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Abstract: Microscopic fungi are widely present in the environment and, more importantly, are also
an essential part of the human healthy mycobiota. However, many species can become pathogenic
under certain circumstances, with Candida spp. being the most clinically relevant fungi. In recent
years, the importance of metabolism and nutrient availability for fungi-host interactions have been
highlighted. Upon activation, immune and other host cells reshape their metabolism to fulfil the
energy-demanding process of generating an immune response. This includes macrophage upregula-
tion of glucose uptake and processing via aerobic glycolysis. On the other side, Candida modulates its
metabolic pathways to adapt to the usually hostile environment in the host, such as the lumen of
phagolysosomes. Further understanding on metabolic interactions between host and fungal cells
would potentially lead to novel/enhanced antifungal therapies to fight these infections. Therefore,
this review paper focuses on how cellular metabolism, of both host cells and Candida, and the
nutritional environment impact on the interplay between host and fungal cells.

Keywords: immunometabolism; metabolism; macrophages; epithelial cells; glycolysis; glucose;
moonlighting proteins; Candida albicans

1. Introduction

Fungal microorganisms inhabiting the human body, namely the mycobiota, consti-
tute an essential part of the microbiota, despite their relatively low number compared to
their bacterial counterparts [1,2]. Commensal fungi, either being permanent or transient
colonisers, populate the skin and mucosae covering the oral cavity and the respiratory,
gastrointestinal, and genitourinary tracts. Unsurprisingly, different genera governing each
body site, including Candida (oral cavity and gut), Malassezia (skin), Saccharomyces (gut)
or Eremothecium (lung) [3–5]. Remarkably, many of these genera, as well as other species
present in our environment, are pathobionts, capable of becoming pathogenic when host
immunity or tissue microenvironment changes.

Among fungal pathogens, Candida spp., and specifically C. albicans, remain the most
clinically relevant fungi, causing a wide range of infections in humans from superficial
to systemic candidiasis [6]. The emergence of antifungal drug resistance in C. albicans, as
well as the increasing prevalence of infections by other Candida species that are intrinsically
resistant to available drugs (e.g., Candida auris) [7], highlights the importance of finding
novel therapeutic strategies to deal with these infections.

In the last couple of decades, the importance of the nutritional environment and
metabolism of both host and pathogens during infectious processes has been highlighted [8].
The presence or abundance of certain metabolites, including simple carbohydrates such as
glucose or galactose, modulates cellular responses of both pathogen and host, therefore
being essential factors during their interactions. The stress derived from the interaction
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with the other organisms often leads to metabolic reprogramming that supports immune
responses on one side and pathogenic/commensal growth on the other.

This review paper aims to explore the current knowledge regarding the role of host
metabolism in the control of innate immune responses to fungal microbes on one side, and
the importance of C. albicans metabolism for commensalism and virulence on the other. We
will also highlight how metabolism modulates the biology of both host and fungal cells
during their interactions, and the emerging strategies to develop novel therapeutic tools.

2. Immunometabolism: Feeding Immune Responses in the Host

During the last two decades, an increasing body of evidence has identified the key role
of cellular metabolism in developing immune responses, either enhancing (contributing to
pathogen clearance) or diminishing (contributing to tolerogenic states) them. Thus, a new
research field termed immunometabolism developed to delve into the control of immunity
driven by metabolic processes [9]. Metabolic regulation of immunity has been described in
both adaptive (e.g., T cells) [10] and innate (e.g., macrophages) [11] cells. Both types of cells
show a wide spectrum of metabolic profiles upon activation with different stimuli. Since
host immunometabolism has been extensively reviewed in recent years, we will focus on
innate immunity, giving a general overview of how metabolic reprograming occurs and
the modulation of immune responses by metabolites and metabolic enzymes.

2.1. Metabolic Reprogramming in Immune and Non-Immune Cells

Interaction of innate immune cells, such as macrophages and monocytes, with differ-
ent microorganisms leads to metabolic shifts on which their responses rely. These responses
are either boosted or decreased to promote infection clearance or microbial tolerance, re-
spectively. Since there is a great diversity of microbial structures (e.g., pathogen-associated
molecular patterns (PAMPs)) and of host receptors (pattern recognition receptors (PRRs))
involved in their detection, the metabolic profiles of these differently stimulated cells, along
with their derived immune responses, are also very diverse [12].

Alterations in glucose uptake and metabolism are the main hallmark of metabolic shifts
in innate immune cells (Figure 1A). For instance, when macrophages are challenged with
bacterial lipopolysaccharide (LPS), glucose uptake and processing via aerobic glycolysis
increases, that is glycolysis coupled with lactate dehydrogenase activity leading to lactic
acid production in normoxic conditions. Conversely, there is decreased activity in the
tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) [13]. In contrast,
cells stimulated with fungal β-glucan show an increase in both aerobic glycolysis and
OxPhos [14]. Shifts in cellular metabolism towards aerobic glycolysis provide cells with
more rapid energy and building blocks generation, and leading to increased cytokine
release, etc. [15]. In contrast, anti-inflammatory macrophages rely on aerobic respiration,
completely oxidising glucose through glycolysis, the TCA cycle and OxPhos [9].

Besides glucose metabolism, other pathways are involved during metabolic reprogram-
ming of innate immune cells [9,16]. These pathways provide energy or redox molecules,
or intermediate metabolites serving as building blocks or having regulatory functions, as
explained below. The pentose phosphate pathway (PPP) provides proliferative cells with
metabolites needed for nucleotide synthesis, but also contributes to NADPH production.
Notably, this pathway is upregulated after LPS activation of macrophages [17], which has
been related to the increased reactive oxygen species (ROS) generation in these cells via
NADPH oxidase [18,19]. Fatty acid synthesis (FAS) or oxidation (FAO), alongside other
lipid metabolism pathways, are also differentially regulated in activated macrophages [20].
Pro-inflammatory cells use FAS and citrate accumulated due to the TCA cycle shut down
to synthesise fatty acids, prostaglandins, and leukotrienes, essential molecules for sig-
nalling events, inflammation, etc. [20,21]. In contrast, since anti-inflammatory macrophages
keep their TCA and OxPhos intact but lower glycolytic levels, they rely on FAO and fatty
acid uptake to feed those pathways. Finally, amino acid metabolism, such as glutamine
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or arginine, is key for innate immune responses, including nitric oxide production or
cytokine production [9].
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Figure 1. Immunometabolism in innate immune cells. (A) Challenging innate immune cells with 
either exogenous (LPS, β-glucan) or endogenous (IL-4) stimuli leads to metabolic reprogramming, 
which involves changes in pathways as glycolysis, FAO/FAS, OxPhos, etc. These shifts in metabo-
lism provide cells with energy and building blocks to develop their functions. (B) Metabolic en-
zymes regulate immune responses at many levels, including their moonlighting functions. They can 
act as transcription/translation facilitators (ENO1, PKM2, GAPDH, LDH), immune receptors or ac-
tivators (HK) or facilitators of immune cell migration (ENO1). bNAG, bacterial N-acetylglucosa-
mine; ECM, extracellular matrix; ENO1, enolase 1; FAO, fatty acid oxidation; FAS, fatty acid syn-
thesis; GAPDH, glyceraldehyde dehydrogenase; HK, hexokinase; LDH, lactate dehydrogenase; 
OxPhos, oxidative phosphorylation; PKM2, pyruvate kinase M2; PLG, plasminogen; PLIN, plasmin; 
PPP, pentose phosphate pathway; TCA, tricarboxylic acid. Created with BioRender.com (last ac-
cessed 12 January 2022). 
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Among them, the activation of the transcription factor hypoxia-inducible 1α (HIF-1α) is 
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nalling via mechanistic target of rapamycin (mTOR) is involved in promoting cholesterol 
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Figure 1. Immunometabolism in innate immune cells. (A) Challenging innate immune cells with
either exogenous (LPS, β-glucan) or endogenous (IL-4) stimuli leads to metabolic reprogramming,
which involves changes in pathways as glycolysis, FAO/FAS, OxPhos, etc. These shifts in metabolism
provide cells with energy and building blocks to develop their functions. (B) Metabolic enzymes
regulate immune responses at many levels, including their moonlighting functions. They can act as
transcription/translation facilitators (ENO1, PKM2, GAPDH, LDH), immune receptors or activa-
tors (HK) or facilitators of immune cell migration (ENO1). bNAG, bacterial N-acetylglucosamine;
ECM, extracellular matrix; ENO1, enolase 1; FAO, fatty acid oxidation; FAS, fatty acid synthesis;
GAPDH, glyceraldehyde dehydrogenase; HK, hexokinase; LDH, lactate dehydrogenase; OxPhos,
oxidative phosphorylation; PKM2, pyruvate kinase M2; PLG, plasminogen; PLIN, plasmin; PPP,
pentose phosphate pathway; TCA, tricarboxylic acid. Created with BioRender.com (last accessed 12
January 2022).

A number of signalling pathways govern metabolic shifts in innate immune cells [22].
Among them, the activation of the transcription factor hypoxia-inducible 1α (HIF-1α) is
involved in the increase in glycolytic activity observed in LPS-activated macrophages
and is responsible for the expression of several immunity-related genes [23,24]. Similarly,
signalling via mechanistic target of rapamycin (mTOR) is involved in promoting cholesterol
and FAS, as well as sensing amino acid and glucose availability [25].

In recent years, the ability of innate immune cells to develop long-term responses has
been described, adding more complexity to the biology of these types of cells [26,27]. Essen-
tially, the term “innate immune memory” involves a wide range of phenotypes mainly ob-
served in monocytes/macrophages that renders them more tolerogenic or reactive against
a second encounter [28]. Notably, these events are intimately linked to epigenetic and
metabolic reprogramming of cells [29,30], both of which are the consequence of signalling
promoted by the first encounter with the microbial challenge.

Since the discovery by Otto Warburg of the metabolic shift towards aerobic glycolysis
undergone by some cancer cells [31], metabolic reprogramming has been observed in many
cell types, especially in a pathologic context such as cancer. Although much of the work
on these shifts driven by microbes has been carried out on immune cells, non-immune
cells playing paramount roles during the infectious processes undergo similar shifts. Viral
infections have been shown to modulate metabolic profiles of airway epithelial cells [32]
and endothelial cells [33]. Similarly, the murine bacterial pathogen Citrobacter rodentium
promotes a decrease in carbohydrate metabolism in intestinal epithelial cells [34], whilst
skin keratinocytes increase their aerobic glycolytic metabolism in response to Staphylococcus
aureus [35]. Despite this, the consequences of these metabolic shifts on immune responses
developed by these cell types are yet to be further explored.
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2.2. Beyond Metabolic Reprogramming: Immune Regulatory Roles of Metabolic Enzymes
and Metabolites

Besides the direct impact of metabolic reprogramming on immune cell activity (e.g.,
energy and redox balance, metabolite catabolism/anabolism, etc.), there are other levels of
regulation of immune responses in which metabolic enzymes or metabolites play a role
(Figure 1B).

Some metabolic enzymes have been observed to display regulatory functions distinct
from their metabolic activities. Therefore, these proteins have been termed as “moonlighting
proteins”. These alternative functions of metabolic enzymes can be found among diverse
biological organisms and were firstly observed in microorganisms, including bacteria
and fungi, such as Candida spp., in which they have roles in microbial cell adhesion,
pathogenicity, etc. [36,37]. Notably, the capacity of these proteins to develop moonlighting
functions has been conserved in mammalian cells [38].

Glycolytic enzymes, such as hexokinase, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), or enolase, display these moonlighting functions in very different ways. Hex-
okinase, the enzyme catalysing the first step in glycolysis, is one of the main proteins
upregulated upon cell activation, and its inhibition by 2-deoxyglucose (2-DG) leads to a
significant reduction in pro-inflammatory marker release [17]. However, hexokinase was
recently described as a new intracellular pattern recognition receptor able to bind to the
bacterial peptidoglycan component N-acetylglucosamine. This binding leads to hexokinase
separation from mitochondria and drives NLRP3 inflammasome activation [39]. GAPDH
regulates cytokine release in both T cells [40] and monocytes [41] by directly binding to cy-
tokine mRNA. Enolase, involved in one of the final steps of glycolysis, has been associated
with monocyte binding to plasminogen, facilitating their migration [42]. Moreover, this
enzyme can modulate gene expression, including MYC [43] and FOXP3 [44], by directly
binding to gene regulatory elements. Similarly, PKM2 (pyruvate kinase isoform M2) can
act as a co-activator of Hif-1α and regulates IL-1β expression through the activation of
NLRP3 and AIM2 inflammasome [45,46]. Finally, lactate dehydrogenase (LDH), the last
enzyme in the aerobic glycolytic pathway converting pyruvate in lactate, is able to bind to
cytokine transcripts to modulate their translation [47,48].

It is not just proteins/enzymes involved in metabolic processes that can have these
alternative immune functions. Metabolites derived from central metabolic pathways, both
intermediates and final products, have been shown to modify protein function/structure
and in that way modulate immune cell biology. The best-described process by which
metabolites regulate immune responses is via protein post-translational modifications
(PTMs). These modifications are of special relevance in the case of histones as they lead
to changes in the expression of a wide range of genes—the field of epigenetics. These
histones PTMs are manifold, including acetylation, phosphorylation, deamination, and
methylation among others. Of these, lysine acetylation is one the clearest examples of
the link between metabolism and cell functions. Acetyl-CoA is a key metabolite used by
lysine acetyltransferases as a donor to acetylate proteins, although this process can occur
non-enzymatically [49]. Moreover, acetyl-CoA intracellular levels correlate with protein
acetylation rates and thus, changes in the nutritional environment of cells or tissues are
associated with changes in acetylation levels [50].

Besides acetylation, a great variety of histone PTMs associated with metabolism has
been described to date, most of them involving short-chain fatty acids (SCFAs) such as
propionate, butyrate, crotonate or succinate [51]. This process is thus tightly regulated
by cellular metabolism and the nutritional environment since the level of each histone
acylation depends on the concentration of their respective acyl-CoA [52]. Notably, many
of these PTMs have been discovered very recently and novel forms are predicted to be
found in the near future. In fact, histone lysine lactylation was recently described in both
human and mouse cells [53]. The event was regulated by exogenous glucose, hypoxia, and
glycolytic activity levels, all three being positively correlated with intracellular lactate levels.
Specifically looking at macrophages, the authors showed that stimulation of M1 polarisation
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using an acute LPS and interferon-γ challenge led to higher lactate production because of
the expected shift towards aerobic glycolysis. Coupled RNA-seq and lactylation-specific
ChIP-seq analyses of activated macrophages showed the modulation of gene expression
by these PTMs, with pro-inflammatory genes being regulated at early timepoints whilst
M2 profile-related gene expression was modulated during a later phase. This suggests
that histone lactylation sets a gene expression “timer” that leads to homeostasis after the
inflammatory burst [53].

Metabolic intermediates can also act as intra- or extracellular signals to modulate
immune responses via mechanisms beyond epigenetic modifications [54,55]. The proven
existence of a wide range of metabolite transporters [56] and receptors [57] has shown
the potential impact of their availability on immune cell biology. Metabolite transporters
facilitate metabolite uptake and secretion, highlighting the paramount relevance of the
nutritional microenvironments created during, for example, inflammatory processes. The
second, metabolite receptors, are usually G-protein-coupled receptors sensing metabolites
and triggering intracellular signalling events, which has led to the hypothesis of some
metabolites having cytokine/chemokine-like functions [54]. Moreover, some of these
metabolites, such as lactate [58] or succinate [17], have been associated with functional
stabilisation of such relevant proteins as HIF-1α, the master regulator linking metabolism
to immunity.

3. Candida Metabolism: The Significance of Being Adaptable

As commensals and opportunistic pathogens, Candida spp. have developed high
degree of phenotypic plasticity to adapt to diverse and changing environments. There-
fore, metabolism is an essential part of Candida survival for nutrient assimilation and
pathogenicity. The virulence of C. albicans is related to gene expression and host im-
mune status [59]. Candida genes encoding metabolic enzymes directly interact with the
host mediating fungal virulence. These virulence mechanisms include yeast-hyphal mor-
phogenesis, phenotypic switching in the opacity of cells, adhesion, secreted hydrolases,
and moonlighting proteins. Candida metabolic flexibility and evolution emphasises the
challenges in investigating metabolic divergency with particular attention to clinical and
therapeutic intervention [60,61].

Carbon assimilation and its accompanying metabolic pathway plasticity has been
widely explored in C. albicans [62]. The carbon metabolic framework, including glycolysis,
the TCA cycle and gluconeogenesis, is controlled by regulatory networks based on local
nutrient availability. Metabolic plasticity allows C. albicans to assimilate glucose and other
carbon sources simultaneously, unlike S. cerevisiae that switches to fermentative pathway in
the presence of glucose [63]. This confers fitness in survival and adaptation to Candida in
different host niches. General control of amino acid metabolism (GCN response) has also
been linked to pathogenicity and virulence attributes of Candida species [61,64].

3.1. Impact of Metabolism on Fungal Biology: From Morphogenesis to Cell Wall Synthesis

C. albicans displays a remarkable metabolic plasticity, being able to grow in the presence
of different carbon sources, such as glucose, fructose, or galactose (Figure 2A). However,
it shows preference towards the first one and in fact, growing on glucose as the only
carbon source allows the fungus to thrive in the presence of a wide range of nutritional
and stress conditions [65]. The transcriptional regulators Tye7 and Gal4 are key for the
catabolism of glucose and other hexoses by C. albicans, controlling the expression of genes
involved in glycolysis, fermentation, pyruvate dehydrogenase complex (Gal4 only), or
trehalose metabolism (Tye7 only) [66]. Furthermore, Tye7 assists in cohesiveness and
hyphal formation in biofilms although its absence does not impact on hyphal growth
in planktonic conditions [67]. Defects in Tye7 function do not have a great impact on
systemic candidiasis but have a significant effect on C. albicans ability to colonise the
gut [68]. Gal4 regulates a unique set of carbohydrate genes initiated in hypoxic conditions
that are essential for pathogenicity. Fermentable carbon sources such as galactose enhance
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the glycolytic pathway and minimise dependency on fermentation [66]. Interestingly,
two Gal4 analogues, Rtg1 and Rtg3, have a great impact during both systemic infections
and gut colonisation, although they are involved in the regulation of a broader range of
cellular processes [68].
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Figure 2. Metabolic plasticity in Candida. (A) Candida species are able to grow on a wide range
of compounds, giving them the chance to thrive in very different environments. This metabolic
plasticity is tightly regulated by a network of transcription factors that are activated depending on
the nutritional requirements of the fungus. (B) Growing on different compounds leads to changes
in Candida, for example cell wall structure or composition. This is of special importance when
physiologically relevant nutrients, such as lactate, are present. Utilization of these metabolites by
C. albicans remodel its cells wall increasing antifungal drug resistance. Moreover, like host cells
metabolic enzymes in Candida display moonlighting functions associated with, for instance, cell
adhesion to the ECM (GAPDH, Eno1) or host cells (Ssa1). ECM, extracellular matrix; Eno1, enolase 1;
GAPDH, glyceraldehyde dehydrogenase; FIB, fibronectin; LAM, laminin; PLG, plasminogen. Created
with BioRender.com (last accessed 12 January 2022).

Moreover, carbohydrate metabolism is intimately linked to C. albicans morphogenesis,
with nutrient starvation or serum presence being among the factors inducing the yeast-to-
hypha transition [69,70]. Metabolic genes are regulated during hyphal growth, including
Adh1, Pgk1, and Gpm1 [71]. Similarly, white and opaque Candida cells display different
metabolic profiles, with the white phenotype being more fermentative and the opaque
being more oxidative and using FAO [65]. In fact, metabolic genes including Eno1, Fba1,
Pyk1, Tpi1 and Pgi1 [72], are regulated by the central morphogenetic regulator Efg1, a
transcription factor related to the white-opaque transition. Efg1 expression appears to be
mechanistically connected to carbon metabolism in Candida. In general, Efg1 is downregu-
lated in fermentative metabolism and upregulated in oxidative metabolism involved in
morphogenesis [59,73,74]. Moreover, Efg1 stimulates fermentation and suppression of res-
piratory metabolism, demonstrating the importance of glycolytic metabolism in controlling
virulence attributes [73]. This ability allows Candida species to switch between opaque and
white cells (fermentative metabolism) depending on the nutritional environment [74].

As well as glycolysis, other metabolic pathways have an impact on Candida virulence.
Knockout of FAO, for example, does not prevent candidiasis but assists in systemic vir-
ulence [75,76]. Conserved GCN networks, including GCN4 and GCN2 genes, are vital
regulators activated during amino acid starvation. They act to reduce protein translation
rates and induce cellular morphogenesis in C. albicans [77]. GCN4 is a master regulator that
activates morphogenesis via the Ras-cAMP signalling pathway to form pseudo-hyphae and
activating amino acid biosynthetic genes [77]. In addition, GCN, particularly upregulation
of GCN4 gene, is further required for efficient biofilm formation in C. albicans [78]. On
the other hand, the arginine pathway, meanwhile, appears to be essential in C. albicans as
mutations in this pathway caused a defect in germ tube and hyphal formation [79]. Finally,
the amino sugar N-acetylglucosamine (GlcNAc), which is the main component in chitin
within the fungal cell wall, stimulates cellular responses mediating virulence, comprising
of yeast-hyphae transition and stress responses [80].
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The cell wall protects fungal cells from the environmental stress, controls cell mor-
phogenesis, allows for immune recognition and is essential for cell growth of Candida
species [81]. C. albicans uses sugars such as glucose, mannose, and galactose to provide
energy to synthesise the cell wall. Thus, metabolic regulation is important in cell wall
remodelling with the main constituents being β-glucan, chitin, and an outer layer con-
sisting of mannoproteins (mannosylated proteins) [82]. The generation of these cell wall
components requires glucose via both glycolysis catabolic and gluconeogenesis biosyn-
thetic pathways [83]. The relative proportions of these components in the cell wall changes
depending on the cells’ environment. For example, β-glucan in cells within biofilms is
elevated compared to non-biofilms [84]. The use of carbon sources alternative to glucose
have been attributed to differences in cell wall architecture, adherence, biofilm formation,
resistance to antifungal drugs and responses to stress [59,85,86]. For instance, the growth of
C. albicans on lactate led to cell wall restructuring leading to increased resistance to azoles
and oxidative stress. However, fungal cells grown on lactate media showed increased
pores, higher hydrophobicity, and less elastic cell walls with reduced thickness of β-glucan
and chitin [85].

3.2. Impact of Metabolism on Candida Pathogenic Potential

As discussed above, Candida species have a robust metabolism that contributes to
virulence factors (Figure 2B). Like host cells, Candida invasion strategies include moonlight-
ing proteins with distinct functions. These multifunctional proteins perform additional
actions to their canonical biochemical function [87,88]. Owing to evolution, some moon-
lighting proteins can display their different functions simultaneously, whilst others alter
their activity or cellular location in response to environmental changes and cell survival
needs [88]. To survive within different environments in the host organism during disease
progression, microbes need to use adaptable mechanisms other than common virulence
features, such as adhesion molecules and hydrolytic enzymes. In Candida species, different
moonlighting proteins can be found attached to the cell wall, and they enable microbial
cells to be more flexible and adaptable in a dynamic host environment during colonisation
and invasion [89]. GAPDH, usually present in the cytoplasm, may be localised in the cell
surface of C. albicans where it facilitates cell adhesion to fibronectin and laminin, hence
helping the fungal attachment to the host and initiation of candidiasis [90]. Similarly, eno-
lase has been identified in the surface of several clinically relevant fungi, with this enzyme
being involved in fungal cell adhesion via plasminogen binding (as with macrophages) and
in the degradation of the extracellular matrix (ECM) [91,92]. Moreover, the intracellular
chaperone Ssa1, a member of the heat shock protein 70 family, has been shown as another
atypical protein with localisation in C. albicans cell wall. This moonlighting protein also
plays a key role during colonisation of host cells as an adhesin, acting jointly with Als3 to
bind to EGFR/Her2 and E-cadherin [93–95].

While for decades there have been well-known classes of anti-fungal drugs, some of
them do not specifically target fungi, hence showing toxicity for mammalian cells. There-
fore, there is an urgent need to develop novel drug strategies [96]. As mentioned previously,
Candida cell functions, such as cell wall construction and adaptation to environmental stress,
significantly rely on nutrient availability and the type of carbon source. Equally, antifungal
drug resistance can be also modulated by the nutritional environment. Deficit of glucose
as the main carbon source force C. albicans cells to find an alternative source and therefore
changes in the downstream machinery pathways, which could result in adaptation of
the cell against different stress. Previously, it has been observed the C. albicans growth in
presence of fermentable substrate, glucose, and non-fermentable, lactate, can change cell
secretome, as well as alter the cell wall structure and proteome [97,98]. These modifications
affect resistance to antifungal drugs and susceptibility to stress. In fact, C. albicans grown in
the presence of lactate was more resistant to amphotericin B, caspofungin, and tunicamycin,
whilst it showed increased susceptibility to miconazole [85]. In addition to alternative
carbohydrate sources, the acidity of the environment can also make Candida susceptible to
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antifungal drugs. Growing C. albicans under vaginal simulated media and in the presence of
acetic acid rendered it more susceptible to fluconazole. However, C. albicans susceptibility
to fluconazole remained unchanged when some other organic acids, such as glyoxylic acid
and malonic acid, were present [99]. Similarly, C. glabrata shows higher susceptibility in the
presence of acetic acid compared to when it is just grown on glucose [100]. These examples
show the importance of carbon source availability and elucidation of the role of different
nutrient in the Candida pathogenicity and antifungal resistance, and the need for more in
depth and targeted metabolic analysis on the drug efficacy to tackle the resistome problem
in fungal infections.

4. The Role of Metabolism during Host-Candida Interactions

Interactions of C. albicans with innate immune and epithelial cells have been exten-
sively studied in the past [101,102]. Great strides have been made in our understanding
of how host cells recognize this fungus via PRRs, although the relevance of each receptor
varies depending on the infection context, either being systemic [103] or at the mucosal
barriers [104]. Phagocytosis by immune cells [105], or attachment to and invasion of epithe-
lia [29], are the next steps in the infectious process and are essential to promote immune
responses in these cell types. Secretion of the peptide toxin candidalysin contributes to cell
damage and activation, especially in the case of epithelial cells [106,107].

However, there are still a lot of gaps in our knowledge of how all these responses
are regulated. As explained above, host cells undergo metabolic reprogramming upon
interacting with microbes or microbial components, modulating how they respond to
infections and competing over nutrients. In this section, we will discuss the current
knowledge regarding the role of (immuno)metabolism during fungal interactions with
epithelial and innate immune cells (Figure 3).

4.1. Impact of Metabolism during C. albicans Interactions with Immune Cells

Following their first contact with C. albicans (i.e., recognition, phagocytosis, etc.), acti-
vated immune cells reprogram their metabolism to mount an effective response. Transcripto
mics-based analysis of peripheral blood mononuclear cells (PBMCs) stimulated with C.
albicans shows a consistent upregulation of glycolysis, whilst no change (TCA cycle) or
even downregulation (PPP) was observed for other pathways [108]. Specific stimulation
of monocytes by heat-killed yeast or hyphae drives upregulation of several glycolytic
enzymes, along with increased lactate production and glucose consumption, suggesting a
shift towards aerobic glycolysis. Like β-glucan-stimulated cells [14], heat-killed cells pro-
moted both higher ECAR (extracellular acidification rate) and OCR (oxygen consumption
rate) levels, showing that OxPhos is also upregulated. This increased glycolysis plays a
key role in immune responses as inhibiting glycolysis (2-DG and dichloroacetate, DCA)
and mTOR pathway signalling (Torin1) significantly downregulates cytokine production
post-fungal challenge [108].

The induced shift in metabolic pathways of infected monocytes with C. albicans differs
between yeast and hyphal stimulation and is mediated by C-type lectins (CLR) but not by
Toll-like receptors (TLR), showing the heterogenicity of host receptors in fungal recognition
and responses. The responses generated to different Candida morphotypes is also varied.
Monocytes infected with yeast cells activate glycolysis, oxidative phosphorylation, and
glutaminolysis, whilst those infected with hyphae activate only glycolysis. Thus, we can
see that the mechanisms of glucose metabolism are central players in regulating anti-C.
albicans immunity and cytokine production [108]. Similarly, A. fumigatus induces an in-
crease in aerobic glycolysis that is involved in macrophage responses to this filamentous
fungus [109]. Of note, induction of metabolic reprogramming is mediated by the phagoso-
mal removal of A. fumigatus melanin and its detection by the recently discovered melanin
receptor MelLec [110]. This recognition is involved in HIF-1α mobilisation and subsequent
cytokine release [109].
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ganisms. (A) Recognition of C. albicans by macrophages/monocytes drive changes in metabolism
towards aerobic glycolysis, leading to the production of lactate that can be used by the fungus to
enhance its β-glucan masking to evade immune responses. In turn, phagocytosed fungal cells use
their metabolic plasticity to adapt to the nutrient-poor environment inside phagolysosomes. After
piercing cell membranes using hyphae, C. albicans switches to glycolysis and depletes glucose from the
medium, leading to macrophage cell death. (B) Oral epithelial cells activate HIF-1α when challenged
with C. parapsilosis, whilst C. albicans adapts its metabolism upon interaction with these cells. (C)
Variable responses are observed in different Candida species after interacting with vaginal epithelial
cells. However, host cells exert a common early response to all of them mediated by changes in
mitochondrial activity and morphology, with higher release of mitochondrial reactive oxygen species
(mtROS) and DNA (mtDNA). Created with BioRender.com (last accessed 12 January 2022).

The main interface of host-fungal interaction is the fungal cell wall, a highly flexi-
ble structure with ability to remodel itself in the presence of a variety of environmental
pressures, such as antifungal drugs [111]. Immune cells activated by C. albicans infection
generate metabolites that can be sensed by fungi, which then remodel their cell wall in
response to improve their immune evasion/protection. The major component of fungal
cell walls, β-glucan, is a major fungal PAMP involved in the activation of many of the
host antifungal responses [112]. The increased lactate levels associated with the shift
to aerobic glycolysis may lead to β-glucan masking, preventing recognition of this key
PAMP [113,114]. This phenotype (observed in multiple pathogenic Candida species) is only
activated by appropriate lactate concentrations, and not by other metabolites such as pro-
line, acetate, and methionine. This phenomenon is facilitated by the activation of the Crz1
transcription factor by the G protein-coupled receptor, Gpr1. Crz1 modulates the expression
of genes involved in lactate-induced β-glucan masking. The outcome of this masking is
significantly reduced visibility of Candida cells in terms of immune responses and thus
diminished levels of tumour necrosis factor-alpha (TNFα) release and neutrophils [113].
Thus, Candida can successfully escape from macrophage uptake by taking advantage of the
carbon sources released during metabolic rewiring of host cells in response to infection.

Upon C. albicans infection, macrophages are recruited to the site of infection and
engulf fungal cells to try to destroy them or inhibit their growth in the phagolysosome
through oxidative and nitrosative mechanisms [115]. C. albicans, however, has developed
mechanisms to survive inside macrophages through metabolism manipulation. Two suc-
cessive reprograming events of macrophages in response to Candida have been identified
as follows, using whole-genome arrays: the early and late responses [116]. Their tran-
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scriptional profiles show the enhancement of gluconeogenesis and the glyoxylate cycle
by upregulation of all genes involved in the conversion of fatty acid to glucose and a
massive down-regulation of translation-related genes during the early response, suggest-
ing a switch from glycolysis to gluconeogenesis, the glyoxylate cycle, and FAO during
this early response. In addition, Candida cells phagocytosed by either macrophages [116]
or neutrophils [117] upregulate arginine biosynthetic genes in response to ROS, rather
than nutrient starvation, with these genes being important for germ tube and hyphal
formation [118]. In contrast, the late response includes the reactivation of protein transla-
tion machinery and glycolysis. The metabolic shift in C. albicans cells following interac-
tion with macrophages is assumed to be driven by the poor nutrient availability inside
macrophage phagolysosomes, in which glucose concentration for instance is extremely
low. This metabolic remodelling is dependent on the pathogenicity of C. albicans and C.
glabrata since the non-pathogenic fungus Saccharomyces cerevisiae fails to demonstrate this
response [76,116,119–121]. Moreover, similar events occur in C. albicans when it is exposed
to neutrophils or whole human blood [117,120,122].

As stated earlier, during infection, activated macrophages shift their metabolism to
aerobic glycolysis to activate antimicrobial inflammation and host defences. This means
that for their survival Candida-activated macrophages rely specifically on glucose as their
carbon source and additionally cannot reactivate mitochondrial oxidative phosphorylation.
At the same time, ingested C. albicans cells similarly switch to aerobic glycolysis in the later
phase of infection. As a result, macrophages and their ingested C. albicans compete for the
available glucose [123]. During this nutrient war, the combatants rapidly consume the local
glucose, leading to glucose depletion and triggering the “starvation” death of macrophages.
Unlike macrophages, C. albicans cells have enough metabolic plasticity to switch their
carbon source to alternatives such as the glyoxylate pathway, and in doing so survive
the loss of glucose. As described earlier, these events are regulated by Tye7 and Gal4 C.
albicans transcription factors. In tye7∆/∆gal4∆/∆ mutant strains, glycolysis and glucose
consumption occurs at a far lower rate and, therefore, induction of macrophage starvation
and cell death is lower. Using metformin to shut down the mitochondrial respiratory chain
and drive faster glucose consumption ramps up the rate of death of activated macrophages
by C. albicans with the knock-on effect of increasing mortality. In contrast, boosting local
glucose levels by continuous administration of glucose improved these outcomes [123].

Glucose depletion not only leads to the rapid death of activated macrophages but also
causes inflammasome activation by activating NLRP3, due to increased fungal burden [124].
NLRP3 has a protective role during infection, being a PRR that triggers processing and
secretion of IL-1α. Therefore, the regulation of NLRP3 is crucial during C. albicans infec-
tion [125]. In a recent study, the mechanism behind NLRP3 activation during infection
of macrophages was investigated, showing that inflammasome activation was broadly
uniform among multiple clinical isolates of C. albicans, and rather than being dependent
on hyphal formation, was purely down to glucose competition. Notably, reducing fungal
ability to consume glucose (by using the tye7∆/∆gal4∆/∆ mutant strains) or increasing the
glucose levels both reduce NLRP3 activation and IL-1β production [124].

It was believed for a long time that hyphae are essential for the pathogenicity of C.
albicans during infections. This hypothesis, however, was challenged with the discovery
that metabolic adaptation during systemic infections can be as important as morphological
plasticity [126]. In a murine model of systemic candidiasis using the yeast-locked eed1∆/∆
mutant, virulence was retained, leading to rapid yeast proliferation, and higher fungal
loads in organs such as the kidneys or liver. Phenotypic analyses of the mutant strain
showed enhanced growth rates in physiologically relevant carbon sources, including
lactate, acetate, and citrate. A few genes involved in carboxylic acid and citrate metabolism
were upregulated, alongside with GAT1 that promotes proliferation in casamino acid rich
environments. Therefore, the metabolic flexibility of C. albicans yeast-locked eed1∆/∆ mutant
in using alternative carbon sources (such as fatty acids, carboxylic and amino acids) at lower
concentrations or the absence of glucose enhances its colonization ability and pathogenicity.
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Hence, metabolic adaptation and fitness of C. albicans during infection not only supress the
activity and recognition of immune cells, but also enhance the pathogenicity and mortality
in systemic infection independently of hyphal formation.

4.2. Role of Metabolism during C. albicans Interactions with Epithelial Cells

While metabolic changes in immune cells have been the subject of recent studies, our
current knowledge of these changes in epithelial cells (ECs) following microbial infection
is limited. ECs are not merely passive barriers to prevent the invasion of microbes at the
body’s exterior surfaces but are also important in maintaining the balance with resident
microbial communities. There are few studies showing metabolic reprogramming in ECs
during microbial infection, namely increased glycolytic activity during Staphylococcus aureus
infection of skin keratinocytes [35].

Concerning ECs interactions with fungi, oral epithelial cells (OECs) have been found
to upregulate metabolic reprogramming-related genes in response to fungal infections,
including HIF1-α pathway during C. albicans oropharyngeal candidiasis in mice [127] or C.
parapsilosis infection of human OECs [128]. Similar to what is observed in phagocytosed
cells, C. albicans upregulates gluconeogenesis, the glyoxylate pathway and FAO in the
late phase of interaction with OECs, which might be related to the invasion process [129].
However, further analyses should be performed to unravel the mechanisms underlying
these metabolic shifts.

Additionally, vaginal EC responses to varied species of Candida (C. albicans; C. glabrata;
C. parapsilosis; and C. tropicalis) have also been studied using dual RNA sequencing in a
time course infection model for vaginal ECs, analysing both fungal and host transcriptomic
profiles [130]. In this study, Pekmezovic and co-workers showed a biphasic response to
Candida spp. in vaginal ECs. The initial response is highly uniform among Candida species
and characterised by mitochondrial-associated type 1 interferon (IFN) signalling. Of note,
most mitochondrial genes were upregulated in the early phase of Candida infection, and
the morphology of mitochondria changed in response to the infection. Moreover, mito-
chondrial DNA (mtDNA) and ROS are released into the vaginal ECs cytoplasm in all
Candida species, both acting as damage-associated molecular patterns (DAMPs). In terms of
fungal transcriptome, at 3 h post-infection C. albicans and C. glabrata upregulated carbohy-
drate catabolic processes and stress response pathways, whilst C. parapsilosis upregulated,
among others, genes related to amino acid metabolism, iron transport, ribosome assem-
bly and translation. In contrast, C. tropicalis differentially expressed genes were mainly
related to RNA processing, ribosome biogenesis and ergosterol biosynthetic processes.
Unlike the early responses, the late damage-associated epithelial transcriptional response
is morphology-dependent, with the hyphal-associated toxin candidalysin enhancing the
host responses [130].

5. Conclusions and Future Perspectives

Nutritional environment and metabolic adaptations in both host and fungal cells
are key during their interactions. Further characterising and understanding host im-
munometabolic responses to Candida infections will potentially help developing novel ther-
apeutic strategies to modulate these responses. In addition, identifying which metabolic
enzymes are essential during the activation of anti-Candida immunity will lead to the
detection of genetic variants associated with higher susceptibility in individuals suffering
from recurrent or chronic fungal infections. Likewise, modulating nutrients in the infection
environment could help enhance host responses and/or hamper fungal growth. Therefore,
further research on these promising fields must be carried out to expand our knowledge
and design new strategies to tackle fungal infections.
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