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Simple Summary: ‘Crowding’, keeping too many birds per m2, is one of the largest welfare concerns
in the poultry industry. It is therefore worrisome that there is a gap in research investigating the
effects of high stocking densities during the rearing phase of laying hens. This study evaluated
anxious behavior and corticosterone levels, a hormone involved in the stress response, during the
first 10 weeks of laying hen chicks housed under three different crowding conditions: undercrowding,
conventional crowding, and overcrowding. We found that overcrowded chicks displayed more
anxious behavior compared to undercrowded chicks. Corticosterone levels were elevated in both
extreme groups in week 3, but dropped to values of the conventional crowding group at week
10. We conclude that current conventional stocking densities do not seem to impair the welfare
state of the laying hen chick, and that a three-fold in- or decrease of density influences stress and
anxiety, but within the adaptive capacity of the chick. Important side-notes to this conclusion are
that an increase of stocking density did result in a slower rate of adaptation, and that we currently
do not know if there are long-term consequences of different crowding densities reaching into the
laying period.

Abstract: The recent increases in stocking density, in extreme cases resulting in ‘crowding’, have a
major impact on poultry welfare. In contrast to available research on adult laying hens, there is a gap in
the literature studying the rearing phase. The present study investigated the effects of stocking density
during the rearing period on the welfare of the laying hen chick. The chicks were housed under one
of three crowding conditions, increasing with age: undercrowding (500-1000-1429 cm2 per chick),
conventional crowding (167-333-500 cm2 per chick), or overcrowding (56-111-167 cm2 per chick).
The parameters evaluated encompassed behavioral and physiological factors related to anxiety and
stress. We found that during the first 6 weeks, overcrowded chicks displayed more anxious behavior
than undercrowded chicks, and both extreme densities induced higher corticosterone levels compared
to chicks housed under conventional crowding. At 10 weeks of age, plasma corticosterone had
dropped to the level of conventional crowding group in both groups, whereas feather corticosterone
remained high only in the overcrowded group. We conclude that current conventional stocking
densities do not seem to impair the welfare state of the laying hen chick, and that a three-fold increase
or decrease of density influences corticosterone levels and anxious behavior, but within the adaptive
capacity of the chick. Important side notes to this conclusion are that an increase of stocking density
did result in a slower rate of adaptation, and that there could be long-term consequences of both the
different stocking densities and/or increased costs of adaptation.
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1. Introduction

Since the industrial revolution, poultry farming production systems have been scaling up to
increase economic returns. An important consequence is an increase of stocking density in both the
rearing and laying phase of layer hens (Gallus gallus domesticus). If taken to the extreme, this can lead to
‘overcrowding’, keeping too many birds per square meter, which can have a major impact on welfare.
First, it may cause discomfort, distress, and restrictions on behavior, and second, it may limit feed
or water intake and lead to injury or disease [1]. Additionally, it has been shown to be an important
predictor for the development of feather pecking [2,3], which is one of the most significant challenges
in poultry welfare [4]. This is not surprising, since in general it is well known that environment and
experience during early life can have long-term effects [5,6].

It is therefore worrisome that there is a gap in research on the effects of stocking densities during
the rearing phase, see Figure 1, of the laying hen. In contrast to the abundance of literature on the
effects of crowding on welfare in broilers (for a review see [7]) and adult laying hens [5], there are only
approximately a dozen papers focusing on laying hen chicks (Table 1), and several concerns can be
raised on the available literature. For one, most of the research was executed over a decade ago. This is
problematic since both breeding lines using conditions have changed over time, making it difficult to
apply the results to the current situation. Moreover, the research had a strong focus on development
and performance (i.e., the production of eggs), and parameters such as normal behavior and welfare
were rarely discussed; it appears these themes have entered the scope of research only more recently.
These factors combined complicate forming an informed consensus on the impact of stocking density
during rearing on laying hen chicks and adults, specifically regarding their welfare.
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Figure 1. The production of the laying hen consists of three phases that take place in different facilities.
After embryogenesis, one-day-old chicks (after hatching) are moved to the grow-out facility for the rearing
period. Here they are kept until approximately week 16/17, when they start laying eggs, and are moved to
the production system for the laying period. This study addresses the first 10 weeks of the rearing phase.

The concept of animal welfare can be defined and assessed in a multitude of ways. Here we approach
it as a dynamic state level that revolves around the ability for the animal to adequately adapt to the
aversive intrinsic and extrinsic factors to achieve a state perceived as positive [8]. It is difficult to assess the
perception of a state in animals directly; thus, in this study we will approximate the multi-faceted concept
of welfare by focusing on the closely interconnected phenomena stress and anxiety.
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Stress is a state in which (extreme) extrinsic and intrinsic demands push beyond an organisms’
natural regulatory capacity [9]. Crowding can be seen as such an extreme environmental demand [1].
Physiologically, stress can be expressed in levels of the hormone corticosterone (CORT). It is released
by the hypothalamic-pituitary-adrenal (HPA) axis in response to both appetitive and aversive stimuli,
and acts upon behavior, metabolism, and the immune system [10]. Chronic high levels of CORT
may result in growth retardation, impaired immunocompetence, and disrupted species-specific
behavior [11]. Until now, no studies have evaluated CORT levels in young birds subjected to different
stocking densities. However, a positive correlation between crowding and the physiological stress
response has been demonstrated by the ratio of heterophils and lymphocytes [12], which is indicative
of plasma CORT levels [13].

Since corticosterone has been implied in such a wide variety of physiological processes,
its usefulness in the assessment of stress and welfare has been questioned [14]. It is therefore important
to combine hormone values with behavioral measures that are informative of stress. On the behavioral
level, stress is closely related to anxiety. Anxiety can be defined as general distress and is characterized
as a response to a potential danger. It is a state that ranges from low to high and is reflected in the
level of fearfulness and sociality [15]. Fearfulness is seen as the immediate behavioral response to a
stimulus or event perceived as a threat, and it co-occurs with an immediate rise in CORT levels [16].
Similarly, domestic fowl that receive CORT via an infusion pump display more fearful behavior than
fowl with a sham pump [13]. Fearful behavior can be measured in an open field (OF) test, where
general activity has an inverse relationship with fearfulness [17–19]. Importantly, the intensity of the
fearful response in the OF can be considered a measurement of overall anxiety, because the OF does
not impose a direct threat on the chick [20].

Sociality, the need to be with conspecifics, increases with higher levels of anxiety and stress. Marin et
al. [21] employed a runway test with a stimulus bird in the goal box and found that chicks subjected to
an acute stressor displayed a shorter latency to leave the start box and spent more time near the stimulus
bird. They interpret this as anxious chicks demonstrating increased motivation for social reinstatement.
Sociality can be assessed in a Y-maze test, which differentiates between social motivation versus exploration
and foraging motivation [22,23]. General activity in the first trial of the Y-maze can be interpreted in a
similar way as activity in the OF; again, a novelty is imposed on the chicks, and the intensity of the
behavioral response can be interpreted as a measure of anxiety. Additionally, the rate of change in behavior
over the trials is also indicative of anxiety, since it reflects the process of familiarization or adaptation to the
test environment [24]. Furthermore, underlying sociality is measured by the tendency to remain in close
proximity to the social stimulus, which is also known as the ‘social reinstatement response’ [25], instead of
moving away from the social stimulus to forage.

The present study aimed to elucidate the consequences of early life crowding on welfare
by evaluating stress, fear, and sociality in Brown Nick chicks housed under three different
crowding conditions: overcrowding (OC), conventional crowding (CC), and undercrowding (UC).
The experiment took place in small groups in a laboratory set-up, where besides the stocking density
all environmental variables were strictly controlled and kept equal across the groups. The aim was not
to copy the exact conditions of housing in the poultry industry, but to specifically isolate the effects
of crowding on physiology and behavior, and ultimately welfare. We evaluated resting stress levels
by assessing circulating plasma-CORT [26], and CORT deposition in feathers for an assessment of
(putative) stress effects over a longer timeframe [27–29]. Fearfulness was measured in an open field
(OF), and sociality in an Y-maze test. Lastly, body weight was assessed as a gross indicator of growth.
We believe that the combination of these parameters, and the mentioned interconnectivity between
them, will yield a more complete indication of the effects of stocking density during the rearing period
of the laying hen on ultimately welfare.
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Table 1. Literature overview research on effects of stocking densities during the rearing period on the laying hen. Density is expressed in cm2 per chick. Per parameter
is depicted if the study found an increase, decrease, or no difference (nd) with increasing stocking densities. If the study did not consider the specific parameter, it is
designated with ‘-‘. The parameters considered are: body weight (BW), food intake (FI), uniformity of physique (U), fluctuating asymmetries (FA), mortality (M),
plumage condition (PC), heterophil:lymphocyte (H:L) ratio, behavior, laying performance (LP).

Author Year Reference Density (cm2/Chick) BW FI U FA M PC H:L Behavior LP

Anderson & Adams 1992 [30] 192/221 (0–16) ↓
(16+) ↑ nd nd - nd nd - - -

Bestman et al. 2009 [2]
(0–4) 294.1/476.2
(5–6) 416.7/555.6

(7–17) 952.4/010.1
- - - - - - - ↑ feather pecking -

Blokhuis & van der Haar 1989 [31] 625/1250/3703.7 - - - - - nd - ↓ ground pecking
↑ feather pecking -

Bozkurt et al. 2008 [12] (0–4) 105.9/134.8/185.3
(4–16) 211.8/274.5/370.6 - - ↑ - - - ↑ - -

Bozkurt et al. 2006 [32] (0–4) 105.9/134.8/185.3
(4–16) 211.8/274.5/370.6 ↓ ↓ - - nd - - - -

Carey 1986 [33] 1) 239/259/311
2) 222/259/311 ↓ ↓ - - - - - - ↑ egg weight

↓ egg production decline

Hansen & Braastad 1994 [34] 769.2/1538.5 nd nd - - nd ↓ - ↓ ground pecking
↑ feather pecking nd

Hester & Wilson 1986 [35] 344/516/1031 - - - - - - - - ↓ hard-shelled:shell-less eggs
↓ eggs:hens

Huber-Eicher & Audige 1999 [36] (0–2) > 285.7/< 285.7
(3–16) > 1000/< 1000 - - - - - - - ↑ feather pecking -

Hunniford 2016 [37]
(0-5) 194.6/285.2
(6–16) 387.1/775

(16+) 690
- - - - - - - ↓ activity -

Leeson & Summer 1984 [38] 293/586 nd ↓ - - - - - - ↑ egg weight
↓ eggs

Moller et al. 1995 [39] 357.1/416.7/500 - - - ↑ - - - ↑ tonic immobility -

Patterson & Siegel 1997 [40] (0–6) 97.8/116.1/142.9/185.8
(6–16) 195.6/232.3/285.9/371.6 ↓ (0–2) ↓

(2+) ↑ nd - nd - - - -

Pavan et al. 2005 [41]
(0–6) 210.5/228.6/250/275.9

(6–16) 357.1/416.7/500
(16+) 375/450/562.2

nd nd nd - - - - - nd

Wells 1972 [42] 700/930/1390/1860 nd nd nd - nd ↓ - - nd
Zepp et al. 2018 [43] 436.7/552.5 - - - - - - - ↑ feather pecking -
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2. Materials and Methods

2.1. Welfare Note

This study was reviewed and approved by the local animal ethics committee (DEC; Dier
Experimenten Commissie, approval number 2013.l.11.085) of Utrecht University, the Netherlands.
This committee has been issued a license by the governmental Central Animals Experiments Committee
in accordance with the recommendations of the EU directive 86/609/EEC. All effort was taken to
minimize the number of animals used and their suffering.

2.2. Animals

Forty-two female Brown Nick chicks were obtained on the day of hatching from Verbeek
Hatchery and Rearing (Lunteren, The Netherlands). The chicks were not beak-trimmed or vaccinated.
All chicks were housed in the same room under similar conditions, except for the ‘crowding-factor’:
undercrowding (UC), conventional crowding (CC), and overcrowding (OC), see Table 2. On the day
of arrival, each chick was randomly assigned to one of these three conditions, resulting in groups of
14 chicks per cage and thus crowding density.

Table 2. Crowding conditions per group in available cm2 per chick. Age is depicted in weeks,
and cages were enlarged at two time-points. Stocking densities were based on industry-numbers (taken
as guiding value for conventional crowding) and a factor of three smaller or bigger to design the over-
and undercrowding situation respectively.

Crowding Condition

Age Undercrowding Conventional Crowding Overcrowding

0–3 500 cm2 167 cm2 56 cm2

4–6 1000 cm2 333 cm2 111 cm2

7–10 1429 cm2 500 cm2 167 cm2

On day 2, the chicks were marked individually with either green or purple pig paint (Kruuse,
Denmark) in different combinations. In addition, the chicks were ringed for individual identification
in week 2. From day 1, all the chickens were provided with starter chick food (Besterfood Opfokmeel,
The Netherlands) and water ad libitum. From week 3 onwards, enrichment was provided by scattering
mixed grain on the floor of the cages once a day. During the first week, the chicks were weighed
every day, and after week 1 they were weighed twice a week to monitor growth. All chickens were
euthanized by cervical dislocation when 10 weeks old, see Figure 1.

2.3. Housing

All cages were square-shaped and consisted of two walls of medium density fiber (MDF), and two
walls of chicken fence on a wooden frame. All cages were 60 cm high. The floor was covered with
wood shavings. Every cage contained a feeding trough (length 30 cm) and a drink silo (week 0–3:
diameter 16.5 cm, week 4–10: diameter 22 cm), placed in a similar composition in each cage.

The three cages were placed in a temperature-controlled (18–22 ◦C) and well-ventilated room.
Lights were on from 07:00 a.m. to 07:00 p.m. Chicks of different cages were unable to see each other
because every open wall faced a closed wall of a neighboring cage. During the first three weeks every
cage was provided with a heat lamp for sufficient warmth, and with a min/max thermometer to monitor
temperature. After three weeks the cages were closed off with mesh wire to prevent chicks from flying out
of their pen.

The crowding factor was based on numbers used in the industry (personal communication with
the two largest layer hen rearing facilities in the Netherlands) to model conventional crowding, and a
factor of three smaller or bigger to design over- and undercrowding conditions respectively. Similar to
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industry-practice, the chicks’ housing was enlarged in week 4 and week 7 by means of an enlargeable
mechanism inherent to the cages, ensuring that the chickens did not have to move but could stay in
their familiar home-pen, see Table 2.

2.4. Behavioral Tests

The chicks were tested in an open field when 21–22 days (three weeks) old, and in a social versus
foraging Y-maze when 56–60 days old (eight weeks), see Figure 1. Order of testing was randomized by
consecutively testing the chicks according to their randomly assigned number (1–14) and alternating
between the groups during testing.

2.4.1. Open Field Test

Apparatus

The open field apparatus (Figure 2, left panel) measured 150× 150 cm (approx. 2.25 m2). The 65 cm
high walls were made of grey Polyvinyl chloride (PVC), fixed by connectors of stainless steel. The floor
was divided with white chalk lines in a 3 × 3 checked pattern, where each square measured 50 ×
50 cm. A camera was mounted above the observation pen, allowing observations from a monitor
situated in the testing room but out of view for the chick being tested. This allowed scoring of behavior
without disturbing the chick during the test. Behaviors were scored live using the observation software
JWatcher 1.0 [44].

Figure 2. Open field (left panel) and the Y-maze (right panel). Chicks were placed in the center of the
OF, and behavior was monitored for 10 min. The Y-maze apparatus consisted of one long arm and two
short arms. The end compartment, goal box, of each short arm contained either a social stimulus or a
foraging stimulus. The test chicken was placed in the start box, and the test of 10 min began when the
guillotine door of the start box was pulled via a lever system. White chalk lines divided the apparatus
in sub-compartments that could be used for analysis. Illustrations: Yorrit van der Staay.

Procedure

A chick was gently caught from its home pen and placed in the center of the open field.
The observation time of 10 min started as soon as the experimenter was out of sight of the chick
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in the open field. We scored: latency to leave the starting square, number of lines crossed with
both feet, total time spent walking and number of distress calls (high-pitched peep of high energy).
Immediately after the observation period, the chick was placed back in its home pen. All chicks were
tested between 9:00 a.m. and 5:00 p.m. on two consecutive days.

2.4.2. Y-Maze Test Social Versus Foraging

Apparatus

The Y-maze apparatus (Figure 2, right panel) consisted of one long arm (150 × 50 cm) and two
shorter arms (125 × 50 cm). The 65 cm high walls were made of grey PVC fixed by connectors of
stainless steel. At the beginning of the long arm a compartment of 50 × 50 cm served as start box.
A guillotine door provided access to the Y-maze. At the end of the shorter arms, a compartment (size
50 × 50 cm) held either the social stimulus or the foraging stimulus. The foraging stimulus consisted
of mixed grain dispersed in mixed wood shavings and was continuously accessible to the test chick.
The social stimulus consisted of a familiar chick from the home pen, separated from the rest of the
Y-maze apparatus with a fine wire mesh. The apparatus was divided in areas with white chalk lines
on the floor for proper analysis: start box, zone 1, midzone, social arm, and foraging arm. A camera
was situated above the apparatus in order to score the behavior live from a connected monitor.

Procedure

After both stimuli were prepared, a chick was gently caught from its home pen and placed
in the start box. The 10-min test started by opening the sliding door between start box and maze.
We scored: latency to leave the start box, time spent in each zone, and the number of lines crossed.
All behaviors were scored live using JWatcher 1.0. After 10 min both the social stimulus chicken and
the test chicken were gently caught and placed back in their home pen. Each chick completed four
trials on four consecutive days. To control for the possible effect of an arm preference, stimuli were
systematically alternated between end compartments over the four trials. Whether a chick would start
with the social stimulus in the left or right arm alternated per chick and was equally divided per group.
Moreover, to prevent an influence from a social preference or established hierarchy, two chicks from
their home pen were selected randomly as the fixed social stimuli and alternated over the four trials
for each test subject. These chicks were excluded from the Y-maze test.

2.5. Glucocorticoids

2.5.1. Plasma

At 6 and 10 weeks of age blood-samples were obtained from all chicks, see Figure 1. Samples were
taken between 11:15 a.m. and 12:45 p.m. After a chick was carefully caught from its home pen, a blood
sample was taken by an experienced poultry veterinarian within 3 min with either a short 21G ×
5/8-inch needle (Terumo Neolus, Belgium) and 3 mL syringe (Braun Omnifix, USA), or a size 11 scalpel
blade (Swann-Morton, England) from the V. Ulnaris. Approximately 2 mL blood was collected in a
2 mL EDTA tube (BD Vacutainer, USA) and stored in a cooler. Immediately thereafter, the samples were
centrifuged for 10 min at 20 ◦C at 2000G (B. Braun Sigma 4K10, USA). From the plasma, 300–1000 µL
was pipetted in a smaller container and stored at −20 ◦C until analysis of all samples (corticosterone
ELISA LDN GmbH & Co, Germany).

2.5.2. Feathers

We collected the primary feathers 2 and 8 (see Figure 3A) from both the left and right wing in
week 3 and 10, see Figure 1. These feathers were chosen since they are used most in the available
literature [25], hence allowing for comparison. The complete feather was carefully pulled and stored
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in an airtight plastic bag. Primary 2 and 8 were stored separately but left and right were grouped
together. The feathers were stored in a dark compartment at room temperature until further analysis.
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Figure 3. (A) Schematic representation of wing anatomy with numbering of primary feathers. For CORT
analysis of the feathers, primary feather 2 and 8 were pulled in week 3 and 10. (B) Schematic
representation of feather. Downy barbs, calamus, and rachis were removed prior to CORT analysis.
Only the vanes were used for determination of corticosterone levels (illustration modified from [26]).

The extraction of corticosterone (CORT) from the feathers relies on an 80% methanol (Merck
1.06009, Germany) extraction technique and is based on a combination of the method of Bortolotti
et al. [27] and Berkvens [28]. The feather was cleaned with 100% methanol using an aerosol spray,
dried under the fume hood, weighed (Scout Pro SPU 123, Ohaus Corporation, USA), and measured.
Next, the calamus, rachis, downy barbs, and tip of the feather were removed, and the remaining vanes
were sectioned with scissors into flakes of <3 mm2 (see Figure 3B). The flakes were collected in a 15 mL
Falcon tube and stored at −20 ◦C. For the actual extraction, a basis of 5 mL 80% methanol was added,
plus 1 mL 80% methanol per 0.03 g flakes, followed by incubation overnight on a roller bank (Stuart
SRT9D, Bibby Scientific, England), speed 30, at room temperature. The solutions were centrifuged
for 10 min at 2200G (B. Braun Sigma 4K10, USA) and 4 mL supernatant was pipetted in four 2 mL
Eppendorf tubes and stored at −20 ◦C. Lastly, the methanol extracts were dried in a vacuum pump
(Savant Speedvac AES 1000-240, Thermo/Fisher Scientific, Germany) on medium heat and stored at
−20 ◦C until analysis.

CORT concentration was determined in triplicate with a corticosterone enzyme immunoassay kit
(number 500655-S1, Cayman Chemicals, BioConnect, The Netherlands). From each sample, two of the
four Eppendorf tubes with reconstituted feather extracts were combined for analysis. All samples were
measured in eight separate assays performed on four consecutive days. Every assay contained samples
from each of the three experimental groups, systematically divided over the assay. Feather CORT
values are expressed in milligram per gram vanes.
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2.6. Staistical Analysis

All statistics were calculated with SAS Studio 3.4 (Basic Edition), running on a Linux system
within a Virtual Machine environment on a MacBook Pro. The Shapiro-Wilk test was used to assess
normality (SAS UNIVERIATE procedure), homogeneity of covariance matrices was evaluated with a
Box M test (SAS DISCRIM procedure), the assumption of sphericity was checked using a Mauchly’s
test (SAS GLM procedure), and homogeneity of variances was assessed with the Levine’s test (SAS
GLM procedure)

Body weight was measured on 27 different time-points. Since Mauchly’s test indicated
that the assumption of sphericity had been violated, we assessed the separate ANOVA with
Greenhouse–Geisser correction. From the OF we considered latency to leave (in s), the number
of lines crossed, time spent walking, and the number of distress calls. During the OF, two chicks of UC,
two chicks of CC, and one chick of OC escaped from the test pen during the test, thus their data were
excluded. Latency to leave and number of lines crossed violated the assumption of normality, therefore
a log10 and square root transformation was applied respectively to meet this assumption. In the
Y-maze tests we assessed the parameters latency to leave (in s), arm preference and number of lines
crossed over four consecutive sessions. Arm preference was a compounded variable calculated from
time spent (in s) in the foraging arm subtracted from time spent in the social arm. Thus, a value of zero
indicated no preference, a positive value indicated a preference for the social arm, whereas a negative
value indicated a preference for the foraging arm. The variables latency to leave the start box and
number of lines crossed violated the assumption of normality; therefore, they were log10 and square
root transformed respectively and normality was no longer violated. Since the assumption of sphericity
was violated (Mauchly’s test) in latency to leave with ε < 0.7, we looked at the MANOVA score for this
parameter. For arm preference and lines crossed, Mauchly’s test was significant, but ε was > 0.7, thus,
the separate ANOVAs were considered with Greenhouse-Geisser correction. Feather glucocorticoid
deposition was analyzed for feathers 2 and 8 separately, since there is no relation between the separate
feathers in terms of CORT deposition [27], and since the variables violated the assumption of normality,
the data were log10 transformed to meet this assumption.

For all dependent variables, the effects of the crowding conditions were analyzed using a
parametric (multivariate) analysis of variance (MANOVA Pillai’s trace; ANOVA; PROC GLM
procedure). When a significant effect of crowding factor was found, a post hoc analysis for pairwise
comparisons between the three crowding conditions was executed with a Tukey HSD test (SAS GLM
MEANS procedure). To highlight differences of within-subject measurements and interaction effects
(for body weight, Y-maze test behaviors, and glucocorticoid levels in plasma and feathers), a repeated
measures analysis was included (SAS GLM REPEATED procedure), with a contrast analysis (PRINTE
function) for pairwise comparison within-subjects. The false discovery rate (FDR; SAS MULTTEST
procedure) was used to correct for inflation of the α-level in multiple comparisons. In all statistical
tests, an effect was considered significant at p < 0.05. Effect sizes eta (η) were estimated (SAS GLM
procedure, α = 0.10) with η2. Values of 0.01, 0.06, and 0.14 were considered as small, moderate and
large effects, respectively [45].

3. Results

3.1. Body Weight

There was no difference in body weight between the groups across all time-points, F(52,936) =
1.57, p = 0.212.

3.2. Open Field Behaviors

There was an overall effect of crowding condition on behavior in the open field F(10,62) = 3.27, p
= 0.002. The groups differed in latency to leave the starting field, F(2,34) = 4.41, p = 0.025, η2 = 0.21
(Figure 4A); time spent walking, F(2,34) = 9.19, p = 0.003, η2 = 0.35 (Figure 4B); number of lines crossed,
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F(2,34) = 7.00, p = 0.007, η2 = 0.29 (Figure 4C); and number of distress calls omitted, F(2,34) = 4.74, p
= 0.025, η2 = 0.22, (Figure 4D). Post hoc analysis showed that chicks from the UC group displayed a
shorter latency to leave than chicks from the CC group. Moreover, the UC group crossed more lines,
spent more time walking and emitted more peeps than the OC group.
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Figure 4. Effects of crowding condition on open field behavior. The latency to leave the start field (A),
time spent walking (B), number of lines crossed (C), and number of distress calls emitted (D) during the
OF test at three-weeks of age of chicks housed under undercrowding (UC), conventional crowding (CC),
and overcrowding (OC) condition. The box ranges from the first to the third quartile, line indicates the
median and cross indicates the mean, whiskers represent minimum and maximum without outliers, *
p < 0.05, ** p < 0.01.

3.3. Y-Maze Behaviors

The overall analysis showed that there was an effect of the crowding conditions on behavior in
the Y-maze, F(2,33) = 4.42, p = 0.020. There was no effect of crowding conditions on latency to leave
over the four trials combined, F(2,33) = 1.96, p = 0.158, and no interaction effect between crowding
conditions and trials, F(6,64) = 1.12, p = 0.362. Latency to leave differed between trials, F(3,31) = 18.66,
p < 0.001 (Figure 5A). The contrast analysis showed that latency to leave in trial 1 was longer than in
trial 2, F(1,33) = 34.80, p < 0.001, trial 3, F(1,33) = 56.49, p < 0.001, and trial 4, F(1,33) = 53.47, p < 0.001.
Latency to leave in trial 2 was longer than in trial 3, F(1,33) = 13.79, p = 0.0010, and trial 4, F(1,33) =
15.54, p < 0.001.
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Figure 5. Effects of housing density on Y-maze behavior. The latency to leave the start-box (A),
arm preference; with 0 indicating no preference, a positive value indicating the time spent more
in the social arm, and a negative value indicating the time spent more in the foraging arm, in s
(B), and number of lines crossed (C) of eight-week old chicks during the Y-maze test are depicted.
Letters indicate trial differences across the groups, and asterisk indicate group differences within trials.
The box ranges from the first to the third quartile, line indicates the median and cross indicates the
mean, whiskers represent minimum and maximum without outliers, * p < 0.05 (UC = undercrowding,
CC = conventional crowding, OC = overcrowding condition).

Arm preference was affected by crowding conditions, F(2,33) = 4.42, p = 0.020, and trial number,
F(3,99) = 6.11, p = 0.002 (Figure 4B). Follow up analysis revealed a preference only in trial 2, F(2,33)
= 4.11, p = 0.029, η2 = 0.26, and for trial 1, F(2,33) = 4.11, p = 0.051, η2 = 0.20, which only approached
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significance but showed a large effect size. Post hoc tests showed that during trial 2, chicks from
the UC group spent less time in social contact compared to the chicks of both the CC and the OC
group. In trial 1, the UC chicks displayed less social behavior only compared to the chicks from the
OC group. Contrast analysis showed that, all chicks combined, they spent less time in social contact in
trial 1 compared to trial 2, F(1,33) = 8.85, p = 0.012; and trial 4, F(1,33) = 9.32, p = 0.012. This also holds
for trial 3 compared to trial 4, F(1,33) = 8.64, p = 0.012.

The groups differed in the number of lines crossed over the four trials combined, F(2,33) = 4.43,
p = 0.020, and this behavior changed across trials, F(3,99) = 3.81, p = 0.017 (Figure 4C). The separate
ANOVA’s per trial revealed that the group differed for number of lines crossed only in trial 1, F(2,33)
= 4.99, p = 0.026, η2 = 0.23; and trial 2, F(2,33) = 5.18, p = 0.026, η2 = 0.24. Post hoc comparisons
revealed that for both sessions the chicks from UC and CC crossed more lines than the chicks from OC.
Analysis of all chicks combined between trials showed that they crossed more lines in trial 2 compared
to trial 1, F(1,33) = 14.80, p = 0.003; and trial 4, F(1,33) = 7.96, p = 0.024.

3.4. Plasma CORT

The analysis of the plasma CORT levels on two time points revealed an overall effect of the
crowding conditions, F(2,39) = 4.13, p = 0.024, age, F(1,39) = 22.95, p < 0.001, and their interaction,
F(2,39) = 6.73, p = 0.003 (Figure 6A). Separate ANOVA’s per time-point showed that plasma CORT
differed between the groups in week 6, F(2,39) = 8.10, p = 0.002, η2 = 0.29, but not in week 10, F(2,39) =
0.13, p = 0.88, η2 = 0.0067. Post hoc comparisons revealed that in week 6 both the chicks from UC and
OC had higher values compared to the chicks from CC.

3.5. Feather CORT

In feather 2, there was an effect of crowding condition, F(2,39) = 27.67, p < 0.001, age, F(1,39) = 64.49,
p < 0.001, and their interaction, F(2,39) = 5.70, p = 0.007, on CORT levels (Figure 6B). Groups differed
from each other in week 3, F(2,39) = 10.37, p < 0.001, η2 = 0.35; and in week 10, F(2,39) = 24.37, p < 0.001,
η2 = 0.56. Post hoc analysis revealed that in week 3 feather 2 of chicks from UC and OC contained
higher levels of CORT than the chicks from CC. In week 10, the chicks from OC displayed higher levels
of CORT in feather 2 compared to the chicks from both CC and UC.

In feather 8, crowding conditions, F(2,38) = 12.68, p < 0.001, as well as age, F(1,39) = 162.43, p <
0.001, influenced CORT levels (Figure 6C). Moreover, CORT levels varied between the two time-points
differently between the groups, F(2,38) = 13.14, p < 0.001. Separate ANOVAs per time-point revealed
that there was no difference between the groups in week 3. In week 10 the groups did differ, F(2,38) =
20.27, p < 0.001, η2 = 0.52. The post hoc analysis revealed that feather 8 of chicks from OC displayed
higher CORT values than those of UC and CC chicks.
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4. Discussion

The present study investigated behavioral and physiological measures of stress and anxiety
during the rearing period to approximate the welfare state of the laying hen chick raised in different
stocking densities. The chicks were housed under one of three crowding conditions: undercrowding
(UC), conventional crowding (CC), or overcrowding (OC). We evaluated fearfulness in the open field
(OF) test, sociality in the Y-maze test, plasma values for the resting levels of corticosterone, and feather
deposition as a measure of long-term corticosterone values. We found that undercrowded chicks were
more active and needed less social reinstatement compared to the overcrowded group. Both extreme
crowding conditions induced higher CORT levels compared to chicks housed under conventional
crowding during the first six weeks of the experiment. At ten weeks, circulating plasma CORT had
dropped to CC levels in both the UC and OC groups. However, feather CORT deposition in the
overcrowded group remained high. Below we will discuss the interplay between CORT values and
general activity levels, and how we should address our findings in relation to the chicks’ welfare.

4.1. Body Weight

Most of the previous studies reported a lower body weight as a consequence of higher stocking
densities [30,32,33,40], which contrasts with this study where we found no weight differences between
the groups. Possibly, differences in body weight only become apparent later in the rearing period,
as has been suggested by Bell [46]. This was corroborated by Anderson & Adams [30], who reported
body weight differences only from 12 weeks of age onwards. In this study, chicks were sacrificed at the
age of 10 weeks, possibly before weight differences became apparent. Future studies should prolong
investigation time and extend into the laying period to elucidate these effects.

4.2. Stress and Anxiety

The main aim of this study was to assess the impact of crowding density on welfare by looking at
stress and anxiety. We found that chicks reared under high crowding densities were less active and
displayed a higher need for social reinstatement. These findings indicate that OC chicks experienced
more anxiety when faced with novelty and separated from their pen mates. The higher levels of
anxious behavior in OC are in line with increased CORT levels in feathers and plasma at three weeks
and six weeks of age respectively, compared to chicks reared under lower densities. This apparent
relationship between CORT levels and anxious behavior corroborates previous findings. Namely, Jones
et al. [47] classified Japanese quail as either low stress (LS) or high stress (HS) based on plasma CORT
levels following a restraint and compared levels of fearful behavior in an OF. They demonstrated
that LS quails display less freezing and shorter call latencies than HS chicks and concluded that there
is a positive correlation between anxiety and CORT activation. Satterlee & Marin [48] furthermore
demonstrated that exposing quails to a stressor before an OF induced more freezing and immobility
compared to non-stressed individuals.

Interestingly, chicks reared under the lowest density (UC) show a different pattern.
Behaviorally, they were most active and demonstrated little need for social reinstatement. However, this
is in contrast with CORT findings since levels of CORT in feathers and plasma during the first six weeks
of the experiment in UC chicks were similar to those of the chicks reared under the highest density.
We propose that the deviating behavioral data are a consequence of the experimental design used; the
UC chickens were already well habituated to larger spaces and social isolation. When Hall [17] first
described the open field test for rodents, it had to meet two criteria: (1) the tested animal should be
unfamiliar with the test arena, and (2) the test arena should be larger than the home cage. Since the
dimensions of the open field apparatus were the same for each group, while the cages of the three
crowding conditions differed in size, the experience of space may have been very different for each of
the three groups. Since one of the main fearful aspects of the OF is its size, it is highly probable that the
rearing conditions influenced fear levels through familiarization with space. Jones [49] investigated the
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consequences of repeated exposure to the OF and demonstrated that, over successive trials, the chicks
displayed less freezing behavior, walked more, and emitted more peeping. It appears that something
similar occurred for the chickens reared in the UC condition and their perception of the OF.

In this case, we do make the assumption that if provided with more space in their home pen,
the chicks will also make use of it and hence become familiar with large spaces and maintain higher
inter-individual distances. This has not been demonstrated in laying hens, but Leone & Estevez [50]
showed that the movement pattern of young broiler chicks was primarily determined by the size of
their home pen. In other words, when provided with space, the chickens make use of it.

An alternative explanation for the increased CORT levels in the undercrowded group is that the
higher values are a consequence of increased physical activity, since a main effect of glucocorticoids
is to mobilize energy reserves to meet increased metabolic demands [51]. Indeed, in response to
exercise, sheep have increased plasma cortisol levels [52]. However, whereas it might be of crucial
importance on the short-term to anticipate energetic needs, prolonged higher levels of glucocorticoids
can have detrimental effects [10]. In this study, the undercrowded group showed increased CORT
levels for at least the first six weeks, and we currently do not know what the consequences could have
been for adult laying hens raised under these circumstances. Perhaps, and this is purely speculative,
the increased physical demands would negatively affect final body weight, laying performance or
even mortality rate.

To conclude, the UC chickens were possibly too familiarized with the large free space of the OF to
show a fear response, and it remains to be demonstrated whether a heightened fearful response in
UC chicks might have become apparent in a modified test (e.g., a much larger open field apparatus).
Alternatively, the increased CORT levels are a consequence of higher activity levels in this group.

4.3. Welfare

Finally, it appears that chickens reared under conventional crowding did not have high levels
of stress or anxiety at any time-point in this experiment. In other words, the chicks reared under
conventional crowding conditions appeared to be unimpaired in their welfare compared with chicks
in the other two crowding conditions. Namely, the present study suggests that chicks housed under
lower and higher crowding conditions were impaired in their welfare during the first six weeks of the
experiment as indicated by higher levels of CORT and anxious behavior. At this time-point, both more
extreme housing densities might be experienced as aversive to chicks of this strain.

However, the presence of stress and anxiety are in itself not indicative of an impaired welfare
state, since there are numerous examples of the beneficial aspects of these emotional states [14,15].
As outlined before, the crux of a positive welfare state is the ability of the animal to adapt to the
event or situation it perceives as negative. Only following prolonged exposure incapacitating this
adaptability, in this study indicated by chronic stress and/or pathological anxiety, we would speak of
an impaired welfare state [8].

In fact, in week 10, both undercrowded and overcrowded chicks display activity and CORT
levels equal to CC chickens; both groups were apparently able to adapt to their housing situation.
Most probably, over the years, Brown Nick laying hens have been selected in concordance with their
performance in the provided environment in order to increase economic returns [53]. Possibly, through
a long history of poultry farming practices, a suitable stocking density has been established as a result
of experience (not as a result of systematic scientific research). Increasing or decreasing the stocking
density during the rearing phase does affect the welfare state of the chicks on a short term, but this
strain is capable and able to adapt to these deviating environmental demands. Important to note is
that it does appear that OC chickens displayed a lower rate of adaptation, since CORT deposition in
their feathers was still high in week 10. Thus, a high stocking density may be more demanding than a
low stocking density.

An important side-note to this conclusion is that our study is inconclusive about the long-term
consequences of these different crowding conditions, and as of now we do not know how behavior,
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stress response, and breeding performance will develop in the adult laying hens. It is imaginable that
the increased demands of the process of adaptation for the undercrowded and overcrowded group
have long-term effects in terms of growth and physiology [54]. However, these results from the rearing
phase are in line with a prevailing conception that one of the most important aspects of good welfare is
“a close match between early-life environment and adult environment” [6] (p. 92). This touches upon
the capacity to adapt and thereby secure a minimum level of welfare, which all chicks in this study
eventually attained.

5. Conclusions

This study demonstrates that the currently employed stocking density in the Netherlands
during the rearing phase appears to not impair the welfare state of the laying hen chick.
Interestingly, a threefold increase or decrease of the crowding density induces more anxious behavior
and higher corticosterone levels on the short term, but these drop to levels of conventional crowding
chicks towards the end of the experiment. This can be interpreted as that this type and level of
environmental challenge is within their adaptive capacity. A crucial side-note to this conclusion is
that we currently do not know what the long-term consequences are of either the direct impact of the
crowding densities or the costs of adaptation.
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