are
observed in the host’s hemolymph.

DISCUSSION

Here, we revealed that 38 thanatin precursor proteins consisted
of three major active forms. In addition, expression levels
of thanatin genes were significantly increased in the M4
crypt of symbiotic insects upon systemic bacterial injection.
Moreover, synthetic thanatin isoforms exhibited antibacterial
activity against gut-colonized Burkholderia symbionts rather
than in vitro-cultured Burkholderia cells. Interestingly, the
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FIGURE 5 | The population of Burkholderia gut symbiont after RNAi of the thanatin isoforms. (A) mRNA expression levels of thanatin genes in (i) the fat body and (ii)
M4 crypt after RNAi of the target gene upon systemic E. coli K12 injection. The expression levels of the thanatin genes were normalized to the expression level of
each mock-control, which was set as 1. Data are expressed as mean ± SD (n = 6). Different letters (a and b) on the top of the columns indicate statistically
significant differences (P < 0.05; one-way ANOVA with Tukey’s correction). (B) The population of M4 crypt-colonized Burkholderia cells in the thanatin genes
silenced R. pedestris upon systemic E. coli K12 injection. Data are expressed as mean ± SD (n = 10). Different letters (a and b) on the top of the columns indicate
statistically significant differences (P < 0.05; one-way ANOVA with Tukey’s correction). The CFUs in M4 crypts were measured on 4 days after dsRNA injection or
3 days after E. coli K12 cells injection.

suppression of thanatin genes significantly increased the
population of Burkholderia gut symbionts in the M4 crypt
under systemic Escherichia coli K12 injection. Finally, overgrown
Burkholderia gut symbionts were observed in the hemolymph of
host insects and exhibited insecticidal activity.

As thanatin peptide was first identified in P. maculiventris
insects, research has mainly focused on the differences in
antimicrobial activity based on the structure of thanatin (Taguchi
et al., 2000; Sinha et al., 2017; Vetterli et al., 2018). Thanatin
peptides contain a disulfide bond between Cys11 and Cys18
at their C-terminus (Bulet et al., 1999). The core structure
of thanatin is an anti-parallel β-sheet structure from Ile8
to the C-terminus and is maintained by a single disulfide
bond; the seven amino acids at the N-terminus form the arm
structure (Fehlbaum et al., 1996). Three residues (QRM) at
the C-terminus are important for its antibacterial activity, and
three residues (GSK) at the N-terminal region are required for
its antifungal activity (Powers and Hancock, 2003; Bulet and
Stocklin, 2005). The number of amino acid residues within a

single disulfide bond affects antibacterial activity (Lee et al., 2002).
Collectively, the C-terminal residues of thanatin are more critical
for antimicrobial activity than the N-terminal residues (Dash
and Bhattacharjya, 2021). Despite studies on the structure and
antimicrobial activity of thanatin, the precursor molecules of this
peptide have not been identified. Therefore, we report for the first
time the amino acid sequences of the thanatin precursor proteins
and demonstrate the novel role of the peptide thanatin in the
insect–symbiont interaction.

The innate immune mechanisms in the hemimetabolous
insect, R. pedestris, have been studied markedly less than those
in holometabolous insects. However, recent research on the
immune response has been steadily progressing owing to its
advantages as a symbiotic model (Kim et al., 2015a; Jang
et al., 2017; Lee D. J. et al., 2017). Although the three AMPs,
riptocin (pyrrhocoricin-like), defensin, and thanatin, are well
known in insects (Kragol et al., 2001; Oppenheim et al., 2003;
Dash and Bhattacharjya, 2021), their molecular mechanisms and
physiological roles in R. pedestris–B. insecticola symbiosis are still
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FIGURE 6 | Insecticidal effect of Burkholderia gut symbionts in the
hemolymph during systemic E. coli K12 injection. (A) Survival rates of the
thanatin gene-silenced Sym-male insects upon systemic E. coli K12 injection.
Data are expressed as mean ± SD (n = 10). Different letters (a and b) on the
top of the columns indicate statistically significant differences (P < 0.05;
one-way ANOVA with Tukey’s correction). (B) Comparison of the symbiont
cells detected in insect’s hemolymph by RNAi and systemic E. coli K12
injection. Data are expressed as mean ± SD (n = 3). All data are
representative of three independent experiments.

FIGURE 7 | Survival rates of the thanatin gene-silenced Apo-insect upon
systemic E. coli K12 injection. Data are expressed as mean ± SD (n = 10).
Data are representative of three independent experiments
(ns = non-significant) (P < 0.05; one-way ANOVA with Tukey’s correction).

unclear. The peptide riptocin is derived from a precursor protein
consisting of 678 amino acid residues with 14 tandem repeats
(Miura et al., 1996). Each repeat contains a proline-rich region,
which is also found in other insects (Levashina et al., 1995;

Li et al., 2014; Taniguchi et al., 2016). While riptocin is produced
from a single multipeptide precursor, we revealed that R. pedestris
insects have 38 genes that can produce 13 different types of
thanatin isoforms (Figure 1). The multiple precursor structures
of thanatin isoforms are unique in R. pedestris and were
categorized into two groups depending on the existence of the
MACPF domain (Figure 2C). The MACPF domain is found in
the complement system of mammalian immunity, and molecules
with the MACPF domain are known to play important roles
in defense against bacterial and viral infections (Rosado et al.,
2008; Reboul et al., 2016; Liu and Lieberman, 2020). In the
insect model, the MACPF domain was identified only in the
Drosophila Torso-like protein, which is involved in the control of
development and cellular immune response (Johnson et al., 2013;
Forbes-Beadle et al., 2016).

In this study, thanatin isoforms showed antibacterial activities
against E. coli K12 and gut colonized symbiont, but not
against S. marcescens Db11 and cultured Burkholderia cells
(Figure 3). This difference in antibacterial activity could be
due to the molecular interaction between the thanatin isoforms
and the lipopolysaccharide (LPS) pattern of each bacterium.
Thanatin causes charge neutralization of the outer membrane,
displacing the stabilizing Ca2+ ions from the LPS molecules (Ma
et al., 2019). The charge-neutralized outer membrane efficiently
induces cell aggregation, eventually leading to bacterial cell death
(Wu et al., 2010; Sinha et al., 2017). In addition, thanatin binds
to the LPS transport protein complex (Lpt proteins) located
between the inner and outer membranes and inactivates metallo-
β-lactamase in the periplasm (Vetterli et al., 2018; Moura et al.,
2020). S. marcescens Db11 and cultured Burkholderia have a
smooth type of LPS with lipid A plus core oligosaccharide
(OS) and O-antigen, whereas E. coli K12 and gut colonized
symbionts have a rough type of LPS lacking the O-antigen
(Washizaki et al., 2016; Ebbensgaard et al., 2018). Of note, the
main isoforms of thanatin exhibit selective antibacterial activity
depending on growth conditions (Figure 3C) or the existence of
O-antigen in the LPS layer (Figure 3B). Therefore, the structural
differences in the LPS layers may affect the antibacterial activity
of thanatin isoforms.

In many insects, mutualistic bacteria can inhabit symbiotic
organs, or bacteriomes, providing nutrients to the host or
enhancing the immune response, among other potential
functions (Moran et al., 2003; Douglas, 2014; Flórez et al., 2015).
Interestingly, the overgrown Burkholderia gut symbionts are
eliminated by the host immune response (Kim et al., 2013a;
Byeon et al., 2015), but can move to the hemolymph from the
M4 crypt by immune suppression, such as the inhibition of
thanatin isoforms with E. coli K12 injection (Figure 6B). The
regulation of symbiont populations by host insects has been
shown to influence their migration. A previous report revealed
that the coleoptericin-A AMP of weevil insects selectively targets
endosymbionts within the bacteriocytes and regulates their
growth by inhibiting cell division (Anselme et al., 2008; Login
et al., 2011). Therefore, similar to the AMP, coleoptericin-
A, the thanatin isoforms of R. pedestris may also play an
important role in regulating and maintaining colonization of the
Burkholderia gut symbiont.
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FIGURE 8 | Putative mechanism of action of the thanatin isoforms against Burkholderia gut symbionts during systemic bacterial injection. Thanatin isoforms maintain
the gut bacterial population in the M4 crypt during systemic bacterial injection. In contrast, in absence of thanatin (thanatins RNAi) and after systemic E. coli K12
injection, overgrown Burkholderia gut symbionts were observed in the hemolymph of the R. pedestris host and exhibited insecticidal activity.

Recently, we reported that the cell wall components of
Burkholderia gut symbionts are important factors for successful
symbiosis (Kim et al., 2013b, 2016b, 2017). As mentioned
above, the symbiotic Burkholderia colonized in the M4 crypt
of R. pedestris lacks an O-antigen residue (Kim et al., 2015b).
However, it has not yet been elucidated what additional
changes occurred in the symbiotic Burkholderia cells other
than the O-antigen deficiency. A further study revealed that
the colonization of Burkholderia gut symbionts with truncated
core OSs impairs host health and reduces insect survival
during systemic bacterial injection (Kim et al., 2017). Based
on previously reported studies that LPS composed of lipid
A and core OS residues and O-antigens are associated with
bacterial endotoxin (Raetz and Whitfield, 2002; Nikaido,
2003), these results suggest that Burkholderia gut symbionts
that migrate to the hemolymph owing to overpopulation
can kill insects. When Sym-R. pedestris was injected with
Burkholderia LPS mutant strains, the insect survival rate was
significantly decreased (Supplementary Figure S2). In addition,
Burkholderia gut symbionts, which moved from the M4 crypt,
showed insecticidal activity when co-injected with E. coli
and impaired thanatin production in the insect (Figure 6A).
However, insecticidal activity was not observed in thanatins-
suppressed Apo-R. pedestris (Figure 7). This result suggests that
systematically injected E. coli cells did not cause any harm to
Apo-R. pedestris insects without Burkholderia gut symbionts.
Therefore, the hypothesis that Burkholderia symbionts came out

into hemolymph due to damage to midgut epithelial cells caused
by systemically injected E. coli cells can be excluded. Taken
together, the Burkholderia gut symbionts, when maintained up to
a suitable number of populations in the symbiotic organ, confer
positive effects, such as immunity enhancement on the host
insect, but may exhibit an insecticidal effect in the hemolymph
of R. pedestris, when the host cannot control them and under the
context of a systemic injection with E. coli cells.

The Burkholderia gut symbionts accumulate
polyhydroxyalkanoate (PHA) granules, a bacterial endocellular
storage polymer, to adapt to the harsh environment in the midgut
region of R. pedestris (Kim et al., 2013c). PHA granules allow
the Burkholderia gut symbiont to resist nutrient depletion and
environmental stress. Given the various resistance capabilities
provided by PHA granules to bacterial cells (Anderson and
Dawes, 1990; Kadouri et al., 2003; Ratcliff et al., 2008), the gut
symbionts may also become resistant to insect immune cells
due to the PHA granules. Therefore, we carefully suggest the
following hypothetical mechanisms (Figure 8): in the natural
state, R. pedestris synthesize thanatin isoforms during systemic
injection of foreign bacteria to properly regulate the growth
of Burkholderia gut symbionts. When thanatin genes were
suppressed, the Burkholderia population in the M4 crypt was
increased and subsequently migrated to the hemolymph through
the intestinal barrier. Although migrating Burkholderia gut
symbionts are engulfed by immune cells, such as phagocytic
hemocytes in the hemolymph, these gut bacterial cells may
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become resistant to cellular immune responses by their own PHA
granules. Eventually, Burkholderia gut symbionts with truncated
core OSs present in the hemolymph can impair host health and
reduces insect survival.

In this study, scientific evidence is needed as to whether
symbiotic bacteria are resistant to hemocytes by PHA
granules and what endotoxin substances they secrete. Further
studies could clearly demonstrate that the Burkholderia gut
symbionts outside the M4 crypt reduces the immunity of the
R. pedestris host insect.

CONCLUSION

Thanatin isoforms are derived from multiple precursor proteins
and function as AMPs that modulate the population of gut
symbionts. This study provides novel information on the role of
thanatin isoforms in the symbiotic organs of R. pedestris and the
identification of novel symbiotic factors.

In addition, this study reveals very interesting findings
about the indirect interaction between resident symbionts
and foreign infecting bacteria that are modulated by the
host immune system. Finally, this study can be considered
as basic data on how stability can be maintained after
establishment of symbiosis.
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