
MINI REVIEW
published: 25 September 2020
doi: 10.3389/fonc.2020.570958

Frontiers in Oncology | www.frontiersin.org 1 September 2020 | Volume 10 | Article 570958

Edited by:

Prasanna K. Santhekadur,

JSS Academy of Higher Education

and Research, India

Reviewed by:

Srikanta B. Manjegowda,

Mysore Medical College and Research

Institute, India

Samudyata C. Prabhuswamimath,

All India Institute of Speech and

Hearing (AIISH), India

Devananda Devegowda,

JSS Academy of Higher Education

and Research, India

Paramesha Mahadevappa,

Davangere University, India

*Correspondence:

Bristi Basu

Bristi.Basu@cruk.cam.ac.uk

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Gastrointestinal Cancers,

a section of the journal

Frontiers in Oncology

Received: 09 June 2020

Accepted: 26 August 2020

Published: 25 September 2020

Citation:

Azizi AA, Hadjinicolaou AV,

Goncalves C, Duckworth A and

Basu B (2020) Update on the

Genetics of and Systemic Therapy

Options for Combined Hepatocellular

Cholangiocarcinoma.

Front. Oncol. 10:570958.

doi: 10.3389/fonc.2020.570958

Update on the Genetics of and
Systemic Therapy Options for
Combined Hepatocellular
Cholangiocarcinoma

Alexander A. Azizi 1†, Andreas V. Hadjinicolaou 1†, Carla Goncalves 1, Adam Duckworth 1

and Bristi Basu 1,2*

1 Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom,
2Department of Oncology, University of Cambridge, Cambridge, United Kingdom

Combined hepatocellular-cholangiocarcinoma (cHCC-ICC) is an uncommon and

aggressive form of primary liver cancer. Currently, there are no international guidelines for

optimal management. For localized tumors, radical resection represents the preferred

treatment option, whereas for advanced tumors, systemic therapies recommended

for intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are

often selected. Emerging information from comparative cohort studies, genomic and

transcriptomic data sets are starting to build a case for rationalized approaches to

systemic treatment in the advanced setting specific to cHCC-ICC.

Keywords: Combined hepatocellular-cholangiocarcinoma, cHCC-ICC, cHCC-CCA, biphenotypic, primary liver
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INTRODUCTION

Combined hepatocellular-cholangiocarcinoma (cHCC-ICC/ cHCC-CCA) or “biphenotypic”
primary liver cancer is a form of primary liver carcinoma (PLC) with phenotypic characteristics
of both hepatocytic and cholangiocytic differentiation (1, 2). Additional acceptable terminology
for this form of PLC is mixed hepatocellular-cholangiocarcinoma (mixed HCC-CC), mixed
hepatobiliary carcinoma, or hepatocholangiocarcinoma (3). At present, there are no accepted
international management guidelines; there is no standard first line systemic therapy option for
cHCC-ICC and it has a dismal prognosis, worse than that of either hepatocellular carcinoma (HCC)
or cholangiocarcinoma (CCA) (1, 4, 5). This review focuses on the genetics of and current systemic
treatment options for advanced, unresectable and metastatic cHCC-ICC in order to provide a
platform for future trials.

Epidemiology
cHCC-ICC is likely to comprise between 0.4 and 4.7% of all PLCs, incidence ratio for male:female
patients is 1.8–2.1:1 and median age at diagnosis is 62–65 years-old (2, 6–12). Data from the
Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute
reveals that patients tend to present with distant, metastatic disease (130/380, 34.2%) rather than
localized (98/380, 25.8%) or regional disease (97/380, 25.5%) according to their generic staging
system (vida infra) (11, 12). The risk factors remain unclear and retrospective case-control studies
report conflicting associations; some Asian studies suggest similarities between the risk factors for
hepatocellular carcinoma (HCC) and cHCC-ICC such as chronic liver disease caused by infection
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with hepatotropic viruses such as hepatitis B (HBV) or
hepatitis C (HBC) and alcohol. Western world datasets
however propose closer similarities to the risk factors associated
with intrahepatic cholangiocarcinoma (ICC) such as primary
sclerosing cholangitis, chronic liver fluke infections, biliary-duct
cysts, and hepatolithiasis (4, 10, 13–16).

Histological Characterization and
classification
The 2019 World Health Organization (WHO) guidelines have
streamlined previous histopathological classification systems
(1, 3). The definition and diagnosis of cHCC-ICC now
simply requires histopathological identification of unequivocal
hepatocytic and cholangiocytic differentiation morphologically
within the same tumor using routine hematoxylin and eosin
(H&E) staining (Figure 1) (1, 3). There is no agreed proportion
of each required for a diagnosis and no strict requirement to
subtype the tumors (3). cHCC-ICC may or may not include
cells with stem cell features, however the use of the category
“cHCC-CCA with stem cell features” is no longer recommended
(1, 3, 17, 18). Morphologically, the two components can be
adjacent to each other or deeply intermingled, with a sharp
or poorly defined transition. cHCC-ICC with a sharp, or a
poorly defined transition, used to be known as type B and type
C cHCC-ICC, respectively according to the 1949 Allen and
Lisa classification (7). Some genomic studies still divide tumors
morphologically using the Allen and Lisa classification and it
is emerging that there may be significant genomic differences
between them (vide infra) (Figure 2) (7). Rarely, cHCC-ICCmay
show homogenous features intermediate between hepatocytes
and cholangiocytes throughout the tumor mass. This is known
as “intermediate cell carcinoma of the liver” and is currently
incorporated within the definition of cHCC-CCA, however there
is a lack of consensus as to whether this is a distinct entity or not
(1, 3, 7).

Within the cHCC-ICC tumor mass, the ICC component
shows mucin-producing glandular structures within stroma,
whereas HCC differentiation is characterized by Mallory-Denk
bodies, bile canaliculi and a trabecular growth pattern. This can
be further substantiated using a panel of immunohistochemical
stains, although this is neither necessary nor sufficient for the
diagnosis (Figure 1). Immunomarkers supporting cholangiocytic
differentiation, include Ber EP4, MOC31, CK7, and CK19,
whilst arginase-1, hep par 1 and canalicular expression of
polyclonal CEA and CD10 is more supportive of hepatocellular
differentiation. In the past, CK19, CD56, CD117 and nestin
expression have been used to identify “stem cell” features
(19). The cell of origin of at least classical cHCC-ICC
could be a single form of bipotent hepatic progenitor cell
capable of terminal differentiation into either hepatocytes or
cholangiocytes (1, 4, 20–22).

Cholangiolocellular carcinoma (CLC) contains glandular
epithelial cells consisting of thin, ductular-like structures within
a dense hyalinized stroma and used to be classified as a subtype
of cHCC-ICC (4, 7, 18, 23, 24). However, morphologically, this
resembles ICC and CLC is now considered to be a subtype of

ICC (in keeping with available genomic data), unless there is an
admixed hepatocytic component (1, 3, 25).

Imaging Characterization
Cross-sectional imaging with Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI) are the mainstay
in the characterization of liver malignancy (Figure 3)
(26–31). Characteristic imaging features of HCC include
arterial hyperenhancement with washout, delayed enhancing
pseudocapsule, and intra-lesional fat (32–34); and those of
ICC include progressive centripetal enhancement, capsular
retraction, and bile duct dilatation (30). Appearances can overlap
and cHCC-ICC can demonstrate features of both (30, 31, 35, 36).

The most widely adopted strategy for the diagnosis of
PLC in high risk patients based on imaging alone is Liver
Imaging-Reporting and Data System (LI-RADS) (34). This
includes a “LR-M” category encompassing definitely or probably
malignant observations which are not specifically HCC; atypical
HCC, ICC and cHCC-ICC would fall into this category
and a biopsy is needed (34). Features in favor of LR-M
category include a targetoid mass appearance or other features
such as infiltrative appearance, marked diffusion restriction,
necrosis, or severe ischaemia. LI-RADS has been validated
for high risk (e.g., cirrhotic) patients only and contemporary
studies show the potential for misclassification of cHCC-ICC:
diagnostic discordance between imaging and biopsy findings
has been noted in 52% of cases of cHCC-ICC (n = 42)
(37). Of 61 cases, 54.1% of cHCC-ICC could have been
misclassified with LI-RADS using major criteria alone (35).
Comparison of LI-RADS to MRI with gadolinium ethoxybenzyl
diethylenetriamine (Gd-EOB) showed that ∼37% of cHCC-
ICC were being wrongly categorized as HCC (36). Combining
imaging and biopsy (including immunophenotypical markers)
can improve diagnostic performance, with a 12% increase in
sensitivity reported in certain series (37).

Circulating Tumor Markers
The diagnosis of and differentiation between HCC and ICC
can be supported by circulating biomarkers (4, 38). Elevated
serum Cancer Antigen 19.9 (CA19.9) is associated with ICC
and elevated alpha-fetoprotein (AFP) is associated with HCC;
the elevation of both or either can be seen in cHCC-ICC
(4, 38). Concurrently elevated CA19.9 andAFP in a radiologically
diagnosed PLC, or elevation in a biomarker discordant with the
features on the imaging may indicate that the tumor is cHCC-
ICC (38–40). There are several serum additional biomarkers
associated with the diagnosis of HCC in particular including
AFP-L3, des-γ-carboxyprothrombin (DCP), golgi protein 73
(GP73), and osteopontin (OPN), but these have not been studied
robustly in appropriate series in cHCC-ICC (39, 41, 42).

GENETIC CHARACTERIZATION AND
MOLECULAR BIOLOGY

Identification of genetic and molecular alterations in cHCC-
ICC tumors may aid accurate diagnosis, define tumor etiology,
support biomarker development, predict disease prognosis and
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FIGURE 1 | Histology of cHCC-ICC. (A) Haematoxylin and eosin (H&E) slide shows an area of tumor with features of poorly differentiated hepatocellular carcinoma

namely nuclear pleomorphism, hyperchromasia and coarse chromatin pattern. (B) H&E slide showing an area within the same tumor showing more prominent

glandular architecture, morphologically consistent with cholangiocarcinoma. (C) The area with hepatocellular morphology shows a canalicular pattern of reactivity with

polyclonal CEA, supportive of hepatocellular differentiation. This area does not react with BER EP4 polyclonal antibody. (D) The glandular area is immunoreactive for

BER EP4 supportive of glandular epithelial differentiation consistent with the cholangiocellular component.

guide therapy. Most studies analyze the tumor mass as a
whole. However, to begin, some studies have looked at the
distinct histological elements which resemble HCC and ICC
within the cHCC-ICC tumor mass. Concordant copy number
changes and shared mutations on whole exome sequencing
(WES) can show that these two areas of the tumor which appear
different histologically are subclones from a monoclonal origin.
However, there is notable intratumour heterogeneity even in
these studies, for example, there can be marked differences in
the magnitude of these copy number variations and there can
be key differential gene expression leading to hepatocyte-like or
cholangiocyte-like differentiation, notably in VCAN, ACVR2A,
and FCGBP (19, 43, 44).

Genomic studies have shown that cHCC-ICC are genetically
distinct from HCC and ICC with important differences in their
molecular aberrations (4, 43, 45). As initial examples, cHCC-
ICC shows increased frequency of genetic alternations in RYR3
and FBN2, and increased amplifications and gains of function in
MYC compared to HCC and ICC (4, 19, 46, 47). Mutations in
catenin beta-1 (CTNNB1) and KRAS, commonly found in HCC
and ICC respectively, have been observed at almost insignificant

rates in cHCC-ICC (19). In terms of tumor suppressors, tumor
protein 53 (TP53) has been consistently reported as one of
the most important genes mutated in cHCC-ICC; the largest
comparative genomics study to date has shown that TP53
mutations were more frequent in cHCC-ICC compared to HCC
and ICC alone [49.2 vs. 31% (p < 0.001) and 22% (p < 0.0001),
respectively] (19, 47).

As in HCC and ICC, non-coding alterations are common
in cHCC-ICC, for example large cohorts have shown 22.9% of
cases with TERT promoter mutations and 29.7% of cases with
NEAT1 (an intergenic non-coding RNA gene for a long non-
coding RNA) alterations, but detailed comparisons to HCC and
ICC and how to target these changes therapeutically are not yet
clear (19, 48–50).

cHCC-ICC studies integrating both genomics and
transcriptomics using RNA-seq, WES and whole genome
sequencing (WGS) find similar patterns in changes of key genes
and tend to findmore similarities between cHCC-ICC [especially
Lisa and Allen type C (poorly defined transition) cHCC-ICC]
and HCC, such as in TP53 and CTNNB1, rather than ICC
(even ICCs arising in cirrhotic livers). Furthermore, molecular
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FIGURE 2 | Selected Morphological Variations in cHCC-ICC. cHCC-ICC tumors contain unequivocal cells of both hepatocytic (denoted in blue) and cholangiocytic

differentiation (denoted in orange) within the same tumor mass using routine hematoxylin and eosin staining. All may contain variable levels of stem cell features. Prior

classification systems used to differentiate between different morphological forms of cHCC-ICC. (A) Represents Allen and Lisa’s Type A tumors which are HCC and

ICC in the same lobe of the liver but not within the same tumor mass; these are no longer diagnosed as cHCC-ICC but are considered concomitant HCC and ICC

tumors (included for completeness). (B) Represents Allen and Lisa’s Type B tumors which contain HCC and ICC histological features within the same tumor mass with

a sharp transition between them. (C) Represents Allen and Lisa’s Type C tumors show HCC and ICC histological features blending into each other within the same

tumor mass. (D) Intermediate cell carcinoma (in green) (E) and cholangiolocellular carcinoma (in light yellow) but only when it also contains a hepatocellular

component (in blue), are also included within the definition of cHCC-ICC.

alterations characteristically seen in ICC, such as changes in
PBRM1, IDH1, IDH2, FGFR2, and BAP1 were not present across
cHCC-ICC (44, 47, 51).

Transcriptomic and molecular clusters have been described in
cHCC-ICC using WES techniques (44, 52). The most detailed
study to date on the complex molecular profile of cHCC-ICC
has been provided by an integrative genomic analysis of 133
pan-Asian cases (19). This study concluded that Allen and
Lisa type B (sharply defined transition) and type C (poorly
defined transition) are distinct (based on their genetic and
transcriptomic data) and hence the Allen and Lisa criteria is
valid on a molecular level (Figure 2) (19). The transcriptomic
profile clustering in this work showed that type B cHCC-ICC
was genetically more similar to ICC, with enhanced expression
of biliary markers (EpCAM, KRT19, and PRDM5) and frequent
KRAS and IDH1 mutations. Whereas, using similar techniques,
type C cHCC-ICC was associated more closely with poorly
differentiated HCC features such as increased expression of liver
cell markers (APOE, GPC3 and SALL4), more frequent TP53
mutations, enrichment in immune pathways within the tumor
microenvironment and raised serum AFP levels (2, 19, 53). This
correlates with clinicopathological data which has shownmarked
similarity between type C cHCC-ICC and HCC with regards

to male/female ratio, hepatitis infection, serum AFP levels and
non-tumor liver histology (14, 46).

This genetic study also identified both monoclonal and
multiclonal origins of the tumors irrespective of the Allen
and Lisa subtype of PLC. This finding which correlates with
recent studies on the trans-differentiation of hepatocytes to
cholangiocytes and HCC to cHCC-ICC-like tumors, supporting
the theory of plasticity of hepatobiliary cells and a critical
role of the tumor microenvironment (TME) in directing the
differentiation of genetically identical liver cells into different
lineages (2, 19, 54–56). The dependence of tumor development
on the TME is supported by the identification of associations
between clinical/environmental factors and patterns ofmutations
in cHCC-ICC (57). To date, no data has been published for
either the immune component of the TME nor tumor mutational
burden in cHCC-ICC (58).

Thus, former genomic and transcriptomic studies of all
cHCC-ICC subtypes disagree on the separation from HCC
and/or ICC, but recent studies suggest that Type C (poorly
defined transition) subtype is genetically similar to HCC, and
Type B (sharply defined transition) subtype is closer to ICC
(19, 59). These findings could have potential implications for
therapeutic approaches e.g., type C subtype could be treated
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FIGURE 3 | MRI liver with extracellular gadolinium contrast agent from a patient with histologically confirmed neoplastic liver lesion with variable, moderate to poor,

differentiation with areas of hepatocellular differentiation and other areas of immunohistochemical evidence of cholangiocellular differentiation. Coronal FIESTA (A) and

axial T2-weighted Fat Saturated (B) images show an 11cm well-defined centrally necrotic heterogeneous liver mass at the right lobe of the liver. This is effacing the

IVC although there is no definite venous tumor invasion. The middle and right hepatic veins were not appreciable, presumed completely effaced; the main and branch

portal veins were patent (not shown). In addition, there is associated mild intrahepatic biliary duct dilatation. T1-weighted arterial phase axial image (C) shows

heterogeneous peripheral enhancement. Diffusion weighted imaging (B = 600) (D) shows heterogeneously restricted diffusion on correlation with Apparent Diffusion

Coefficient maps. Post-intravenous contrast CT in arterial phase (E) and portovenous phase (F) for the same patient shows a large vascular mass in the central

aspect of the right lobe liver with arterial hyperenhancement and portovenous wash-out, and central necrotic areas.

more like HCC tumors and Type B subtype could be treated like
ICC. Also, the inferences from these molecular studies may have
repercussions for the new simplified WHO classification which
had aimed to reduce the need for morphological subtyping. The
recent finding that morphological subtypes of cHCC-ICC may
correlate with genomics could explain discrepancies between

some studies finding genomic similarities between cHCC-ICC
and HCC, and others with ICC (19).

The genomic, transcriptomic and proteomic landscape of
cHCC-ICC is reliant on a small number of disparate studies with
different patient cohorts internationally, which do not perfectly
agree. A summary of published aberrant genomic markers
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TABLE 1 | Genomic and molecular differences between different subtypes of primary liver cancer.

cHCC-ICC

(all forms)

HCC ICC

Type B (sharply defined transition) Type C (poorly

defined transition)

Mutations in TP53 and CTNNB1 (similar to HCC) (47) Similar mutations in

TP53 and CTNNB1 (47)

TERT promotor mutations (similar to HCC) (60) TERT promotor

mutations (60)

Altered spectrum of target genes in the TGFβ and Wnt/CTNNB1 cell

signaling pathways, and increased LEF1 and SOX9 expression tending

toward biliary differentiation (similar to ICC) (52)

Altered spectrum of target genes in the TGFβ and

Wnt/CTNNB1 cell signaling pathways, and

increased LEF1 and SOX9 expression tending

toward biliary differentiation (52)

Increased mutations of RYR3, FBN2, KNCC3, and MYC (distinct from HCC)

(47)

Fewer mutations in

RYR3, FBN2 and MYC

(47)

Tendency for LoH at chromosomes 3p and 14q (distinct from HCC) (46) Tendency for LoH at chromosomes 3p and 14q (46)

Increased TP53 mutations (predominately missense) (distinct from HCC and

ICC) (19)

Fewer TP53 mutations

than cHCC-ICC in this

study (19)

Fewer TP53 mutations (19)

Rare to have mutations in CTNNB1 (distinct from HCC and ICC) (19) Commonly mutated

CTBBN1 (19)

Commonly mutated CTBBN1 (19)

Enhanced expression of EpCAM, KRT19, and

PRDM5 (19)

Increased expression of

APOE, GPC3, and

SALL4 (19)

Increased expression of

APOE, GPC3 and

SALL4 (19)

Enhanced expression of EpCAM, KRT19 and

PRDM5 (19)

Frequent KRAS and IDH1 mutations (19) More frequent TP53

mutations (19)

More frequent TP53

mutations (19)

Frequent KRAS and IDH1 mutations (19)

Data from studies examining differences between cHCC-ICC taken as a whole tumor mass are in black, data from studies comparing Type B and C (Allen and Lisa classification) cHCC-

ICC to HCC and ICC are in blue and purple, respectively (19, 45–47, 60). cHCC-ICC, combined hepatocellular-cholangiocarcinoma; HCC, hepatocellular carcinoma; ICC, intrahepatic

cholangiocarcinoma; CK, Cytokeratin; CTNNB1, Catenin Beta 1; LoH, loss of heterozygosity; Rb-1, retinoblastoma (RB) Transcriptional Corepressor 1; RYR3, ryanodine receptor 3;

FBN2, fibrillin 2; MYC, MYC Proto-Oncogene, BHLH Transcription Factor; EpCAM, epithelial cell adhesion molecule; KNCC3, calcium-activated potassium ion channel gene; ARID1A,

AT-Rich Interaction Domain 1A; PBRM1, Polybromo 1; LEF1, lymphoid enhancer-binding factor-1; SOX9, SRY-Box Transcription Factor 9; KRT19, Keratin 19; PRDM5, PR/SET Domain

5; APOE, Apolipoprotein E; GPC3, glyican 3; SALL4, sal-like protein 4.

(Table 1) and possible molecular drivers and targets (Table 2)
therefore should be interpreted with caution. The detailed roles
of oncogenic driver mutations are still poorly understood in
all forms of PLC, especially cHCC-ICC. However TGF-β, Wnt,
AKT, N-RAS, Notch-Hedgehog pathway activation and NF-κB
pathway inactivation have all been implicated in pathogenesis,
as has signaling through AXIN1, KMT2D, RB1, PTEN, FGFR,
nestin, ARID1A, KEAP1, IDH1, versican, EpCAM, Erbb2, and
TERT (2, 19, 47, 53, 58, 61–63). A number of these are potential
drug targets being evaluated in early phase clinical trials.

Staging and Prognosis
cHCC-ICC is staged by TNM in a clinical context (as opposed
to SEER staging of epidemiological data) using the same staging
algorithm as for ICC (Table 3) (64–66). It is difficult to get
accurate measures of patient survival without treatment (i.e., the
true prognosis) but two large epidemiological datasets from the
United States provide some guidance (12, 67). Median overall
survival (mOS) of patients stratified by the SEER stage for distant,
regionalized, and localized cHCC-HCC was 4 months (95% CI,
3–6), 7 months (95% CI, 5–11), and 20 months (95% CI 16–28),
respectively (p< 0.001), with the difference between regionalised
and localized explained by suitability for resection (12). A similar
pattern is seen using TNM staging data from the National Cancer
Data Base (NCDB) where mOSwas 28.6m for patients with Stage

I disease, 24.2m for stage II, 7.5m for stage III and 3.1m for stage
IV (67).

TREATMENT

In patients with localized cHCC-ICC and good performance
status, surgical resection may provide the chance of long-term
benefit, for example, 5 year survival rate of 30% has been reported
(12, 68, 69). These tumors show locoregional spread in similar
patterns to HCC (hepatic and portal venous invasion) and to
ICC (lymph node dissemination). Therefore liver resection with
hilar node dissection is attempted In suitable patients with
satisfactory liver function, however for patients with underlying
cirrhosis, resections are limited to avoid hepatic decompensation
(70–72). Pre-operatively tools such as the Model for End-stage
Liver Disease (MELD) score calculated from INR, bilirubin,
and creatinine, can be utilized in the risk assessment to predict
post-operative mortality following surgical resection (73).

The observed survival after surgery is similar to ICC,
where transplant is not standard, and notably less than
for HCC where transplantation may be offered (74, 75).
Transplanted cHCC-ICC patients (n = 19) compared with
transplanted HCC patients (n = 1147) had inferior 5-year
OS rates of 48 vs. 78% (p = 0.01) (75). A meta-analysis
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TABLE 2 | Summary table of potentially actionable molecular aberrations encountered in cHCC-ICC.

Gene Function Frequency Alteration

Versican (VCAN) Proteoglycan involved in cell growth, division, adhesion and migration,

angiogenesis and aerobic glycolysis

21.4% Increased frequency of mutations

(usually missense) (44)

Activin A receptor type 2A

(ACVR2A)

Receptor involved in cell growth and differentiation signaling 14.3% Increased frequency of mutations

(usually missense) (44)

Epithelial cell adhesion

molecule (EpCAM)

Transmembrane oncogenic mediator of epithelial cell-cell adhesion, cell

signaling, migration, proliferation and differentiation

Increased expression (19)

Tumor protein p53 (TP53) Master tumor suppressor regulating cell cycle, apoptosis, senescence and DNA

repair

46–57% Higher rate of loss of function

mutations (19, 44)

MYC Oncogenic transcription factor promoting expression of factors driving cell

proliferation, cell growth and cell stemness whilst inhibiting apoptosis and

differentiation

73% Higher rate of mutations and focal

amplifications (19)

Telomerase reverse

transcriptase (TERT)

Crucial enzymatic component of the telomerase complex that allows lengthening

of DNA strand telomeres preventing apoptosis in senescent cells

19% Higher rate of promoter mutations

and focal amplifications (19)

Cyclin D1 (CCND1) Cell cycle positive regulator with role in angiogenesis, cell migration and cell

metabolism

30% Higher rate of focal amplifications

(19, 51)

Cyclin E1 (CCNE1) Cell cycle regulator 5–24% Higher rate of focal amplifications

(19, 51)

CDK6 Cell cycle regulator 20% Higher rate of focal amplifications (19)

Cyclin-dependent kinase

N2A (CDKN2A)

Encodes for p16 and p14arf; tumor suppressor proteins that negatively regulate

the cell cycle

37% Deletions and loss of function (19)

MET Tyrosine kinase with established oncogenic properties including activation of

cancer pathways such as RAS and PI3K, cell proliferation and angiogenesis

15–24% Higher rate of mutations and focal

amplifications (19, 51)

K-RAS GTPase protein with established oncogenic properties including activation of

pathways such as MAP kinase and PI3K/mTOR pathways that promote cell

growth, protein synthesis and cell division

5% Higher rate of mutations (but lower

when compared to ICC) and

increased expression (19, 51)

Phosphatase and tensin

homolog (PTEN)

Phosphatase acting a tumor suppressor factor via negative regulation of the

Akt/PKB signaling pathway and inhibition of cell cycle and division.

10% Higher rate of mutations (19, 51)

AT-rich interaction domain

1A (ARID1A)

Combined helicase and ATPase, part of an ATP-dependent

chromatin-remodeling complex that acts as a tumor suppressor by regulating

transcription of genes involved in oncogenesis

19.5% Higher rate of mutations (19)

AT-rich interaction domain

1B (ARID1B)

Combined helicase and ATPase, part of an ATP-dependent

chromatin-remodeling complex that acts as a tumor suppressor by regulating

transcription of genes involved in oncogenesis

28.6% Increased frequency of mutations

(usually missense) (44)

AT-rich interaction domain 2

(ARID2)

Combined helicase and ATPase, part of an ATP-dependent

chromatin-remodeling complex that acts as a tumor suppressor by regulating

transcription of genes involved in oncogenesis

19.5% Higher rate of mutations (19)

Adenomatous polyposis coli

(APC)

A tumor suppressor protein regulating cell adhesion, invasion and cell

proliferation by negatively regulating of beta-catenin via interaction with

E-cadherin within the Wnt signaling pathway

7.2% Increased frequency of mutations

(usually missense) (44)

Retinoblastoma (RB1) Multifunctional protein acting as a tumor suppressor by inhibiting cell cycle

progression and inducing senescence thus regulating cell growth and

proliferation and preventing metastasis

26% Deletions and loss of function (19)

PTMS-AP1G1 Important component of clathrin-coated vesicles for intra-cellular transportation 11.7% Fusion events (19)

Fibroblast growth factor

receptor (FGFR)

Cell surface membrane receptor tyrosine kinase which activates secondary

messanger systems key to processes such as proliferation, differentiation, cell

migration, and survival

6.5% Fusion events (19)

CTNNB1 (β-catenin 1) Multifunctional protein involved in the regulation of gene transcription and

cell-cell adhesion as part of the cadherin complex in the Wnt signaling pathway

where it acts as an oncogene

Higher rate of mutations (but lower

when compared to HCC) (19)

NFATC2/3 DNA-binding protein regulating cell invasiveness and migration. 7.2% (NFATC2),

28.6% (NFATC3)

Increased frequency of mutations (44)

AXIN1 Cytoplasmic protein that acts as negative regulator of the Wnt signaling pathway

to induce apoptosis

25% Deletions and loss of function

IDH1 Enzyme involved in metabolic processes that can inactivate tumor suppressor

genes and activate oncogenes

21.2% Higher rate of mutations (19)

MYC, MYC Proto-Oncogene; BHLH, Transcription Factor; MET, MET Proto-Oncogene, Receptor Tyrosine Kinase; K-RAS, KRAS proto-oncogene, GTPase; PTMS-AP1G1,

Parathymosin-AP-1 complex subunit gamma-1; CTNNB1, Catenin Beta 1; NFAT2/3, Nuclear Factor Of Activated T Cells 2/3; IDH1 gene, isocitrate dehydrogenase [NADP(+)] 1,

cytosolic (2, 19, 44, 51, 53, 61).
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TABLE 3 | Summary table of staging systems.

TNM Stage Tumor Node Metastasis SEER General Staging System

IA T1a N0 M0 Localized

IB T1b N0 M0

II T2 N0 M0

Regional

IIIA T3 N0 M0

IIIB T4 N0 M0

Any N1 M0

IV Any Any M1 Distant

TNM Stage Tumor Node Metastasis SEER General Staging System

IA T1a N0 M0 Localized

IB T1b N0 M0

II T2 N0 M0

Regional

IIIA T3 N0 M0

IIIB T4 N0 M0

Any N1 M0

IV Any Any M1 Distant

The tumor, node and metastasis scores of each tumor allow TNM staging. The primary

tumor is classified as follows; T1 if it is a solitary tumor with no vascular invasion (T1a

if ≤5 cm and T1b if >5 cm), T2 if it is either a solitary tumor with vascular invasion or

there are multiple primary tumors (irrespective of vascular invasion), T3 if the primary

tumor perforates the visceral peritoneum and, T4 if the tumor involves local extrahepatic

structures by direct invasion. N1 denotes regional lymph node metastases and M1

denotes distant metastatic disease. The SEER general staging system for tumors such as

cHCC-ICC is included and compared with the TNM system; some TNM stage II tumors

may be classified as localized and others as regional. The majority of large epidemiological

studies to date use the Surveillance, Epidemiology, and End Results (SEER) Program of

the National Cancer Institute: localized cancer is limited to the anatomical site of origin

without spread, regional cancer is limited to the nearby draining lymph nodes, tissues

or organs by direct extension, and distant cancer has spread to distant non-continuous

parts of the body (7, 10–12). SEER, Surveillance, Epidemiology, and End Results program;

TNM, tumor node metastasis.

of NCDB cases indicates that transplantation does not result
in improved outcome when compared with resection in
cHCC-ICC, making a case for careful pre-operative diagnostic
assessment to minimize the risk of misdiagnosis with HCC
and for the limited supply of donor livers to be more
beneficially applied for conditions with better post-transplant
outcomes (67, 70).

Non-surgical treatment options in patients with
localized disease include ablation procedures, transarterial
(chemo)embolization (TA(C)E), hepatic arterial infusional
chemotherapy, radioembolization, and systemic therapy
(68, 71). The data for benefit of loco-regional therapies in
cHCC-ICC is limited to small retrospective studies but there
are recognizable partial response rates which may allow
subsequent surgical resection and potentially survival benefit
(4, 68, 76, 77).

Even following treatment for localized disease it is common
for the disease to recur, often with unresectable regional or
distant/metastatic disease; (4, 40, 76, 78) tumor recurrence rates
at 1, 3, and 5 years were 60.8, 71.8, and 80.7%, respectively in
one study, and median disease-free survival of 10 months has
been reported (4, 5, 69, 78). Recurrence rates seem to be non-
significantly different in comparison to HCC and ICC, but mOS
after recurrence tends to be worse than HCC and possibly worse
than ICC (4, 5, 78).

Systemic Treatment Options
There is no globally accepted standard first line therapy for
advanced cHCC-ICC as the evidence base is limited, therefore
clinicians offer first line treatments utilized for either advanced
HCC or ICC to patients with Eastern Cooperative performance

(ECOG) performance score (PS) 0–2. Systemic treatment
planning for cHCC-ICC patients requires careful consideration
of comorbid cirrhosis and compromised liver function.

Standard first line therapy for CCA is gemcitabine 1,000
mg/m2 and cisplatin 25 mg/m2 doublet chemotherapy
administered on days 1 and 8 of a 21 day cycle, for patients
with good ECOG PS of 0–1, based on the ABC-02 trial
(79, 80). The dose of gemcitabine may be reduced to 800mg/m2

if there is pre-existing liver dysfunction (81–83). In terms
of second-line treatments upon progression, patients may
get re-treated with gemcitabine/cisplatin depending on
their initial outcome, or can be referred for clinical trials.
A recent trial of oxaliplatin/5-FU (mFOLFOX) plus active
symptom control given to advanced biliary tract cancer
(including ICC) patients after first-line gemcitabine-cisplatin
doublet chemotherapy showed modest extended mOS by just
under a month (5.3 vs. 6.2 months) between study arms,
however differences in OS rate at 6-months (35.5 vs. 50.6%)
and 12-month (11.4 vs. 25.9%) were potentially clinically
meaningful (84).

For advanced HCC, cytotoxic therapies are generally
not used in standard practice due to lack of efficacy and
toxicity concerns, particularly in cirrhotic patients, but there
is significant data to support the role of small molecule
multitargeted tyrosine kinase inhibitors (TKIs) sorafenib
and lenvatinib in the first-line treatment setting (85–88).
More recently there has been positive data in first line
treatment setting for HCC patients using immune checkpoint
inhibitor (ICPI) therapies in combination with other agents
such as bevacizumab, or tyrosine kinase inhibitors such
as lenvatinib which has led to approval by the Food and
Drug Administration (FDA) in the United States of America
(89, 90). Evidence for utility of TKIs in cHCC-ICC patients
is generally in the form of case-reports and single-center
retrospective studies with a very weak signal of efficacy, but
in the absence of international guidance and concerns about
toxicity of cytotoxic chemotherapy they are commonly offered
to patients (77, 91–93).

The comparative data on systemic therapy in cHCC-ICC is
sparse, but tends to favor the efficacy of chemotherapy over
sorafenib (77, 92, 93). In small retrospective studies (n = 41,
28 and 17), cytotoxic regimens seem to achieve a reasonable
response rate and modest mOS benefit (77, 92, 93). In the
largest of these cohorts, there were no recorded objective
responses for sorafenib monotherapy (n = 5 evaluable), the
median progression free survival (mPFS) was 4.8m (n = 7)
and mOS was 9.6m (n = 7), whereas for gemcitabine-cisplatin
doublet chemotherapy, the partial response rate was 24% (9/37
evaluable), mPFS was 8.0m (n = 41), and mOS was 11.5m
(n = 41) (77). Another showed that both mPFS [3.0m (95%
CI, 0.0–9.1)] and mOS [10.2m (95% CI, 3.9–16.6)] tend to
be larger than observed with sorafenib [PFS 1.6m (95% CI,
1.2–2.0), mOS 3.5m (95% CI: 0.0–7.6)] with a statistically
significantly improved hazard ratio (HR) for mOS [HR: 5.50
(95% CI, 1.17–25.84)] (92). Furthermore, on multivariate
analysis, sorafenib monotherapy remained an independent
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poor prognostic factor for survival compared to first line
gemcitabine-cisplatin chemotherapy [HR: 10.7, (95% CI, 1.4–
80.7), p = 0.022] (92). cHCC-ICC management along the lines
of ICC (chemotherapy as first line treatment) may be more
effective than for HCC and should be the preferred option if
safe (77, 92, 93).

Given the increasing evidence for ICPI efficacy in the
management of both advanced ICC with microsatellite instability
(MSI) and HCC, there is rationale to try this approach in
cHCC-ICC (94, 95). A case report describing a near complete
radiological response to ICPI in a cHCC-ICC patient showing no
MSI but raised neoantigen burden in his tumor, has highlighted
utility of this therapeutic approach in selected patients (96, 97).

Perspectives From Pre-Clinical and
Translational Studies
Improved models of cHCC-ICC may provide valuable
information on neoplastic development, progression and
therapeutic strategies for this rare tumor. Currently, one
mouse model of cHCC-ICC has been developed (56). It was
created from a mouse model of HCC by inhibiting nuclear
factor kappa-B (NF-κB) signaling by deleting NF-kappa-
B essential modulator (NEMO)/ nuclear factor kappa-B
kinase subunit gamma (IKKγ) selectively from hepatocytes;
the effect of different treatments on this model have not
yet been explored (56). Patient derived organoid models of
cHCC-ICC from resected combined tumors have recently
been described, which demonstrate preserved histological
architecture, gene expression and genomic landscape of the
original tumor, permitting discrimination between different
subtypes, even following long-term expansion in culture
(56, 98). Drug sensitivity assays of the organoids recapitulated
sensitivity to each of gemcitabine and sorafenib in one of
the two cHCC-ICC models and sensitivity to sorafenib in
the other (98). Sensitivity was also shown across the two
models to taselisib (a beta-isoform sparing PI3K inhibitor),
LGK974 (PORCN inhibitor), deltarasin (reduces KRAS
activity by inhibiting KRAS-PDEδ interactions), vorinostat
(HDAC inhibitor Class I, IIa, IIb, IV), SCH772984 (ERK1/2
inhibitor) (98). These models may provide a platform for drug
screening and validation of “actionable” therapeutic targets in
cHCC-ICC patients.

DISCUSSION

Given the rarity of cHCC-ICC, there are extremely limited
clinical trial options available specifically for this group of
patients. Genomic, pre-clinical and clinical studies underline
inconsistencies between these tumors and either HCC or
ICC in genotype, phenotype and treatment response,
therefore it is emerging that these tumors may need to
be regarded as a separate entity for optimal management.
Current data supports the use of cytotoxic chemotherapy
where possible for cHCC-ICC, but different histological and
molecular subtypes (which is a different emphasis to the
recent WHO histological guidance) could form the basis
for more nuanced strategies for empirical chemotherapy,
molecularly targeted treatment or immunotherapy. However,
it should be noted that the current genomic, proteomic
and systemic therapy evidence is underdeveloped and
predominately from small, retrospective studies and more
rigorous prospective data is desirable to allow more definitive
conclusions. Molecular profiling and enrolment into tumor-
agnostic “basket” trials selecting for molecular alterations
could be helpful in the short term, to gain an understanding
of how responsiveness of potentially “actionable” phenotypes
may be impacted by the biology and environment of these
unusual tumors. In the longer term, better pre-clinical
models and international collaborations and registries with
centralized pathology and radiology are highly desirable to
optimize the knowledge base, and rationalize management
strategies (1).
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