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Abstract

This paper focuses on 6D pose estimation for weakly textured targets from RGB-D images.

A 6D pose estimation algorithm (DOPE++) based on a deep neural network for weakly tex-

tured objects is proposed to solve the poor real-time pose estimation and low recognition

efficiency in the robot grasping process of parts with weak texture. More specifically, we first

introduce the depthwise separable convolution operation to lighten the original deep object

pose estimation (DOPE) network structure to improve the network operation speed. Sec-

ond, an attention mechanism is introduced to improve network accuracy. In response to the

low recognition efficiency of the original DOPE network for parts with occlusion relationships

and the false recognition problem in recognizing parts with scales that are too large or too

small, a random mask local processing method and a multiscale fusion pose estimation

module are proposed. The results show that our proposed DOPE++ network improves the

real-time performance of 6D pose estimation and enhances the recognition of parts at differ-

ent scales without loss of accuracy. To address the problem of a single background repre-

sentation of the part pose estimation dataset, a virtual dataset is constructed for data

expansion to form a hybrid dataset.

1. Introduction

Image-based 6D target pose estimation [1] is playing an increasingly important role in applica-

tions such as virtual reality [2–4] and robotics operations [5–7]. 6D pose estimation refers to

finding the image object position and calculating the rotation translation relationship between

the object coordinate system and the camera coordinate system. 6D refers to the 3D position

and 3D pose of an object, and its physical quantities are the three translational and three rota-

tional parameters of the object. The significance of 6D pose estimation is to accurately obtain

the pose of an object to support the fine manipulation of the object [8] and it is mainly used in

industrial scenarios such as cargo sorting and robot grasping. Robots using a 6D pose estima-

tion algorithm can further estimate their pose based on detection of target parts to more accu-

rately grasp the parts [9]. In practical scenarios of industrial manufacturing, the core problem

of robot gripping work is the accurate recognition of the 6D pose of an object. The traditional
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algorithm approach requires manual definition of 3D feature description, matching the point

cloud of the object to be captured from the field scan with the known point cloud of the object

model to be captured for 3D template matching, and convex optimization to reduce the error

after alignment. Thus, a current research trend is to restore 6D pose information of objects

based on texture features of a priori object models by inputting monocular RGB images [10,

11]. With the rise of RGB-D depth sensors, methods to combine the depth information

acquired by the sensors with RGB images for robotic arm grasping tasks have also started to

emerge [12–14]. Compared with a single RGB image for pose estimation, the depth sensor-

based RGB-D image method can contain more geometric information about the target and

perform more consistently and reliably in the pose estimation process [9]. Therefore, we focus

on 6D pose estimation using a single RGB-D image.

Traditional pose estimation methods are mainly divided into keypoint-based methods [15–

17] and template-based methods [18, 19]. The traditional method mainly constructs local fea-

ture descriptors (SIFT, HOG, ORB, etc.) of the target object, extracts feature points in the

image, and constructs feature descriptors for feature matching. Then, the 6D pose of the object

is calculated using the correspondence between 2D and 3D. However, the estimation effect is

not satisfactory for objects with weak textures and obscure features, such as some mechanical

parts for industrial use.

In recent years, with the rapid development of deep learning, convolutional neural network

(CNN)-based pose estimation has become the mainstream method for pose estimation. Com-

pared with traditional methods, CNN-based methods have strong resistance to complex envi-

ronments, are more adaptable to common clustering methods in daily life [20], and perform

well in the recognition of some weakly textured objects. CNN-based pose estimation methods

are mainly classified into end-to-end and two-stage methods. End-to-end methods that

directly regress the object pose, such as PoseCNN [14] proposed by Xiang et al. and SilhoNet

[21] proposed by Billing et al., have difficulty in computing the rotation and translation of the

target. Wang et al. proposed the DenseFusion algorithm [22], which uses RGB-D images as the

input to the network while employing an end-to-end iterative refinement of the network to

greatly improve the pose estimation accuracy. However, the end-to-end approach still faces

the challenge of difficulty in estimating the translations of the target. The two-stage approach

regresses the key points of the target using a CNN and then calculates the pose of the object by

the Perspective-n-Point (PnP) algorithm [23]. YOLO-6D proposed by Tekin et al. [24] and

BB8 proposed by Oberweger M and Hu y et al. [25, 26] both predict the projection of the

object’s 3D minimum bounding box on the 2D picture and then calculate the 6D pose of the

target by the PnP [23] algorithm, eliminating the practice of fine-tuning the correction of the

result on previous methods. Kehl et al. proposed the SSD-6D algorithm [10], which first locates

the 2D bounding box of the target and then matches it with the associated 6D pose. Nigam

et al. proposed a novel network architecture [27] that combines local features of coordinate

regression with global features to further improve the accuracy of 6D pose estimation. Jona-

than Tremblay, Yu Xiang et al. proposed an algorithmic framework for six-degrees-of-freedom

object pose estimation based on keypoint detection, namely, the DOPE (deep object pose esti-

mation) [28] algorithmic framework. The algorithm takes an input RGB image and obtains

image features by feature extraction and then obtains the confidence map and vector map of

the image through a six-step pose estimation network, which innovatively converts the target

detection task into a regression problem. The algorithmic framework innovatively inferred the

6D pose of a known object from a single RGB image without subsequent alignment.

Although the 6D pose estimation algorithms in the last two years have been well addressed

in terms of accuracy and efficiency, the DOPE algorithm proposed by Jonathan Tremblay, Yu

Xiang et al. deserves another in-depth consideration in terms of network architecture and
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synthetic data. Therefore, we take the DOPE algorithm as a benchmark and focus on solving

the problems of the original DOPE algorithm, such as the slow recognition of objects, difficulty

in resisting large-scale changes in targets, and difficulty in accurately recognizing occluded tar-

gets using only RGB images, in our algorithm DOPE++. Alongside comparing our proposed

network with the original DOPE network, we compared it with some state-of-the-art algo-

rithms, such as the DRNet algorithm [20] and the DenseFusion algorithm [22]. Experiments

demonstrate that our proposed model excels in both accuracy and efficiency of 6D pose esti-

mation. Fig 1 shows the overall framework of the DOPE++ network.

The main innovations of this paper are as follows.

1. To improve the running speed of the network, the fusion model lightweighting method is

improved for feature extraction, which improves the frame rate by 14 FPS compared to the

original network, and the running time of the total pose estimation reaches 0.033 seconds

per frame.

2. To reduce the loss of accuracy due to the reduction in the number of network parameters,

an attention mechanism is introduced to improve the detection accuracy.

3. To cope with false detection and missed detection caused by the scale variation of the origi-

nal network for the parts to be detected, a multiscale fusion of the pose estimation module

is proposed to further improve the network accuracy.

4. To address the problem of part occlusion in engineering, this paper proposes a random

mask local processing method to improve the dataset and optimize the accuracy of the net-

work in dealing with object occlusion cases.

5. Most of the existing 6D pose estimation methods use datasets such as LineMOD [29] or

YCB-Video [14], which lack weakly textured industrial parts. Thus, this paper proposes a

method to produce datasets for weakly textured parts using virtual reality technology.

6. A vision-guided robot grasping platform is established to verify the feasibility of the pro-

posed algorithm for manufacturing applications such as grasping and assembly.

2. Related work

In recent years, 6D pose estimation networks based on deep learning have excelled in terms of

accuracy and efficiency [20, 29–31]. However, the lack of real data for training the network

Fig 1. The overall framework of the DOPE++ network. The input image produces two branches, a confidence map and a vector

map, after passing through DW convolution (a deeply separable convolutional network) and an Attention Mechanism. The two

feature maps are fused and then import our proposed new Multi-Scale pose estimation module. Finally, the 6D poses of the target

are obtained.

https://doi.org/10.1371/journal.pone.0269175.g001
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makes it difficult to expand the network to new application scenarios, such as in the field of

smart manufacturing [32–34] and autonomous driving [35, 36]. For this purpose, we use virtual

reality techniques [37–40] to produce datasets on weakly textured industrial parts. We indepen-

dently design a series of comparative experiments to verify the advantages of using virtual reality

technology to produce datasets, such as avoiding the problems of a single background, small

changes in object position and pose, and easy overfitting that exist in real datasets of YCB videos

[41, 42]. In addition, a random mask localization method is proposed for the part occlusion

problem to optimize the accuracy of the network in dealing with object occlusion cases.

2.1. Virtual reality-based dataset production of weakly textured parts

This study utilizes unreal engine 4 (UE4) as the device for generating virtual datasets. Specifi-

cally, the SolidWorks toolbox was first used to create a 3D model of the robot connections.

The 3D printing results are shown in Fig 2.

The Servoholder and PivConnector are arbitrarily selected as illustrations, where the size of

the Servoholder is 7.7×7.7×0.7 (in cm) and the size of the PivConnector is 10.5×5.2×0.7 (in

cm). The centre coordinates location and attitude rotation of the model need to be generated

automatically after building the workpiece model. Compared with manual annotation, the

UE4-based annotation method can use the complete geometric information in the constructed

model to automatically calculate the object centre-of-mass coordinates to eliminate pixel

errors and can define the relative positions of the camera and the workpiece to eliminate

reprojection errors caused by misalignment. To solve the problem of object fixation, this paper

sets the object to move randomly and rotate randomly. To solve the problem of a single back-

ground, we add a random background as interference for the object; the background image is

from the VOC2007 dataset [43]. The original position is in the world coordinate system for the

connector coordinates (0,0,0), the camera coordinates (-20,0,0), the camera distance from the

connector is 20 cm with vertical shooting. The camera position is of a fixed resolution of

640×480. The sections of random movement in the x-axis is (-10,10), y-axis is (-15,15), and z-

axis is (-15,15). The connector randomly rotates around the x-axis, y-axis, and z-axis. UE4

accurately marks the 6D pose of the object based on the object geometry information and the

defined camera parameters. The effect of the generated dataset is shown in Fig 3.

The method of generating datasets using virtual reality allows setting the position and rota-

tion of objects randomly. We also set the light angle and light intensity to random sizes and

randomly replace the background texture to avoid overfitting to a specific data distribution.

Fig 2. 3D printed models of the weakly textured parts. (a)Servoholder. (b)PivConnector.

https://doi.org/10.1371/journal.pone.0269175.g002
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2.2. Validating the advantages of using virtual reality to produce datasets

To verify the effectiveness of the dataset produced based on virtual reality, we illustrate a set of

comparative experiments. The DOPE++ network is first trained on a hybrid dataset obtained

by extending the virtual dataset produced using the model from the YCB-Video dataset. The

comparison of metrics illustrates the superiority of training in the hybrid dataset over the real

dataset. More specifically, objects numbered 003, 005, 006, 009, and 010 in the YCB-Video

dataset [13] were randomly selected for the experiments. A commonly used evaluation crite-

rion in object 6D pose detection is the 3D distance of the average model point (ADD, average

distance) [13, 44]: the average distance deviation is calculated from the 3D model points under

the estimated poses and the 3D model points under the true poses; the poses are considered to

be correctly estimated if the deviation is less than 10% of the object diameter, i.e., the threshold

value is 0.1 m. ADD is calculated as [27].

ADD ¼
1

n

Xn

i¼1

jjðRestPi þ TestÞ � ðRPi þ TÞjj
2

ð1Þ

where Rest is the predicted rotation matrix, Test is the predicted translation matrix, R is the rota-

tion matrix of the true value, T is the translation matrix of the true value, and Pi is the 3D point

in the object. When the ADD value is less than the threshold value, the pose estimation is con-

sidered correct and is called a true positive (TP), i.e., correctly detected pose; greater than this

value, the pose estimation fails and is called a false negative (FN), i.e., incorrectly detected

pose. The ADD values for each type of object at different thresholds are calculated, and the

ADD pass rate [8] at different thresholds is given by

ADDpassrate ¼
TP

TP þ FN
ð2Þ

All results were plotted as a curve, and the ratio of the area under the curve to the total area

was called the area under the curve (AUC) [27]. The AUC responds to the classifier’s ability to

rank the samples. We use these two metrics to evaluate the hybrid dataset produced by using

virtual reality technology. Table 1 shows the comparison of the training results of the DOPE+

+ network on the YCB-Video realistic dataset and the YCB-Video hybrid dataset. The AUC

values of the five types of objects are plotted as a graph, as shown in Fig 4.

Fig 3. A dataset produced using virtual reality technology. (a) Example of a PivConnector dataset. (b) Example of a Servoholder

dataset.

https://doi.org/10.1371/journal.pone.0269175.g003
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As shown in Table 1, the hybrid dataset expanded using virtual reality is slightly better than

the real dataset in terms of network prediction after 60 epochs of training. From Fig 4, when

the threshold value is taken as 0.1 m, the pass rate of ADD improves by 4.68% to 95.52% from

the average point of view, indicating the improved detection capability of the network. The

AUC improved by 5.11%, indicating an increase in the pass rate at a fixed threshold, thus indi-

cating a more refined detection of the network. The above comparison experiments demon-

strate that the dataset built with virtual reality technology has the same validity as the known

public dataset, eliminates the reprojection error caused by localization in the manual dataset

and the pixel error in semantic segmentation, and its training effect is better.

2.3. The solution to the problem of occlusion of weakly textured parts

To improve the recognition rate of the occlusion problem, the dataset is processed to improve

the resistance of the network to the occlusion situation. Compared to the LCHF algorithm

[45], due to the small size of the artefacts, segmentation of the whole image may result in some

images with complete artefact graphics and others without artefact graphics; this result is

equivalent to only stitching the background without creating an occlusion situation. In this

regard, this study proposes the following improvement by generating a local mask to mask

only the position of the model. Specifically, read the part location information, generate a

mask of random size, incomplete masking of the part, random masking of 0–80% of the sur-

face area of the part, for the selection of the mask image should avoid the selection of pure col-

our block. This is because masking with a solid colour block may be treated as an artefact

feature by the network and thus affect the subsequent processing. Therefore, the object is

masked by randomly intercepting the background as a mask image, as shown in the following

equation.

Ih;w ¼ cropðRandomð0; h � OhÞ;Randomð0;w � OwÞÞ ð3Þ

where crop() indicates image cropping, h indicates input image height, w indicates input

image width, Oh indicates object height, Ow indicates object width, Random() generates ran-

dom number, and Ih,w indicates the processed image, where the width and height of the pro-

cessed image must satisfy the following equation:

0 � Ih � 0:8� Oh

0 � Iw � 0:8� Ow

ð4Þ

(

Ih denotes the height of the processed image and Iw denotes the width of the processed

image. The results after random mask local processing are shown in Fig 5.

The DOPE++ network is trained on the weakly textured part dataset without local process-

ing and the weakly textured part dataset with local processing and compared separately. The

Table 1. Comparison of the experimental results of metrics testing between the real dataset and the hybrid dataset.

Categories YCB-Video Reality Dataset YCB-Video Hybrid Dataset

AUC ADDpasstare AUC ADDpasstare

003_cracker_box 42.98% 86% 45.71% 93.3%

005_tomato_soup_can 18.75% 87.85% 28.06% 94.6%

006_mustard_bottle 28.46% 90.45% 35.58% 99.5%

009_gelatin_box 46.2% 100% 49.32% 100%

010_potted_meat_can 25.97% 89.9% 29.23% 90.2%

mean 32.47% 90.84% 37.58% 95.52%

https://doi.org/10.1371/journal.pone.0269175.t001
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threshold value is taken as 0.05 m, the number of training iterations is 60, and the results of

metrics testing on the validation set after training are shown in Table 2.

After 60 iterations of training the improved network on the random masked locally pro-

cessed dataset, the ADD pass rate of the network improved, with a mean improvement of

6.85%. The mean improvement of the AUC metric was 10.54%, indicating an improvement in

the accuracy of the locally processed network. When dealing with the actual occlusion situa-

tion, the above metrics only indicate that the network has no loss in accuracy and do not fully

Fig 4. AUC plots for the five objects. Where the blue line indicates the training result of the network under the mixed

data set and the yellow line is the result of the network trained under the realistic data set.

https://doi.org/10.1371/journal.pone.0269175.g004
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indicate whether the network has improved its resistance to the occlusion situation. In this

paper, we designed a comparison experiment to test the ADD passing rate of the network

without random mask local processing and the network with local processing by selecting

1000 images for each artefact and then applying 20%, 40%, 60% and 80% masking to each

image. The experimental results are shown in Table 3.

As shown by the above experiments, the local masking of the dataset is beneficial to

improve the resistance of the network to masking.

The above results are all verified in the hybrid dataset, and the detection effect for the mask-

ing situation during the actual detection is shown in Fig 6.

Fig 6 shows that both parts can still be accurately identified in the presence of interfering

objects that obscure them. It can be concluded that our proposed random mask local process-

ing method shows good resistance to the part occlusion problem.

3. Method

This section constructs the DOPE++ network by means of deep learning: a network for 6D

pose estimation of weakly textured parts. The network proposes three improvements to the

original DOPE network framework, including the incorporation of a depthwise separable con-

volution operation, an attention mechanism and a novel pose estimation module with multi-

scale feature fusion.

3.1. Lightweight feature extraction network based on depthwise separable

convolution

The original DOPE pose estimation network uses the first 24 layers of VGG19 [46] for feature

extraction. In this paper, we introduce the depthwise separable convolution operation [47, 48]

Fig 5. Local processing effect of random mask. (a) Before partial mask treatment. (b) After local mask treatment.

https://doi.org/10.1371/journal.pone.0269175.g005

Table 2. Comparison of index test results with and without local treatment.

Categories No treatment Random Mask local processing

AUC ADDpassrate AUC ADDpassrate

Servoholder 59.18% 84.05% 69.23% 92.35%

PivConnector 53.41% 86.35% 64.43% 91.75%

Mean 56.29% 85.2% 66.83% 92.05%

https://doi.org/10.1371/journal.pone.0269175.t002
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into the feature extraction part of the original DOPE network to improve the network opera-

tion speed. First, the depthwise conv operation is performed. When the input is a 3-channel

RGB image, unlike the traditional convolution, which directly convolves three channels with

three convolution kernels, only one convolution kernel is responsible for one channel, and the

result is still a 3-channel feature map. Then, the pointwise conv operation is performed. The

specific operation is to perform the convolution operation on all channels after the depthwise

conv operation with the convolution kernel of the augmented dimension size number. The

results of the operation are weighted and combined. The pointwise conv operation is similar

to the traditional convolution operation, except that the size of the convolution kernel used in

the pointwise conv operation is 1×1. The pointwise conv operation opens the connection

between channels and completes the expansion of the feature dimension. The structure dia-

gram of the improved feature extraction network is shown in Fig 7.

The results of the comparison between the improved feature extraction network parameters

and the original feature extraction network parameters are shown in Table 4.

As shown by the experimental results, the number of parameters of the improved network

is approximately 1/9 of the original number of parameters, but the network structure remains

unchanged.

3.2. Introduction of the attention mechanism

In this paper, we compensate for the loss of accuracy due to the reduction of network parame-

ters and further improve the accuracy of the network by introducing an attention mechanism

[49, 50]. First, the input features are filtered by average pooling and maximum pooling to pro-

duce two feature maps. Then, the two feature maps are imported into the two-layer MLP

Table 3. ADD pass rate at different shading rates.

Categories Shading rate

20% 40% 60% 80%

Unmasked trained Servoholder 93.2 61.4 22.5 2.2

Unmasked trained PivConnector 92.2 60.8 24.3 0.3

Masking trained Servoholder 97.9 79.1 52.4 14.1

Masking trained PivConnector 94.7 76.6 50 10.5

https://doi.org/10.1371/journal.pone.0269175.t003

Fig 6. The actual detection effect in the case of occlusion. (a) PivConnector can be accurately detected even when

obscured by interfering parts. (b) The Servoholder can be accurately detected even when obscured by interfering parts.

https://doi.org/10.1371/journal.pone.0269175.g006
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Fig 7. Backbone of the DOPE++ network. The backbone shows the structure of feature extraction of the DOPE+

+ network.

https://doi.org/10.1371/journal.pone.0269175.g007

Table 4. Comparison of network parameters before and after improvement.

Network Name Number of parameters

Original feature extraction network 9,696,958

Improved feature extraction network 1,106,696

https://doi.org/10.1371/journal.pone.0269175.t004
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(multilayer perceptron) network, and the output features are subjected to an elemental intelli-

gent summation operation, i.e., each given input vector is multiplied by the appropriate weight

and then summed. The result is activated by the sigmoid activation function to obtain the

channel attention feature map. The process is shown in the following equation [49].

McðFÞ ¼ sðMLPðAvgPoolðFÞÞ þMLPðMaxPoolðFÞÞÞ ð5Þ

where σ denotes the activation function, F denotes the input features, and Mc denotes the

channel attention feature map.

Next, the channel attention feature map is used as input to obtain the average pooling out-

put and the maximum pooling output through the average pooling layer and maximum pool-

ing layer, respectively. Then, the two outputs are stitched into a tensor and sent to a

convolutional layer with a convolutional kernel size of 3x3. The result is activated with a sig-

moid activation function to finally obtain the spatial attention feature map. The structure of

the spatial attention module is shown in Fig 8.

The process is illustrated in the following equation [49].

MsðFÞ ¼ sðf
3�3ð½AvgPoolðFÞÞ; MaxPoolðFÞ�Þ ð6Þ

where σ denotes the activation function, F denotes the input features, and Mc denotes the

channel attention feature map.

In this paper, the attention module is added to the layer after the feature extraction network;

the overall module is shown in Fig 9.

Fig 8. Spatial Attention structure diagram.

https://doi.org/10.1371/journal.pone.0269175.g008
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3.3. Pose estimation network based on multiscale feature fusion

In this paper, the pose estimation module in the original network is improved by adding multi-

scale feature fusion [51, 52], which fuses feature maps of three different sizes. The improved

pose estimation module is shown in Fig 10.

When the input feature dimension is 52×52×128, the feature map is first input into a five-

layer convolution layer to obtain a feature map of size 52×52×9/16. The output result size is

52×52×9 when the prediction object is a confidence map; the output result size is 52×52×16

when the prediction object is a vector field. At this point, the output feature map size is 52, the

Fig 9. Overall structure of the attention module. We can substantially improve the accuracy of pose estimation with this

attention module.

https://doi.org/10.1371/journal.pone.0269175.g009

Fig 10. Structure diagram of the improved pose estimation module.

https://doi.org/10.1371/journal.pone.0269175.g010
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input image size is 416, and the output is exactly 1/8 of the input. At this time, near the front

end of the network, the perceptual field is relatively small, the feature map size is high, and the

semantic representation of the feature map is weak, which is suitable for small target detection.

The result is a feature map of size 26×26×9/16 by a three-layer convolutional layer; an output

1/16 of the input is suitable for the detection of medium-sized targets. Finally, the result is a

three-layer convolutional layer to obtain a feature map of size 13×13×9/16, where the output is

1/32 of the input. This location is at the back end of the network, with a low feature map per-

ceptual field relative to the larger feature map size, weak geometric representation and lack of

spatial features, suitable for large target detection. The convolution set convset module consists

of five layers of convolution and the ReLU activation function.

After obtaining feature maps at different scales at the front, middle and back of the

improved pose estimation module, feature fusion is performed. The result of the feature map

of size 13×13×9/16 is first imported into the convolutional set convset, which is

1×1,3×3,1×1,1×1,3×3 for each convolutional kernel layer. The result is then subjected to a con-

volution operation with a convolution kernel size of 1×1 and then 2-fold upsampling. The

result is stitched with a feature map of size 26×26×9/16. Finally, through the same operation,

the result is stitched with the feature map of size 52×52×9/16 the result is obtained by a convo-

lution set and convolution operation to obtain the final prediction result. We call this

improved module Multi-ScaleDOPEstage. The effect in the actual detection is shown in Fig 11.

As seen in Fig 11, the pose estimation network improved by multiscale feature fusion can

detect objects of different sizes at different locations well, and the network’s ability to cope

with detecting object scale changes has been greatly improved.

Fig 11. Comparison of the effect of recognizing parts of different scales before and after improvement. (a) DOPE

network to identify large scale parts. (b) DOPE network to identify small-scale parts.(c) DOPE++ network to identify

large scale parts.(d) DOPE++ network to identify small scale parts.

https://doi.org/10.1371/journal.pone.0269175.g011
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4. Experiments

In this section, we attempt to verify the effectiveness of our method. The DOPE algorithm has

been shown to outperform networks such as PoseCNN, SSD-6D, and BB8. Therefore, the

comparison of our approach with DOPE is sufficient to answer the question of whether our

proposed network architecture is comparable to the latest technologies. In Section 4.1, we

compare the proposed network with the original DOPE algorithm in three main aspects. Addi-

tionally, to further demonstrate the superiority of our algorithm, we compare it with state-of-

the-art algorithms in recent years in Section 4.2. In Section 4.3, we build a vision-guided robot

grasping platform to verify the feasibility of the algorithm for intelligent manufacturing.

4.1. Comparison with the DOPE algorithm

In this paper, three comparison experiments are designed. The network incorporating depth-

wise separable convolution, an attention mechanism, and multiscale feature fusion is referred

to as the DOPE++ network (DOPE+DSC+attention+multiscale). The first experiment is a

comparison experiment of the pose estimation accuracy of DOPE++ and DOPE. The loss

curves of the DOPE network and the DOPE++ network are verified to determine the conver-

gence ability of the DOPE++ network. A comparison of the training loss curves is shown in

Fig 12.

From the comparison chart, we can see that the DOPE++ network has a loss value of

approximately 0.06 at the beginning of training, while the DOPE network is approximately

0.08. Especially in the first 25 steps, the DOPE++ network converges faster and has a larger

decreasing trend than the DOPE network. The loss value soon reaches approximately 0.007.

The curvature change of the DOPE++ network levels off in 25–50 steps, while the DOPE net-

work still has large fluctuations. In the subsequent training, the loss value of the DOPE net-

work decreases slowly at 500~20,000 steps, and finally, the loss values of both networks are

kept at approximately 0.003. By comparison, the DOPE++ network maintains a better level of

convergence in the early stage of training, while the DOPE network converges more slowly at

30,000 steps before reaching convergence; the DOPE++ network converges more easily com-

pared to the DOPE network.

The second experiment verifies that the DOPE++ network can significantly improve the

detection frame rate compared to the DOPE network, thus meeting the real-time

Fig 12. Comparison of loss curves before and after improvement. (a)The first 500 steps of the loss curve. (b)

500~75000 steps loss curve. The blue line represents the DOPE network and the orange line represents the DOPE+

+ network.

https://doi.org/10.1371/journal.pone.0269175.g012
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requirements. This experiment compares the frame rate perspective at runtime, reflecting the

change in network detection efficiency after the light-weighting of the DOPE network. The

comparison results are shown in Fig 13, where the x-axis is the runtime (in s) and the y-axis is

the FPS.

The third experiment verifies that adding the attention mechanism can improve the accuracy

of the network. The accuracy comparison between the DOPE+DSC (DOPE network with depth-
wise separable convolution) network and DOPE+DSC+attention (not only the depthwise separa-
ble convolution operation but also the attention mechanism is introduced to the DOPE network)
network is performed to illustrate the compensation effect on accuracy loss after introducing

the attention mechanism module. The evaluation metrics are ADD pass rate (threshold value of

0.05 m) and AUC area share. The experimental results are shown in Table 5.

From the experimental results, it can be concluded that the network accuracy of DOPE

+DSC is effectively compensated for with the introduction of the attention mechanism.

Then, the comparison between the DOPE network and DOPE+DSC+attention+multiscale

(Fusion of multiscale pose estimation modules on DOPE+DSC+attention network structure)

network is performed, and the comparison results are shown in Table 6.

From the experimental results, the improved network has an average improvement of

5.25% in ADD pass rate and 8.25% in AUC compared to the original network. It can be con-

cluded that the improved scheme with the introduction of the attention mechanism and multi-

scale fusion has a significant improvement on the pose estimation accuracy of the network.

Finally, the part pose recognition effect of the DOPE++ network and the DOPE network in

actual operation is experimentally derived, and the comparison graph is shown in Fig 14.

As seen from the comparison results, the DOPE network pose estimation effect is relatively

rough, and there are cases of pose estimation errors. The DOPE++ network pose estimation

results are more refined, and the vertex prediction results are more accurate.

Fig 13. Frame rate graph of network operation before and after improvement. (a) Operating frame rate of the

DOPE network.(b) Operating frame rate of the DOPE++ network.

https://doi.org/10.1371/journal.pone.0269175.g013

Table 5. Comparison of the effect of pose estimation before and after the introduction of the attention mechanism.

Categories DOPE+DSC DOPE+DSC+Attention

AUC ADDpassrate AUC ADDpassrate

Servoholder 42.28 79.1 48.82 81.15

PivConnector 45.14 82.2 52 87.55

Mean 43.71 80.65 50.41 84.35

https://doi.org/10.1371/journal.pone.0269175.t005
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4.2. Comparison with state-of-the-art methods

Our approach is compared with state-of-the-art 6D pose estimation algorithms in recent years,

including PoseCNN+ICP [20], DenseFusion [21], DeepIM [53], and DRNet [19].

Since most of the 6D pose estimation algorithms use the YCB-Video dataset, we use the

objects in the YCB-Video dataset for 6D pose estimation validation. Table 7 shows the results of

comparative experiments using our method and some state-of-the-art methods for 6D pose esti-

mation for five objects in the YCB-Video dataset. Essentially, ADD is a better and more strict

metric than ADD-S because it computes the distances between matched point pairs, which usu-

ally requires matches on both shape and texture. We therefore calculate the accuracy of ADD

(<10%) for the current state-of-the-art method in Table 7. In Table 7, we find that our method

is more accurate than the DenseFusion [21] algorithm that uses RGB-D images as input.

Time efficiency is another important metric used to evaluate the usefulness of the algo-

rithm. We tested the total pose estimation time of 0.033 s per frame on a GTX 1070 graphics

card. See Table 8 for more time comparisons. Compared with DenseFusion [21] and DRNet

[19], our method achieves the optimal time cost for 6D pose estimation to meet real-time

requirements in manufacturing.

The above experimental results show that our method achieves the best current level in

terms of accuracy and time efficiency.

4.3. Vision-guided robotic grasping system

In this paper, we build a weakly textured part pose estimation grasping platform in an experi-

mental environment to simulate a real environment and verify the effectiveness of the

Table 6. Comparison of the effect of estimation before and after improvement.

Categories DOPE DOPE+DSC+Attention+Multi-Scale

AUC ADDpassrate AUC ADDpassrate

Servoholder 46.51 83.45 51.71 87.65

PivConnector 48.25 88.10 59.56 94.40

Mean 47.38 85.77 55.63 91.02

https://doi.org/10.1371/journal.pone.0269175.t006

Fig 14. Comparison of pose estimation of DOPE network and pose estimation of DOPE++ network. (a)

Servoholder. (b) PivConnector. Where the yellow wireframe is the minimum enclosing box of the DOPE++ network

recognition result and the blue wireframe is the minimum enclosing box of the DOPE network recognition result.

https://doi.org/10.1371/journal.pone.0269175.g014
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proposed algorithm. The effectiveness of this algorithm is illustrated by actual repeated crawl-

ing experiments. In the vision part, a logitechC920e camera is used as the vision sensor, the

robot is a Shenzhen Huacheng Industrial Control HC-S6 six-axis industrial robot, and the

computer uses a GTX 1070 graphics card. This algorithm runs as a node on the ROS. Before

repeating the gripping experiment, the bench calibration, tool calibration, hand-eye calibration

and running the ROS system need to be performed sequentially. The experiment was per-

formed in the laboratory with natural light without artificial light supplementation. In the

experiments, first, the positional attitude of the part to be grasped is estimated through the net-

work. Then, the pose in the camera coordinate system is converted to the pose in the robot

arm coordinate system based on the conversion matrix calculation. Finally, the results are

imported into the demonstrator for automatic path planning to capture weakly textured parts.

If the capture is successful, it is called a pass. During the experiment, four groups of IMAGE

display boxes were intercepted as recognition effect graphs; the network recognition effect is

shown in Fig 15.

From the experimental results, it is seen that DOPE++ network recognition is more stable

and can accurately detect two weakly textured parts (Servoholder and PivConnector). At the

same time, there is no response to interference parts and good resistance to complex back-

grounds. Then, 200 repetitive grasping experiments were conducted, and the image recogni-

tion success rate and robotic arm grasping success rate were counted separately every 50 steps.

The test results are shown in Table 9.

Data analysis was performed through comparative analysis methods. The data obtained

from Table 7 show that the object recognition success rate is 92% in the interval of 51 to 100

catches. The object recognition success rate remains 92% in the interval of 151~200 catches.

As the number of experiments increases, the success rate of object recognition does not fluctu-

ate, which can indicate that the network is relatively stable.

5. Conclusions

We propose a 6D pose estimation method for weakly textured parts based on deep neural net-

works, which improves the accuracy and operation speed of 6D pose estimation. The experi-

mental results show that our network runs at a frame rate better than 30 FPS and achieves an

average accuracy of 91.02% when the threshold value is chosen as 0.05 m. At the same time,

our proposed network has good resistance to the problems of occlusion and scale change that

Table 7. Quantitative evaluation of pose estimation for the objects on the YCB-Video dataset.

Objects PoseCNN+ICP DenseFusion DeepIM DRNet Our

003_cracker_box 73.3 98.2 83.6 74.28 93.3

005_tomato_soup_can 76.6 82.9 86.1 83.17 94.6

006_mustard_bottle 98.6 96.1 91.5 86.5 99.5

009_gelatin_box 100.0 100.0 71.9 89.36 100.0

010_potted_meat_can 77.9 79.8 76.2 79.16 90.2

AVG 85.28 91.4 81.86 82.494 95.52

https://doi.org/10.1371/journal.pone.0269175.t007

Table 8. Time efficiency evaluation for objects on the YCB-Video dataset.

PoseCNN DenseFusion DRNet Our

Time (s) 0.283 0.047 0.08 0.033

https://doi.org/10.1371/journal.pone.0269175.t008
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exist in practical engineering. In addition, we used virtual reality to build a simulation dataset

of weakly textured parts. This method not only has a low production cost but also has a good

training effect. In this paper, we contribute to the practical validation of 6D pose estimation of

weakly textured parts by building a robot grasping simulation platform. The experimental

results demonstrate the efficiency of our method, which is useful for real industrial scenarios.

However, our method still has some limitations and performs poorly when dealing with pose

estimation of symmetric objects, and the estimated object pose has a large error with the real

position of the object.

In future work, we will continue to optimize the network to reduce the error between the

pose estimation results and the true values and solve the 6D pose estimation problem for sym-

metric objects.

Fig 15. The effect of pose estimation when the robot gripping platform is actually operating.

https://doi.org/10.1371/journal.pone.0269175.g015

Table 9. Statistical table of the results of 200 repeated crawls.

Number of catches Number of successful recognition Recognition success rate Number of successful crawls Crawl Success Rate

1–50 49 98% 47 94%

51–100 46 92% 46 92%

101–150 47 94% 43 86%

151–200 46 92% 45 90%

Mean 47 94% 45.25 90.50%

https://doi.org/10.1371/journal.pone.0269175.t009
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