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Abstract

For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively
or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the
concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly
independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting
gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship
between traditional interaction and co-association was highlighted under three different types of co-association. Both
simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single
SNP-based logistic model, PCA-based logistic model, and other gene-based methods.
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Introduction

A Genome-wide Association Study (GWAS) typically tests

whether certain SNPs have strong associations with predefined

trait or disease by applying statistical methods. Hundreds of

GWAS’s for complex human diseases or traits were completed

over the last decade. Nonetheless, the genetic variants discovered

in GWAS’s account for only a small proportion of the heritability

of complex diseases [1,2]. One possible reason is that most GWAS

analysis methods test the SNP-phenotype association individually,

which has relatively low power in detecting multiple SNPs with

small causal effects [3]. Additionally, in human body, genes tend to

work collaboratively, especially within specific pathways or

modules that are associated with certain diseases [4–6]. Therefore,

we suspect that the missing proportion of heritability could be

partly due to the ignorance of the joint effect of genes contributing

to the disease or trait [3,7]. Complex diseases often result from

multiple genes’ interplays within genetic networks, a general term

that we used here to represent all kinds of networks defined on

gene level, e.g., biological pathways, gene regulatory networks,

and gene modules. The idea of multi-gene effect led to the

development of genetic network-based analysis for GWAS [8–10].

Network inference is a challenging task and proper methods

should be proposed in constructing a priori topological structures

for establishing genetic networks that contribute to diseases or

traits of interest. A knowledge-based approach is commonly

adopted for genetic network construction and inference [11–14],

but it is still underdeveloped in testing whether significant

relationships between any two nodes in such networks exist.

Theoretically, this can be solved by testing the joint effect of two

genes. Traditionally, to detect gene-gene interaction, a product

term is usually added to the logistic regression model

Logit(P)~b0zb1Azb2Bzb3A|B, which implies a nearly in-

dependence assumption, at least not much correlation, between

gene A and gene B for inferring the interaction measurement (b3)
[15,16]. Nevertheless, one common sense is that the development

of most diseases is attributed to the correlated genes in pathways.

Another situation is that two SNPs usually locate in the two linked

gene regions respectively, or in the two linked exons respectively

within one gene. All these situations indicate that the two SNPs

may have high correlation rather than independence (or low

correlation). Therefore, the assumption of the above logistic model

is rarely satisfied, and it will be inevitable to lose efficiency when

high correlation existed between the two SNPs. In this paper, we

proposed the concept of gene-gene co-association, which refers to

the extent to which the joint effects of two genes differs from the

main effects, not only due to the traditional interaction under the

nearly independent condition but the correlation between two

genes, while the part attributed to the correlation has usually been

neglected in traditional interaction model using regression

method. The proposed gene-gene co-association can be measured

by the difference of the correlation between two genes within case
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and control groups without the independent assumption. This

measurement refers to the co-association of two genes contributing

to the disease or trait.

For genetic networks derived from GWAS, there are multiple

variants (i.e. SNPs) within a gene region, where one single SNP in

this region is inadequate to represent the overall effect of the whole

gene on a disease. Previous studies suggested that gene-based

analysis would allow the formation of pathways to interpret

complex diseases and provide the functional bases of an

association finding [17]. Therefore, summarizing SNP effects at

gene level to estimate gene-gene co-association appears to be an

appealing strategy for constructing genetic networks. In our

previous study [18], a statistic called CCU for detecting gene-gene

co-associations was proposed, which was constructed by the

difference between the canonical correlation within case and

control respectively. Since CCU statistic only uses the first

canonical correlation coefficient, it may not be an inefficient

estimator of gene-gene co-associations and may have very low

power. Recently, another gene-based statistic was proposed to

detect gene-gene interaction [19], which was built based on the

difference of the covariance matrix within case and control

respectively. Although both the two methods were severely

affected by the high multicollinearity problem commonly encoun-

tered in GWASs, they motivated us to develop a new gene-based

method to detect gene-gene co-association.

In this paper, we proposed a novel statistic to test the co-

association between two genes under a case-control design. The

statistic was defined as the standardized difference of path

coefficient for the gene pair between cases and controls based on

Partial Least Squares Path Modeling (PLSPM) [20,21], which has

been successfully used to detect associations in GWAS [22,23]. To

assess the performance of the proposed PLSPM-based statistic,

simulation studies were conducted to evaluate its type I error rate

and power. Its performance was also compared with single SNP-

based logistic regression model [24,25], Principle Component

Analysis(PCA)-based logistic regression model [26,27], the CCU

statistic [18] and the covariance-based statistic [19]. Our method

was then applied to real data analysis of Coronary atherosclerotic

disease (CAD) association study. Both simulation and real data

analysis suggested that the proposed PLSPM-based statistic has

advantageous performances compared to other methods.

Materials and Methods

The Modeling Framework
Figure 1 illustrates the framework for the PLSPM-based statistic

between gene A and gene B. We denote the genotype data for

gene A and gene B as XD~(XD
1 ,X

D
2 , � � � ,XD

p ) and

YD~(YD
1 ,Y

D
2 , � � � ,YD

q ) respectively among cases, with

XC~(XC
1 ,XC

2 , � � � ,XC
p ) and YC~(YC

1 ,Y
C
2 , � � � ,YC

q ) respectively

among controls. Then, the path coefficient bD betweenXDand

YDobtained by PLSLM could be viewed as a measure of the

correlation between genes A and B among cases. Similar-

lybCmeasures the correlation between A and B among controls.

In the algorithm of PLSPM, the path coefficient is calculated as

the standardized regression coefficient of the two latent variables.

This standardized path coefficient is equal to their correlation

coefficient between the two latent variables. Therefore the arrow is

merely used to reflect the structure and has no direction effect. No

matter whether the path coefficients of the two genes are

calculated from A to B or from B to A, technically the result

remains the same under PLSPM.

We introduce D~bD{bC as an estimate of co-association

between the two genes contributing to the disease, hence the

proposed novel PLSPM-based test statistic can be defined as

U �~ bD{bCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(bD{bC)

p ~
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(D)

p ð1Þ

where Var(bD),Var(bC),Var(D)denote the variance of bD,bC ,
and D respectively.

The framework of the PLSPM for gene-gene co-association

resembles structural equation modeling (SEM) with three types of

parameters defined: (1) latent variable scores (i.e., j1 and j2)
defined as combinations of their manifest variables (SNPs within

the gene); (2) path coefficients (bD and bC ) between the two latent

variables in the case and control groups, which are counterparts of

correlation coefficients in the SEM framework; (3) loadings (l0s) for
each block that defines the relationship between the SNPs and

their latent variables. In this paper, reflective measurement model

was assumed in PLSPM to describe the relationship between SNPs

and the latent variables. For estimation of the above parameters,

the Lohmöller’s PLSPM algorithm [28] was used. After centering

and standardizing the manifest variables (i.e., variables in coding

the genotype data such as the additive model) and giving initial

values on weights wijs, the algorithm is essentially an iterative

procedure that works by alternating the outer and inner estimation

steps. First, in the outer estimation step, we estimate the values of

the latent variables j1 and j2 by v1~
Pp

j~1

v1jxj and v2~
Pq

j~1

v2jyj ,

respectively. Then, in the inner estimation step, the endogenous

latent variable j2 is updated with value v2~e12v1, where e12is
obtained via the centroid scheme by setting as ‘+1’ or ‘21’, i.e., the

sign of the correlation between the outer estimates n1 and n2. After
the inner estimation step, weights are updated before moving to

the next step: w1j~cov(xj ,v1) and w2j~cov(yj ,v2). Details of the

algorithm and proof of its convergence is similar to the case of the

two latent variables as provided in Chapter 2 of the book by

Esposito [20]. In GWAS data with case-control design, we

separately applied the above algorithm for estimating the path

coefficients for cases and for controls.

Permutation Test for the PLSPM-based Statistic
To test whether genes A and B has co-association effect on

a disease of interest, we conduct hypothesis testing with null

hypothesis

H0 : bD{bC~0:

Since PLSPM adopts nonparametric paradigm for estimating

bD and bC and does not assume parametric distributional forms

for the observed and latent variables, the asymptotic distribution of

the path coefficients bD and bC is not available, hence we do not

have a distribution available for U�either. To solve this problem,

we adopted the strategy of a permutation test [29,30], a common

approach for nonparametric statistical inferences. To alleviate the

high computation burden, a random permutation test for

D~bD{bC was used to obtain p-value in testing the above H0.

Rejection of the H0 provides evidence in suggesting a significant

co-association between the two genes contributing to the disease.

Significance test of path coefficients and loadings were furnished

by bootstrap procedures conducted in the case and control groups,

respectively [21,31]. A large, pre-specified number of bootstrap

samples (e.g., 1,000), each with the same number of subjects as the

original sample, were generated via re-sampling with replacement.

Parameter estimation was done for each bootstrap sample, whose

PLSPM-Based Gene-Gene Co-Association
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path coefficients or loadings can be viewed as drawings from their

sampling distributions. All bootstrap samples together provided

empirical estimators for the standard error of each parameter.

Simulation Studies
Simulation studies were conducted to evaluate the performance

of the proposed statistic for testing co-association between two

genes. We simulated three scenarios by considering different types

of co-association: Type I (co-association under nearly independent

condition between gene A and gene B), Type II (co-association

only caused by correlation between gene A and gene B), and Type

III (co-association caused by both correlation and independent

term A6B between gene A and gene B).

For scenario 1 (Type I co-association), we simulated two causal

SNPs with interactions using software gs2.0 [32]. The phased

haplotype data of two gene regions TNRC9 and NEGR1 of CEU

population were downloaded from the Hapmap website (http://

hapmap.ncbi.nlm.nih.gov/) and used to generate the simulation

datasets. TNRC9 locates at Chr16:51074034…51089856, in-

cluding 8 SNPs, and NEGR1 locates at

Chr1:71705132…71712343, including 10 SNPs. The pair-wise

linkage disequilibrium LD pattern of the two gene regions are

shown in Figure 2a. For two causal SNPs, SNP1 from gene A and

SNP2 from gene B, gs2.0 [32] simulated genotypes and the binary

phenotype according to logistic interaction model

Logit(P)~b0zb16(SNP1)zb2|(SNP2)zb36
(SNP1|SNP2), where b3 denoted the interaction effect of two

SNPs. Furthermore, we specified different interaction odds ratios

(ORs, exp (b3)) from 1.0 to 1.5 stepped by 0.1.

For scenario 2 (Type II co-association), to create the co-

association between linked genes under the condition of none

interaction, we simulated two linked (correlated) causal SNPs only

with marginal effects using software Hapgen2 [33], and further

specified co-association levels by the difference of the marginal

effects of two causal SNPs. The phased haplotype data of two

linked gene regions C6orf10 and BTNL2 of CEU population were

downloaded from the Hapmap website and to generate the

simulation data. C6orf10 locates at Chr6:32413348…32420774,

including 7 SNPs and BTNL2 locates at

Chr6:32475700…32479893, including 7 SNPs. The pair-wise

LD pattern of the two gene regions are shown in Figure 2b. For

two causal SNPs, SNP1 from gene A and SNP2 from gene B,

Hapgen2 [33] simulated genotypes and the binary phenotype

according to logistic model

Logit(P)~a0za16(SNP1)za2|(SNP2). We specified different

pairs of marginal effect ORs (exp (a1),exp (a2)) : (1.0, 1.0), (1.5,
1.5), (1.4, 1.6), (1.3, 1.7), (1.2, 1.8) and (1.1, 1.9).

For scenario 3 (Type III co-association), again the same

C6orf10 and BTNL2 genes was used in this scenario. Gs2.0 [32]

was first used to generate the dataset of Type I co-association, and

Hapgen2 [33] for the dataset of Type II co-association. Finally, we

mixed the above simulation data with the proportion 1:1 to create

the scenario of Type III co-association. The model can be also

expressed by

Logit(P)~b0zb1|(SNP1)zb26
(SNP2)zb3|(SNP1|SNP2), but the two genes are actually

correlated rather than independent as defined in the model of

scenario 1.

Current GWAS is still map-based rather than sequence-based,

so association might predominantly be indirect. We therefore

mainly deal with the indirect association. All the datasets were

analyzed with the causal SNPs removed, permitting the effect of

the causal SNPs to be detected indirectly. The genotype data were

coded according to the additive genetic model [25,34].

Under the null hypothesis H0 (with exp (b3) specified as 1.0 in

scenario 1 and (exp (a1),exp (a2)) specified as (1.0, 1.0) in scenario

2), 100,000 cases and 100,000 controls were generated and

combined to form a hypothetical population from which case and

control samples were randomly selected with different sample sizes

(N= 1000, 2000, 3000, 4000 or 5000). To examine the stability of

Figure 1. PLSPM-based co-association model.
doi:10.1371/journal.pone.0062129.g001
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Figure 2. Pair-wise R2 in the selected gene regions.
doi:10.1371/journal.pone.0062129.g002
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the PLSPM-based statistic, we randomly sampled N individuals

from the cases and controls for the calculation of the type I error

rates under different nominal levels of 0.01, 0.05 and 0.1. A total

of 1000 simulations were repeated for each sample size.

To highlight the advantages of our proposed PLSPM-based

statistic, four existed methods were used to compare with our

method. The first was traditional single SNP-based logistic model.

For each simulation, all pair-wise SNPs from genes A and B and

their product terms were defined as the independent variables in

the single SNP-based logistic regression model [24,25]. We

considered each of the pair-wise interactions separately, selecting

the most significant one (smallest p-value). Significance levels are

determined using permutations to adjust the multiple testing. The

second was PCA-based logistic model, which was constructed by

Logit(P)~b0zb16Z1zb2|Z2zb3|(Z1|Z2), whereZ1 and

Z2 denoted the first principle component score of gene A and gene

B respectively, and b3 denoted the interaction effect of two genes.

The third was the CCU statistic proposed in our previous study,

and the last was the recently proposed covariance-based statistic

[19].

For scenarios 1 and 2, under the alternative hypothesisH1, the

performance of four different methods (PLSPM-based statistic,

CCU statistic [18], single SNP-based [24,25] and PCA-based

[26,27] logistic model) were assessed 1) at different sample sizes

under fixed OR; 2) at different co-association levels under fixed

sample sizes; and 3) at different minor allele frequency (MAF) of

causal SNPs from two genes under fixed OR and fixed sample size

to evaluate the performance with various linkage disequilibrium

(LD) patterns. For scenario 3, under the alternative hypothesisH1,

the performance of the four methods were assessed at different

sample sizes with fixed co-association level and assessed at different

co-association levels with fixed sample sizes. In addition, we

compared our PLSPM-based statistic with the covariance-based

statistic [19] by repeating 1) and 2) under scenario 1 and 2.

Application
The proposed PLSPM-based statistic was also applied to a real

dataset. The data consisted of genotypes data from three candidate

susceptibility genes (LRP5, LRP6, PCSK9), all belonging to the

lipid metabolism pathway associated with Coronary atheroscle-

rotic disease (CAD). The dataset contained samples from 498

CAD cases and 509 controls, and the genotyping was conducted

by Qilu Hospital of Shandong University in China [35]. The three

genes (LRP5, LRP6, PCSK9) were typed with two, nine, three

SNPs respectively. All the four methods were conducted in

detecting gene-gene co-association contributing to CAD.

Results

Simulation Results
Type I error rate. Table 1 shows the estimated type I error

rates of the PLSPM-based statistic under different nominal levels

in both scenario1 and 2. It reveals that the type I error rates of the

proposed statistics are close to nominal levels (0.01, 0.05, 0.1) as

a function of sample sizes.

Power. Figure 3 shows the performances of the four methods

under different sample sizes given fixed co-association level for

scenarios 1, 2 and 3. It indicates that the powers of the four

methods all increase monotonically with sample size in scenarios 1

and 3 (Figure 3a, 3c), while the single SNP-based [24,25] and

PCA-based [26,27] logistic model lost their power in detecting

gene-gene Type II co-association (Figure 3b). Obviously, the

power of the PLSPM-based statistic is higher than that of the CCU

statistic [18]. Only in scenario 1, the single SNP-based logistic

model has slight higher power when sample size is larger than

3000, and PCA-based logistic regression model [26,27] has

comparable power with PLSPM-based statistic (Figure 3a), while

they has less power for the other two scenarios.

Figure 4 depicts the power under different co-association levels

in the three scenarios. For the case of Type I co-association in

scenario 1, the power increases monotonically with the interaction

ORs for all the four methods (Figure 4a). In scenario 2, the power

of the PLSPM-based statistic and that of the CCU statistic [18]

both increases monotonically along with the difference between

marginal ORs of the two causal SNPs (Figure 4b). As for scenario

3, the PLSPM-based statistic has the highest power, followed by

the two logistic regression models, and then by the CCU statistic

[18].

Figure 5 illustrates the power of the four methods under

different MAF or LD patterns. For both type I and type II co-

association, PLSPM-based statistic outperforms all other methods

with the highest testing power, although the powers of the four

methods vary heavily under different MAF or LD patterns. It is

notable that the logistic regression models do not work for scenario

2. Specifically, the power for detecting co-association between the

8th SNP within gene A and 8th SNP gene B is quite low for all the

four methods due to the low MAF (0.08) of 8th SNP within gene B

(Figure 5a). This indicates that the proposed PLSPM-based

statistic lose its power in detecting rare variation.

One reviewer suggested us compare our proposed PLSPM-

based statistic with the recently proposed covariance-based statistic

[19]. As the covariance-based statistic [19] didn’t work in our

simulated data due to that the matrix W defined in their method

was not invertible resulted from high collinearity between SNPs,

we just attempted to do the calculations using the Moore-Penrose

generalized inverse. The results are shown in the Tables S1–S4 in

Supplementary Materials S1. In scenario 1, it indicates that the

powers of the two methods are comparable in detecting Type I co-

association, and the PLSPM-based method has slight advantage

with a lower odds ratio which is more common for SNP data.

While in scenario 2, the covariance-based statistic [19] has a higher

power in detecting the gene-gene Type II co-association.

Application Result
Table 2 shows the results of a gene-gene co-association test

between three genes that are potentially contributing to CAD

within the lipid metabolism pathway using the PLSPM-based

statistic, CCU statistic [18], single SNP-based logistic model

[24,25] and PCA-based logistic model [26,27]. The co-association

between LRP5 and LRP6 is statistically significant (a~0:05)
detected only by PLSPM-based statistic and not by the other three

methods.

Table 1. Type I error rates of the PLSPM-based statistic in
different scenarios.

Scenario1 Scenario2

Sample size a=0.01 a=0.05 a=0.1 a=0.01 a=0.05 a=0.1

1000 0.017 0.051 0.103 0.013 0.046 0.102

2000 0.011 0.045 0.095 0.011 0.052 0.095

3000 0.010 0.040 0.098 0.012 0.053 0.105

4000 0.012 0.053 0.101 0.010 0.048 0.101

5000 0.011 0.049 0.103 0.015 0.051 0.096

doi:10.1371/journal.pone.0062129.t001
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Discussion

Many methods have been developed for constructing the

genetic network, such as Bayesian network [36], Gaussian network

[37], and Boolean network [38]. In these genetic networks for

GWAS with case-control design, an ‘edge’ between any two nodes

indicates that the joint effects of the two genes on target trait or

phenotype would be different between controls and cases, which

implies the co-association (or interaction) between the two genes.

Various algorithms have been developed to learn the topological

structure (i.e., links between the nodes) from GWAS data. In this

paper, we proposed a novel statistic within the framework of

PLSPM, which can be used to test on the existence of gene-gene

co-association, i.e., whether an edge between any two genes would

exist. It provides a preliminary or prior tool as a first step in

constructing or learning genetic network structures given a GWAS

dataset with case-control design.

The concept of gene-gene co-association was proposed in our

previous paper [18]. It can be measured by the difference of the

gene-gene correlation between the case and control groups

without employing the nearly independence (at least not much

correlation) assumption. Several strategies could be used to detect

the gene-gene co-association, though some of these methods still

didn’t jump out of the traditional concept of gene-gene interaction

[15,16]. In this paper, the proposed PLSPM-based statistic

clarified the concept and the measurement of gene-gene co-

association, which refers to the effects not only due to the

traditional interaction under nearly independent condition but the

correlation between two genes.

Through simulation, the relationship between traditional in-

teraction and co-association was highlighted. The scope of co-

Figure 3. The power of the four methods under different sample sizes. Note: In Figure 3a, rs189851 (MAF= 0.43) in gene TNRC9 and
rs12125823(MAF= 0.44) in gene NEGR1 were defined as causal SNPs with their interaction odds ratio fixed at 1.3. In Figure 3b, rs926594 (MAF=0.46)
in gene C6orf10 and rs2294880 (MAF= 0.45) in gene BTNL2 were defined as causal SNPs with their marginal odds ratio fixed at 1.3 and 1.7
respectively. In Figure 3c, mixed dataset with proportion 1:1 were generated by the same causal SNPs in Figure 3b, with interaction odds ratio 1.3 for
Type I co-association and marginal effect odds ratio 1.3 and 1.7 for Type II co-association.
doi:10.1371/journal.pone.0062129.g003

Figure 4. The power of four methods under different co-association levels. Note: In Figure 4a, rs189851 (MAF=0.43) in gene TNRC9 and
rs12125823(MAF= 0.44) in gene NEGR1 were defined as causal SNPs with sample size fixed at 2000. In Figure 4b, rs926594 (MAF=0.46) in gene
C6orf10 and rs2294880 (MAF= 0.45) in gene BTNL2 were defined as causal SNPs with sample size fixed at 4000. In Figure 4c, mixed datasets with
proportion 1:1 were generated by the same causal SNPs in Figure 4b with sample size fixed at 2000, and the horizontal axis denotes different
interaction odds ratios for Type I co-association and marginal effect odds ratios for Type II co-association.
doi:10.1371/journal.pone.0062129.g004
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association includes the following three scenarios: co-association

under nearly independent condition between gene A and gene B

(Figures 3a, 4a, 5a), co-association only caused by correlation

between gene A and gene B (Figures 3b, 4b, 5b) and co-association

caused by both correlation and independent term A6B between

gene A and gene B (Figures 3c, 4c). Currently, simulation and real

data analysis demonstrated that the proposed PLSPM-based

statistic is stable and has higher power than CCU statistic [18],

single SNP-based logistic model [24,25] and PCA-based logistic

model [26,27] (see results in Table 1, Figure 3 to Figure 5 and

Table 2). In addition, the performance of PLSPM-based statistic

compared with recently proposed covariance-based statistic [19]

indicated that the powers of the two methods are comparable in

detecting gene-gene co-association, while the former can deal with

the high multicollinearity problem between SNPs (see Supple-

mentary Materials S1).

Observing that two genes in any pathway, two SNPs usually

locate in the two linked gene regions respectively or in the two

linked exons respectively within one gene are often correlated with

each other, we think it is meaningful to fabricate the term, gene-

gene co-association. In Peng et al [18], CCU statistic was

developed for estimating and testing such a gene-gene co-

association within the framework of canonical correlation analysis.

Nonetheless, since the CCU statistic [18] was calculated only by

the first canonical correlation coefficient, it may lose power in the

testing. Our simulation studies confirmed that the novel PLSPM-

based statistic had more power than the CCU statistic [18] (see

evidence from Figures 3, 4 and 5). Although the power of PLSPM-

based statistic is similar as PCA-based logistic model [26,27] for

the case of Type I co-association (Figures 3a, 4a), the former still

has a superior performance when the logistic model lose its power

for the case of Type II co-association (Figures 3b, 4b, 5b). The

logistic regression model methods do not work at all because it

cannot theoretically handle the scenario of Type II co-association;

PLSPM-based statistic outperforms PCA-based logistic regression

model [26,27] because of the advantage of PLSPM method

[20,21]; PLSPM-based statistic outperforms single SNP-based

logistic model [26,27] since the causal SNPs were excluded and

Figure 5. The power of the four methods under different causal SNPs. Note: The horizontal axis denotes the positions of the causal SNPs in
the corresponding genes (Ai:Bi denotes the causal SNPs are ith SNP in gene A and ith SNP in gene B). In Figure 5a, A,B denotes gene TNRC9 and
NEGR1 with causal SNPs’ interaction odds ratio fixed at 1.3. In Figure 5b, A,B denotes gene C6orf10 and BTNL2 with causal SNPs’ marginal effect odds
ratios fixed at 1.3 and 1.7. Results for other pair-wise SNPs are qualitatively similar, hence not shown in the Figure.
doi:10.1371/journal.pone.0062129.g005

Table 2. The results of gene-gene co-association contributing to CAD within the lipid metabolism pathway using four different
methods.

PLSPM-based statistic CCU PCA-based logistic model SNP-based logistic model

Co-association P-value P-value P-value SNP-SNP* P-value

LRP5-LRP6 0.025 0.393 0.275 rs3736228–rs2302685 0.075

LRP5- PCSK9 0.106 0.566 0.681 rs3736228–rs2495477 0.216

LRP6- PCSK9 0.402 0.496 0.503 rs2284396–rs2483205 0.462

*Only the SNP pairs with the smallest P-value were presented.
doi:10.1371/journal.pone.0062129.t002
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the PLSPM-based statistic reflects the joint effects of multiple

SNPs in the genes or regions. Also, the performance of PLSPM-

based statistic are comparable with the recently proposed co-

variance-based statistic [19], while it is not affected by high

multicollinearity between SNPs (see Supplementary Materials S1).

The proposed method for detecting gene-gene co-association

was developed based on PLSPM. An advantage of the algorithms

is that they are robust to the multicollinearity problem, which is

commonly encountered in GWAS data because of strong linkage

disequilibrium between SNPs [39–41]. Compared to covariance-

based Structural Equation Model (SEM) and other parametric

modeling methods, PLSPM is a ‘‘soft modeling’’ approach,

requiring fewer distributional assumptions, and the variables

studied can be numerical, ordinal, or nominal, hence no normality

assumptions are needed [20]. This is a very appealing feature for

SNP data in genetic analysis and PLSPM has been successfully

applied in genome wide association studies. We want to admit that

although the proposed PLSPM-based approach has indicated

numerous benefits, it has some limitations. Firstly, the current

PLSPM-based statistic is based on a random permutation test due

to the lack of its asymptotic distribution. Parametric test will be in

great demand in future studies. Secondly, the PLSPM-based

statistic still lacks efficiency when dealing with rare variation

situation (see evidence in Figure 5a).

Supporting Information

Supplementary Materials S1 Table S1. The power of the two

methods for detecting Type I co-association under different
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ratios. Table S3. The power of the two methods for detecting Type

II co-association under different sample sizes. Table S4. The

power of the two methods for detecting Type II co-association

under different pairs of marginal odds ratios.
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