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Abstract

MicroRNAs have been implicated in the regulation of gene expression of various biological processes in a post-
transcriptional manner under physiological and pathological conditions including host responses to viral infections.
The 2009 pandemic H1N1 influenza virus is an emerging reassortant strain of swine, human and bird influenza virus
that can cause mild to severe illness and even death. To further understand the molecular pathogenesis of the 2009
pandemic H1N1 influenza virus, we profiled cellular microRNAs of lungs from BALB/c mice infected with wild-type
2009 pandemic influenza virus A/Beijing/501/2009 (H1N1) (hereafter referred to as BJ501) and mouse-adapted
influenza virus A/Puerto Rico/8/1934 (H1N1) (hereafter referred to as PR8) for comparison. Microarray analysis
showed both the influenza virus BJ501 and PR3 infection induced strain- and temporal-specific microRNA expression
patterns and that their infection caused a group of common and distinct differentially expressed microRNAs.
Characteristically, more differentially expressed microRNAs were aroused on day 5 post infection than on day 2 and
more up-regulated differentially expressed microRNAs were provoked than the down-regulated for both strains of
influenza virus. Finally, 47 differentially expressed microRNAs were obtained for the infection of both strains of H1N1
influenza virus with 29 for influenza virus BJ501 and 43 for PR8. Among them, 15 microRNAs had no reported
function, while 32 including miR-155 and miR-233 are known to play important roles in cancer, immunity and antiviral
activity. Pathway enrichment analyses of the predicted targets revealed that the transforming growth factor- (TGF-B)
signaling pathway was the key cellular pathway associated with the differentially expressed miRNAs during influenza
virus PR8 or BJ501 infection. To our knowledge, this is the first report of microRNA expression profiles of the 2009
pandemic H1N1 influenza virus in a mouse model, and our findings might offer novel therapy targets for influenza
virus infection.
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Introduction

Influenza A viruses infecting humans are responsible for a
variety of illnesses ranging from mild infection to more severe
pneumonia associated with acute respiratory distress
syndrome. Even in non-pandemic years, influenza A viruses
infect 5-15% of the global population and result in > 500,000
deaths annually [1]. In 2009, a novel strain of H1N1 influenza
virus emerged in California and rapidly spread throughout the
world [2]. A recent study estimated that > 284,000 deaths
occurred globally during the first 12 months of 2009 pandemic
H1N1virus circulation [3]. Given the possibility of reassortment
of the 2009 pandemic H1N1 influenza virus, highly pathogenic
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H5N1 influenza viruses or co-circulating seasonal human H1N1
viruses, the threat posed by the 2009 pandemic H1N1 virus to
humans remains significant [4,5]. Understanding the
pathogenesis of influenza virus infection is essential to
preventing and controlling future outbreaks.

MicroRNAs are 20-22 nucleotide length noncoding RNA
molecules that act by repressing target protein expression at
the post-transcriptional level. Mature microRNAs can
specifically bind semi-complementarily to target mRNA, thereby
triggering mRNA degradation or translation inhibition [6]. The
human genome contains > 1,400 microRNA-coding genes, and
> 60% of all human protein-coding genes are predicted to be
microRNA targets. Functionally, microRNAs can target mRNA
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molecules involved in various biological processes, such as
development, differentiation, proliferation, apoptosis and
tumorigenesis [7,8,9]. Increasing evidence indicates that
microRNAs have important functions in viral replication and
may be used by host cells to inhibit or promote viral infections
[10,11]. Expression of microRNAs has been reported for
various viruses, such as human immunodeficiency virus [12],
hepatitis B virus [13], hepatitis C virus [14] and Epstein-Barr
virus [15].

Influenza virus infection has been shown to alter microRNA
expression both in cultured cells and in animal models
[16,17,18,19,20,21,22,23,24]. Using the microRNA microarray
profiling approach, differentially expressed patterns of cellular
microRNAs have been found in the lungs of mice infected with
a highly pathogenic 1918 pandemic H1N1 influenza virus [16].
Another study found a strain-specific host microRNA signature
associated with 2009 pandemic H1N1 and H7N7 influenza
virus infections in human A549 cells [17]. In addition,
differential microRNA expression profiles have been observed
in the lungs of H5N1 influenza virus-infected cynomolgus
macaques [18] and mice [19], HIN2 virus-infected pigs [21]
and avian H5N3 influenza virus-infected broilers [20] and
chickens [22]. All of these studies have provided strong
evidence that microRNAs play an important role during
influenza virus infection. Moreover, several studies have
demonstrated that cellular microRNAs (miR-323, miR-491,
miR654, miR-146a) inhibit influenza virus replication or
propagation [23,24].

The mouse remains the primary model for studying the
pathology and virulence of influenza virus [25]. However, there
are no reports of the microRNA expression profile of the 2009
pandemic H1N1 influenza virus in a mouse model. In the
present study, we successfully profiled the lung cellular
microRNAs of mice infected with the 2009 pandemic influenza
virus BJ501 and a comparison influenza virus PR8, and 29
microRNAs were found to be differentially expressed in
response to influenza virus BJ501 infection compared to 43 to
PR8; among them, 15 had no reported function in Pubmed,
while 32 including miR-145, miR-155 and miR-233 were known
to associate with cancer, immunity and antiviral activities.
Some of the differentially expressed microRNAs might be
potential therapeutic targets for influenza virus infection.

Materials and Methods

Ethics statement

All procedures involving animals were approved by the
Institute of Animal Care and Use Committee at AMMS. The
animal study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of Beijing Institute of Disease Control and
Prevention.

Viruses

The virus strains used in this study included influenza virus
A/Beijing/501/2009 (H1N1), an influenza virus isolated from a
confirmed H1N1 influenza case in Beijing during 2009 [26,27],
and A/Puerto Rico/8/34 (H1N1), a well characterized and
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mouse-adapted laboratory strain of influenza virus used as the
genetic backbone for viruses from which inactivated influenza
virus vaccines are generated. The A/Beijing/501/2009 H1N1
virus does not carry the D222G mutation reported in some
H1N1 pandemic strains. The virus was grown in the allantoic
cavities of 10-day-old embryonic chicken eggs. Virus-
containing allantoic fluid was harvested and stored in aliquots
at -80°C until use. The 50% tissue culture infections dose
(TCIDs,) for each virus was determined by serial dilution of the
virus in Madin-Darby canine kidney (MDCK) cells (ATCC,
Virginia, USA) and calculated by the method developed by
Reed and Muench [28]. All experiments with live influenza
viruses were performed in an approved biosafety level 3
(BSL3+) facility.

Viral infections in mice

Specific pathogen-free 6- to 8-week-old male BALB/c mice
were provided by the Laboratory Animal Center, AMMS,
Beijing, China. Influenza virus infections in mice were
conducted as described previously [26]. Briefly, the mice were
anesthetized with isoflurane and were intranasally inoculated
with 10* TCID4, (25 uL) of BJ501 or PR8 virus in phosphate
buffered saline (PBS). Based on the pilot study, clinical signs,
weight loss and lung damage were observed in mice infected
with 10* TCID,, of influenza virus BJ501 and PR8. In addition,
a normal control group was given intranasal PBS (mock
treatment).

RNA isolation

For the total RNA extraction, entire lungs from mice infected
by BJ501 or PR8 (n = 3/time-point) were randomly selected
and harvested on 2 and 5 days post infection (dpi); entire lungs
from 3 mock-infected mice were also randomly selected and
harvested on 5 dpi. Whole mouse lung tissues were
homogenized in QlIAzol lysis reagent (Qiagen). Total RNA was
extracted from mouse lungs using an mirVana microRNA
Isolation Kit (Ambion) according to the manufacturer’s protocol.
The concentration of RNA was determined using a Nanodrop
ND-1000 Spectrophotometer (Thermo).

MicroRNA microarray analysis

Three mice infected by BJ501 or PR8 on 2 and 5 dpi, and 3
mock-infected mice on 5 dpi were selected for microRNA
microarray analysis. An Agilent Mouse microRNA v16.0
Microarray Kit (8x15K) was used according to the
manufacturer’s instructions to profile the microRNA transcripts
on an Agilent Technologies microRNA Platform (Santa Clara,
CA). Briefly, 100 ng of a total RNA sample was used to make
probes according to the manufacturer’s protocol. Probes were
hybridized with rotation at 20 rpm for 20 h at 55°C. The array
slides were then washed using gene expression wash buffer 1
at room temperature for 5 min and using gene expression wash
buffer 2 at 37°C for 5 min. The slides were then scanned on an
Agilent Microarray Scanner (Model #G2505C; Agilent).
Microarray results were extracted using Agilent Feature
Extraction software (v10.7). The differential expression of
microRNAs between groups was assessed by one-way
analysis of variance (ANOVA) with correction of Benjamini-
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Table 1. Primers for microRNAs in real-time RT-PCR analysis.
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microRNAs Primers sequences

ue 5-CTCGCTTCGGCAGCACA-3' (sense)
5-AACGCTTCACGAATTTGCGT-3' (anti-sense)

miR-1 5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAATACAT-3' (RT)
5'-ACGCCTGGAATGTAAAGAAGTATG-3' (anti-sense)

miR-1187 5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTTACAC-3' (RT)
5-AGCGTATGTGTGTGTGTATGTGTG-3' (anti-sense)

miR-133a 5-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCAGCTG-3' (RT)
5'-ATCGGTCCCCTTCAACCAG-3' (anti-sense)

miR-133b 5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTAGCTG-3' (RT)
5'-GTTTGGTCCCCTTCAACCAG-3' (anti-sense)

miR-155 5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCCCT-3' (RT)
5-TGCGTTAATGCTAATTGTGATAGG-3' (anti-sense)

miR-2137 5-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTCCCT-3' (RT)
5-GTGCTATGTGTGAGCCCCAG-3' (anti-sense)

miR-223 5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGGGGT-3' (RT)
5'-ACGCTGTCAGTTTGTCAAATACC-3' (anti-sense)

miR-30d 5'-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTTCCA-3' (RT)
5-AGCTGTAAACATCCCCGACTG-3'(anti-sense)

miR-574-3p 5-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGTGGG-3' (RT)

a

'-GTCACGCTCATGCACACACC-3' (anti-sense)

The sense primer of all the selected microRNAs are common, the sequence is 5'-GTGCAGGGTCCGAGGT-3'

doi: 10.1371/journal.pone.0074190.t001

Hochberg FDR applied and a Tukey’s honestly significant
difference (HSD) post-hoc test. The expression change (fold-
change) of a microRNA in a BJ501-infected sample or a PR8-
infected sample relative to the mock-infected sample was
calculated; the fold-change of an microRNA in a BJ501-
infected sample compared to that in the time-matched PR8-
infected sample was also calculated. Significance was
determined using a fold-change threshold of at least 2 and a P
value cut-off of 0.05. A fold change of 2 was chosen to improve
the precise degree of results [17,29].

Real-time reverse transcription polymerase chain
reaction (RT-PCR)

Real-time RT-PCR was used to validate the microRNA
microarray results. Total RNA was prepared using the mirVana
microRNA Isolation Kit (Ambion) as described above. The
cDNA was synthesized from mRNA with corresponding
microRNA-specific stem-loop RT primers (Table 1) and M-MLV
Reverse Transcriptase (Invitrogen). Real-time PCR was
performed using Power SYBR Green PCR Master Mix (Applied
Biosystems) with corresponding primers (Table 1) on a 7900
Real-Time PCR System (Applied Biosystems). The specificity
of the SYBR Green PCR signal was confirmed by melting
curve analysis. The PCR reaction mixture (20 pL) consisted of
10 pL of Power SYBR Green PCR Master Mix, 0.5 pL of
microRNA-specific anti-sense primer (Invitrogen), 0.5 pL of
universal sense primers, 1 L of microRNA cDNA, and 8 pL of
nuclease-free water. Cycling conditions were 95°C for 10 min
followed by 40 cycles at 95°C for 15 sec and 60°C for 15 sec.
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U6 was used as endogenous control for normalization [20,30].
Data were analyzed using the 2-24¢t method [31].

Bioinformatics analysis

The microRNA targets were predicted using the TargetScan
version 6.2 database [32,33], which was downloaded from
http://www.targetscan.org/. To more strictly predict the targets,
the predicted microRNA targets found for the differentially
expressed microRNAs in TargetScan version 6.2 database
were selected by the cutoff of a context score percentile > 90.

The selected predicted targets underwent GO and pathway
analysis using the functional annotation tools of DAVID 6.7
[34,35] (http://david.abce.Nciferf.gov/home.jsp) with the mouse
genome genes as the background set, and the enrichment of
GO terms and pathways were selected with a cutoff standard
of P<0.01 and FDR < 1.

Microarray data resource
The microarray data were deposited in the Gene Expression

Omnibus database (www.ncbi.nlm.gov/geo/) under the
accession number GSE46087.

Results

Clinical manifestations and weight loss of mice
infected with influenza virus BJ501 and PR8

To assess the virulence of influenza virus BJ501 and PR8 in
mice, clinical signs and weight of the mice were monitored daily
for 14 days. In the first dpi, no change in the general
appearance was observed. However, decreased appetite and
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reduced activity were observed in both the BJ501 and PR8
infection groups from the 2 dpi following weight loss from the
third dpi. The weight loss gradually increased to the 7 dpi and
the weight began to reverse from the eighth dpi with gradual
increase to the weight level of the control groups by 12 dpi.
Moreover, compared with the influenza virus BJ501, the clinical
signs, symptoms and weight loss caused by PR8 were more
severe. No clinical signs and significant weight loss were
observed in the mice of the control groups.

MicroRNA expression pattern in response to influenza
virus BJ501 and PR8 infection

To understand the effect of influenza virus infection on host
microRNAs, we profiled the global expression of cellular
microRNAs in response to influenza virus BJ501 and PR8 virus
infection in a mouse model. Among 938 microRNAs on the
arrays, 230 were detected in all of the mouse lungs and were
included in a comparative analysis of microRNA expression
patterns that were depicted using a clustered heatmap (Figure
1). The microRNA expression pattern induced by influenza
virus BJ501 differed from that by influenza virus PR8 on 2 dpi
and 5 dpi. The microRNA expression pattern induced by
influenza virus BJ501 on 2 dpi differed from that by influenza
virus BJ501 on 5 dpi and the same was with influenza virus
PRS8 in the temporal microRNA expression patterns (Figure 1).
Therefore, the microRNA expression patterns induced by
influenza virus BJ501 and PR8 were strain- and temporal-
specific.

Differentially expressed microRNAs in response to
influenza virus BJ501 and PR8 infection

In influenza virus BJ501 infection, 6 microRNAs exhibited
differential expression on 2 dpi; among them, 2 (33%) were
down-regulated, while 4 (67%) were up-regulated (Figure 2). A
total of 25 microRNAs were differentially expressed on 5 dpi,
and the number of up-regulated microRNAs dramatically
increased to 22 (88%) of the total differentially expressed
microRNAs (Figure 2). It was important to note that except for
mmu-miR-155 and mmu-miR-142-3p, the subset of
differentially expressed microRNAs on 2 dpi was distinct from
that on 5 dpi. Therefore, the number of differentially expressed
microRNAs was 29 in all on 2 dpi and 5 dpi in response to
influenza virus BJ501 infection.

In influenza virus PR8 infection, down-regulated microRNAs
were not observed and 10 microRNAs were differentially up-
regulated on 2 dpi (Figure 2). On 5 dpi, the number of
differentially expressed microRNAs dramatically increased to
42; among them, 6 (10%) microRNAs were down-regulated
and 38 (90%) microRNAs were up-

regulated (Figure 2). Interestingly, 9 of the differentially up-
regulated microRNAs on 2 dpi were differentially expressed on
5 dpi as well, so the number of differentially expressed
microRNAs was 43 in total on 2 dpi and 5 dpi in response to
influenza virus PR8 infection.

In addition to the distinctly differentially expressed
microRNAs in response to influenza virus BJ501 and PR8
infection, 8 microRNAs were common to PR8 on 2 dpi, BJ501
on 5 dpi and PR8 on 5 dpi and 15 microRNAs common to
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Figure 3. Distinct cellular microRNA expression patterns
during influenza virus BJ501 and PR8 infections. The
columns correspond to expression patterns of differentially
expressed microRNAs during the influenza virus BJ501 and
PR3 infections relative to mock-infected samples on 2 dpi and
5 dpi. Significance was determined using a fold-change
threshold of at least 2 and a P value cutoff of 0.05. The red
color represents up-regulation, while the green color indicates
down-regulation.

doi: 10.1371/journal.pone.0074190.g003

group of BJ501 on 5 dpi and PR8 on 5 dpi. Notably, mmu-
miR-155 was commonly differentially expressed between both
H1N1 strains at all time points. Therefore, the total number of
differentially expressed microRNAs was 47 across all time
points during influenza virus BJ501 and PR8 infection. The
finding was depicted on a heatmap (Figure 3).

Common and distinct differentially expressed
microRNAs in response to influenza virus BJ501 and
PRS8 infection

The differentially expressed microRNAs between influenza
virus BJ501 and PR8 infections were compared. The common
and distinct differentially expressed microRNAs between
influenza virus BJ501- and PR8-infected lungs relative to
mock-infected controls are shown in Figure 4. There were 12
distinct differentially expressed microRNAs on 2 dpi and 21 on
5 dpi. Of the common differentially expressed microRNAs,
there were 2 on 2 dpi and 23 on 5 dpi. Therefore, the number
of common and distinct differentially expressed microRNAs
between the 2 strains increased over time.
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Figure 1. The microRNA expression patterns in response to influenza virus BJ501 and PR8 infections. The expression
patterns of 230 detected microRNAs of influenza virus BJ501 and PR8 infections to the mock-infected controls on 2 dpi and 5 dpi
were depicted with a clustered heatmap. The clustering tree is shown on the top and left sides. The red color represents up-
regulation, while the green color indicates down-regulation.

doi: 10.1371/journal.pone.0074190.g001
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Figure 2. The number of differentially expressed microRNAs during influenza virus BJ501 and PR8 infections. The y axis
indicates the number of differentially expressed microRNAs. Significance was determined using a fold-change threshold of at least 2

and a nominal P value cutoff of 0.05.
doi: 10.1371/journal.pone.0074190.g002

The fold-change of microRNAs in influenza virus BJ501-
infected samples on 2 dpi and 5 dpi compared to that in the
time-matched influenza virus PR8-infected samples was also
calculated (Table 2). Overall, we identified 17 microRNAs that
were differentially expressed between the 2 strains. Eight
microRNAs exhibited differential expression on 2 dpi and the
number of differentially expressed microRNAs increased to 13
on 5 dpi, including 4 differentially expressed microRNAs on 2
dpi.

Verification of microRNA microarray results by real-
time RT-PCR

Real-time RT-PCR was used to further investigate the
microarray data set results. Nine microRNAs (miR-1,
miR-1187, miR-133a, miR-133b, miR-155, miR-2137, miR-223,
miR-30d and miR-574-3p) were selected for validation. The
fold-change of a particular microRNA in the influenza virus
BJ501 or PRS8 infected lungs relative to the mock-infected
lungs was calculated. We found that 86.11% (31 of 36) of the
relative real-time RT-PCR results were consistent with those
obtained in the microRNA microarray analysis in terms of
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direction of regulation at one or more time points except the
results of miR-574-3p in BJ501-infected lung on 2 dpi, miR-1 in
PR8-infected lung on 2 dpi, miR-1 in BJ501-infected lung on 5
dpi, miR-133a in PR8-infected lung on 2 dpi and miR-133b in
PR8-infected lung on 2 dpi (Figure 5).

GO analysis of predicted targets of differentially
expressed microRNAs

To elucidate the roles of the differentially expressed
microRNAs in response to influenza virus infection, potential
targets of differentially expressed microRNAs were predicted
using Targetscan 6.2 with a context score percentile > 90.
There was no target for mmu-miR-1, mmu-miR-135a-1, mmu-
miR-2145, mmu-miR-24-2 or mmu-miR-29b-1 in the database.
In the influenza virus BJ501 infection, 4,033 predicted targets
were obtained for the 29 differentially expressed microRNAs
(Table S1). In the influenza virus PR8 infection, 5,446 predicted
targets were obtained for the 43 differentially expressed
microRNAs (Table S1). Then the 4,033 and 5,446 predicted
targets were subjected to GO analysis in DAVID v6.7,
respectively. After the cutoff standard of P < 0.01 and FDR < 1,
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Figure 4. Comparison of differentially expressed microRNAs between the influenza virus BJ501 and PR8 infections. (A)
Venn diagram of differentially expressed microRNAs during influenza virus BJ501 and PR8 infections relative to the mock-infected
control on 2 dpi. (B) Venn diagram of differentially expressed microRNAs during influenza virus BJ501 and PR8 infections relative to
the mock-infected control on 5 dpi. The diagram displays the names of differentially expressed microRNAs. The red color represents
up-regulated microRNAs, while the green color indicates down-regulated microRNAs.

doi: 10.1371/journal.pone.0074190.g004

39 and 47 GO terms of molecular function were found to be
involved in influenza virus BJ501 and PRS8 infection,
respectively (Table S2). Among the top 10 significantly
enriched GO terms of molecular function, seven were common
to the influenza virus BJ501 and PR8 infection: protein serine/
threonine phosphatase activity, amine transmembrane
transporter activity, symporter activity, manganese ion binding,
phosphoprotein phosphatase activity, phosphatase activity and
calmodulin binding (Figure 6).

Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis of the predicted targets of
differentially expressed microRNAs

To better understand the roles of the differentially expressed
microRNAs of influenza virus BJ501 and PRS8 infection, their
predicted targets genes were subjected to KEGG pathway
enrichment analysis using DAVID 6.7. In the influenza virus
BJ501 infection, 14 pathways were significantly enriched
(Table S2). The top three were the transforming growth factor-8
(TGF-B) signaling pathway, adherens junction and axon
guidance pathway (Figure 7A). In the influenza virus PR8
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infection, 10 pathways were significantly enriched (Table S2),
and the top three were the adherens junction, axon guidance
pathway and TGF-§ signaling pathway (Figure 7B). Moreover,
the 10 significantly enriched pathways of influenza virus PR8
infection were all enriched in influenza virus BJ501 infection as
well: the TGF-B signaling pathway, adherens junction, axon
guidance pathway, MAPK signaling pathway, focal adhesion,
endocytosis, chemokine signaling pathway, regulation of actin
cytoskeleton, ErbB signaling pathway and pathways in cancer
(Table S2).

Discussion

In this study, we found that strain- and temporal-specific
microRNA expression patterns were induced by influenza virus
infection. Specifically, a group of common and distinct
microRNAs were differentially expressed in response to
influenza virus BJ501 and PR8 infection; among them, 15
microRNAs had no reported function in Pubmed, while 32 had
known functions that were mainly reported to be involved with
cancer (Table S3). To our knowledge, this is the first report of
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Table 2. Comparison of differentially expressed cellular

microRNA between influenza virus BJ501 and PR8
infection.

microRNA Fold change on 2dpi”  Fold change on 5 dpi”
mmu-miR-466h-5p -3.310513 -2.908281
mmu-miR-466i-5p -2.742921 -2.309546
mmu-miR-468 -2.553224 -2.093672
mmu-miR-1187 -2.193327 -2.124729
mmu-miR-155 -2.265238 NS

mmu-miR-669I -2.060334 NS

mmu-miR-574-5p -2.032452 NS

mmu-miR-574-3p 2.223028 NS

mmu-miR-466m-5p NS -2.645127
mmu-miR-669e NS -2.633191
mmu-miR-1196 NS -2.205374
mmu-miR-3082-5p NS -2.150287
mmu-miR-32* NS -2.118266
mmu-miR-133b NS 2.090192
mmu-miR-133a NS 2.159145
mmu-miR-449a NS 2.313966

mmu-miR-1 NS 2.520204

Abbreviations: NS, Not Significant.

* The expression change (fold change) of a microRNA in influenza virus BJ501
infected sample compared to that in the time-matched influenza virus PR8 infected
sample was calculated. Significance was determined by using a fold-change
threshold of at least 2 and a nominal P value cut-off of 0.05.
doi: 10.1371/journal.pone.0074190.t002

microRNA expression profiles of the 2009 pandemic H1N1
influenza virus in mouse model.

The biological basis of the difference in disease severity and
clinical outcome among different strains of influenza virus
infections remains largely unknown. Herein we demonstrated
the induction of a group of strain-specific host microRNAs in
response to infection with H1N1 influenza virus PR8 and 2009
pandemic H1N1 influenza virus BJ501. In recent years, several
studies have also reported strain-specific host microRNA
expression profiles in response influenza virus infection. In
2010, Li et al. first reported that the reconstructed 1918 H1N1
virus and a seasonal H1N1 virus infection induced distinct
microRNA expression profiles [16]. Subsequent works were
carried out between the H5N1 virus and a 1918 H1N1
reassortant virus, and the findings further indicated that
influenza viruses of varying pathogenicity elicit distinct
microRNA expression patterns in a host response to infection
[19]. Most recently, Loveday et al. found a series of strain-
specific host microRNAs associated with the 2009 pandemic
H1N1 influenza virus and H7N7 influenza virus infection in
human A549 cells [17]. Our results, together with those of the
earlier studies, suggest that different strains of influenza
viruses elicit distinct microRNA expression patterns during
infection. The potential of using these microRNAs as
prognostic markers and therapeutic targets is worth being
explored.

This is the second report aimed at elucidating the microRNA
profile of 2009 pandemic H1N1 influenza virus infection. In the
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first report, Loveday et al. showed that a total of 52 microRNAs
were significantly modulated in human A549 cells upon
infection with the 2009 pandemic H1N1 influenza virus [17]. In
our study, 29 microRNAs were differentially expressed in
response to 2009 pandemic H1N1 influenza virus infection,
fewer than those of the Loveday et al. study. In addition, only
miR-877* were common to both studies and had consistent
direction of regulation following 2009 pandemic H1N1 influenza
virus infection in two studies. These results indicate that a
host’s genetic background may be an important factor affecting
microRNA expression and regulation during infection with the
2009 pandemic H1N1 influenza virus. Interestingly, studies
carried out in avian H5N3 influenza virus-infected lungs of
broilers [20] and layer chickens [22] also indicate that genetic
background is a critical factor in determining host cellular
microRNA abundance and regulation during H5N3 virus
infection. Thus, it is plausible to assume that host genetic
background may play an important role in the regulation of
microRNAs expression during influenza virus infection.
However, these results warrant further confirmation in future
studies.

The results of this microRNA profiling study provided unique
insights into the pathogenesis of the mouse-adapted influenza
virus PR8. Compared with BJ501, a higher number of
differential microRNAs was aroused in the PR8 infected lungs
and a group of microRNAs unique to PR8 were differentially
expressed. Moreover, some differentially up-regulated
microRNAs (such as miR-466h-5p, miR-135a-1*, miR-2137,
miR-223, miR-139-5p, miR-29b-1*, and miR-7a) displayed
earlier in PR8 infected lungs than in BJ501 infected lungs. It is
well known that the mouse-adapted influenza virus showed
increased virulence and pathogenecity in mice. Our results also
showed that mice infected with PR8 showed more severe
clinical signs, weight loss and lung damage than mice infected
with BJ501. The potential molecular mechanisms underlying
the high virulence of the adapted influenza virus were beyond
the scope of this study, but our data suggested that the strain-
specific differential microRNAs of PR8 observed here may be
another important factor involved in its high virulence in mice.

A group of microRNAs including miR-155 and miR-223 have
been identified to potentially regulate influenza virus infection in
our study. miR-155 has been demonstrated to play an
important role in the mammalian immune system. miR-155
knockout mice cannot generate defensive immune responses
as a result of affected lymphocyte differentiation [36]. One
study demonstrated that miR-155 might target the chicken anti-
influenza gene MX1 and activate the JUK pathway, therefore
regulating influenza virus infection in chickens [22]. miR-223 is
also an important microRNA with multiple functions [37]. Up-
regulation of miR-223 has been reported in the lungs of mice
infected with a highly pathogenic 1918 pandemic H1N1
influenza virus-infected lungs of mice [16], H5N1 virus-infected
lungs of mice [19], and H1N2 virus-infected lungs of pigs [21].
In our study, miR-155 and miR-223 were significantly induced
by both the 2009 pandemic H1N1 virus and the PRS8 virus.
Thus, it is plausible to assume that the miR-155 and miR-223
may play an important role in the response to influenza virus
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Figure 5. Real-time reverse transcription polymerase chain reaction (RT-PCR) verification of microRNA microarray. Nine
differentially expressed microRNAs were selected from microarray datasets and examined by real-time RT-PCR. The fold change of
a particular microRNA in the influenza virus BJ501 or PR8 infection relative to the mock infection was calculated. The fold-change
from the real-time RT-PCR was determined using the 2-24¢t method and all microRNA expression values were normalized against
the U6 endogenous control. Data from real-time RT-PCR are shown as mean + standard deviation (SD).

doi: 10.1371/journal.pone.0074190.g005
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Figure 6. Top 10 significantly enriched GO terms of molecular function for the predicted targets. (A) Top ten significantly
enriched GO terms of molecular function for the predicted targets of differentially expressed microRNAs in response to influenza
virus BJ501 infection. (B) Top 10 significantly enriched GO terms of molecular function for the predicted targets of differentially
expressed microRNAs in response to influenza virus PR8 infection.

doi: 10.1371/journal.pone.0074190.g006

infection. However, this further
confirmation in future studies.

It is well known that the TGF-B pathway participates in the
processes of cell cycle control, differentiation and apoptosis
and affects many pathophysiological responses, including the
responses to viral infections [38,39]. Studies have shown that
influenza virus can activate the TGF- pathway both in vitro
[40] and in vivo [39,41,42]. In a mouse model, the addition of
TGF-B to influenza virus-infected mice reduced viral titers,
whereas the neutralization of TGF- increased morbidity [41].
In patients with 2009 pandemic H1N1 influenza virus infection,

assumption  warrants
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high levels of TGF-B were found in the plasma [42]. All these
reports come to that the TGF-B pathway is implicated in the
pathogenesis of influenza virus infection. Our pathway
enrichment analysis of the microRNA-predicted targets showed
the TGF-B pathway was enriched. Therefore, some of the
differentially expressed microRNAs induced by the influenza
virus BJ501 and PR8 may affect the pathophysiological
process of influenza virus infection by regulating the TGF-B
pathway.

In this study, we validated some differentially expressed
microRNAs by real-time RT-PCR. The reliability of the profiling
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doi: 10.1371/journal.pone.0074190.g007

results was verified because the overall results of qualitative
real-time were consistent with those of the microarray.
However, five microRNA expression values at certain time
point were opposite in direction between the results of the
microarray and the RT-PCR. Among them, the differences
were slight and not significant for four results of the microRNA.
However, as for the expression of miR-1 in BJ501-infected lung
on 5 dpi, it was not significantly up-regulated from the results of
microarray analysis while it down-regulated > 2-fold by RT-
PCR analysis. The possible factors leading to the difference
were multiple and complex for different sensitivity and
specificity between the two methods, so further confirmation
were warranted in future studies.

In reviewing the results of this study, two potential limitations
should be kept in mind. First, analyzing the correlation of
microRNA and mRNA profiles from the same pathogen-
infected sample may increase our understanding of microRNA
function in response to influenza virus infection. Second, the
identification of differentially expressed host cellular
microRNAs is just the first step toward understanding
microRNA regulation of host—virus interactions. Although this
study generated a list of candidate microRNAs including
miR-155 and miR-223 that potentially regulate influenza virus
infections, additional studies are warranted to clarify the

PLOS ONE | www.plosone.org
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mechanisms behind how these candidate microRNAs mediate
host—virus interactions during influenza virus infection.

In conclusion, here we identified a group of strain-specific
and common cellular microRNAs that were associated with
influenza virus BJ501 and PR8 infections. Further microRNA or
gene-specific knockdown experiments are necessary to
elucidate the underlying mechanism of microRNAs in response
to influenza virus infection. These findings might offer novel
targets for developing new therapies against influenza virus
infection.
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