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Abstract: Dark skin-type individuals have a greater tendency to have pigmentary disorders, among
which melasma is especially refractory to treat and often recurs. Objective measurement of melanin
amount helps evaluate the treatment response of pigmentary disorders. However, naked-eye evalu-
ation is subjective to weariness and bias. We used a cellular resolution full-field optical coherence
tomography (FF-OCT) to assess melanin features of melasma lesions and perilesional skin on the
cheeks of eight Asian patients. A computer-aided detection (CADe) system is proposed to mark and
quantify melanin. This system combines spatial compounding-based denoising convolutional neural
networks (SC-DnCNN), and through image processing techniques, various types of melanin features,
including area, distribution, intensity, and shape, can be extracted. Through evaluations of the image
differences between the lesion and perilesional skin, a distribution-based feature of confetti melanin
without layering, two distribution-based features of confetti melanin in stratum spinosum, and a
distribution-based feature of grain melanin at the dermal–epidermal junction, statistically significant
findings were achieved (p-values = 0.0402, 0.0032, 0.0312, and 0.0426, respectively). FF-OCT enables
the real-time observation of melanin features, and the CADe system with SC-DnCNN was a precise
and objective tool with which to interpret the area, distribution, intensity, and shape of melanin on
FF-OCT images.

Keywords: melasma; melanin; optical coherence tomography; cellular resolution; full-field OCT;
photoaging; deep learning; image denoising; convolutional neural networks; computer-aided detection

1. Introduction

Dark skin-type individuals have more hyperactive melanocytes compared to the fair
skin-type individuals and are prone to develop melasma and other pigmentary disor-
ders [1–3]. The deposit of melanin in keratinocytes is readily seen on hematoxylin and
eosin stain (H&E stain), while melanocytes must be identified by special staining. With
the emerging non-invasive techniques, melanin in the epidermis can be easily visual-
ized because of its brightness by dermatofluoroscopy [4], reflectance confocal microscopy

Diagnostics 2021, 11, 1498. https://doi.org/10.3390/diagnostics11081498 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-1270-4198
https://orcid.org/0000-0002-0425-9154
https://orcid.org/0000-0002-0463-7346
https://orcid.org/0000-0001-5579-2197
https://orcid.org/0000-0002-1586-910X
https://doi.org/10.3390/diagnostics11081498
https://doi.org/10.3390/diagnostics11081498
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11081498
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11081498?type=check_update&version=2


Diagnostics 2021, 11, 1498 2 of 13

(RCM) [3], multiphoton microscopy [5], and optical coherence tomography (OCT) [6].
Studies suggested melanocytes rapidly transfer the produced melanin to keratinocytes
rather than accumulating it [7]. This may explain that typical active dendritic melanocytes
were hardly observed, while supranuclear melanin caps in the keratinocytes were easily
visible [8,9]. Melanin amount and distribution are therefore commonly used to classify the
melasma subtypes and to monitor the treatment response [10]. Non-invasive techniques
including RCM and multiphoton microscopy already detect pigmentary changes after
treatment with the picosecond alexandrite laser and Q-switched Nd: YAG laser [3,5,10,11].
We recently demonstrated the cellular resolution full-field optical coherence tomography
(FF-OCT) system allows real-time, non-invasive imaging of superficial skin diseases [6].
Although these imaging techniques allow observation of in vivo melanolysis and quali-
tative pigmentary changes, studies with quantitative measurements of the amount and
intensity of melanin remain scarce [4,12,13]. On the other hand, the images are often taken
on multiple different areas on the face and across the timeline of months. This ultimately
results in a large number size of images for physicians to interpret. Aside from the labor,
human eyes are prone to bias and weariness and may not be able to detect the delicate
pigmentary changes. To address the above obstacles encountered, we propose a computer-
aided detection (CADe) system with denoising, which can automatically segment and
mark melanin on FF-OCT images and provide more objective, reliable melanin descriptions
and analysis of its distribution in different skin layers for diagnosis through quantified
morphological features.

2. Materials and Methods

FF-OCT is an optical interferometric technique for high-resolution 3D imaging. Yet,
the OCT images inherently encounter the speckle noise, and hence the image quality
is reduced. Spatial compounding (SC) is a commonly used technique to mitigate the
speckle and Gaussian noise. The principle of SC is to induce changes in the speckle pattern
between repeated measurements through the tiny position change of the subject. Then,
these partially de-correlated multiple images measured from the sample are averaged to
obtain low-speckle images. Previous studies have confirmed the denoising performance of
SC in ophthalmic images [14,15]. In particular, through FF-OCT, multiple adjacent scans
can be acquired simultaneously without additional registration effort for SC. However,
the tradeoffs are greater time consumed, motion blur, and potential reduction of spatial
resolution. To address the difficulties, preliminary research [16] combined SC and deep
learning to provide effective noise reduction while maintaining the details of the OCT
image. An SC-based denoising convolutional neural network (SC-DnCNN) is used in the
presented CADe system to improve image quality. The automatic procedure of the CADe
system is shown in Figure 1. First, a denoising convolutional neural network (CNN) model
is employed to remove speckle noise from the tissue on images. Then, a series of image
processing actions, including contrast enhancement, object segmentation, morphology
processing, and image filtering, are used to automatically detect complete melanin-related
objects (including melanin, melanosome, melanocyte, and melanophage) in OCT images
and even in different skin layers. Finally, various melanin-related characteristics are
extracted from detected objects as the quantitative features for diagnosis.

Figure 1. Block diagram of the proposed computer-aided detection (CADe) system.

2.1. Patients and Data Acquisition

The FF-OCT scanner from ApolloVue® S100 Image System (manufactured by Apollo
Medical Optics, Ltd., Taipei City, Taiwan) was used to collect the skin OCT image



Diagnostics 2021, 11, 1498 3 of 13

(897 × 899 pixels, about 0.5 µm/pixel image resolution) and store it with 8-bit pixel
depth. All OCT images used in this research were obtained between August 2020 and
November 2020 from eight Asian patients with moderate to severe melasma from Taichung,
which is located in subtropical area in Taiwan. The MASI score of the 8 patients ranged
11.95–16.70 (mean 14.09 ± 1.73). Half of these patients were Fitzpatrick skin type III, and
half were skin type IV, with their ages ranging from 51 to 65 (median: 56).

Two lesion fields of view (FOVs) and one perilesional skin FOV were taken from the
left and right cheeks of each patient. There were 96 lesion images and 48 perilesional skin
images that contained three layers—the en face stratum spinosum, the dermal–epidermal
junction (DEJ), and papillary dermis—for the experiment.

2.2. SC-DnCNN

The SC-DnCNN is a pixel-wise noise prediction method that can be used to distinguish
the noise in the signal, thereby improving the image quality. It follows the advantages of a
denoising convolutional neural network (DnCNN) [17], taking residual learning [18] and
batch normalization (BN) [19] to speed up the training process and improve the denoising
performance. As shown in Figure 2, the deep architecture of a DnCNN is based on the
concept of the visual geometry group (VGG) network [20] and consists of multiple smaller
convolutional layers. The composition of these layers can be divided into three main types.
The first type appears in the first layer. It uses 64 filters with a size of 3 × 3 to generate
64 feature maps and then performs nonlinear conversion through rectified linear units
(ReLU) [21] on these feature maps as the input to the next layer. From the second layer to
the penultimate layer, all these convolutional layers belong to the second type. Similarly,
64 filters with a size of 3 × 3 × 64 are used on the input maps, but unlike the previous layer,
BN is added before ReLU. The BN is a normalization method that adjusts the distribution
of input values to a normal distribution, which not only avoids the problem of gradient
vanishing but also greatly accelerates the training speed. Finally, a filter with a size of
3 × 3 × 64 is used in the last layer as the output reconstruction.

Figure 2. The deep learning architecture of the denoising convolutional neural network (DnCNN).

In model training, the residual learning concept of deep residual network (ResNet)
is applied to simplify the optimization process. The difference is that DnCNN does not
add a shortcut connection between several layers but directly changes the output of the
network to a residual image. This means that the optimization goal of DnCNN is not the
mean square error (MSE) between the real clean image and the network output but the
MSE between the real residual image and the network output. The residual image, the
noise map, could be obtained by subtracting the clean image from the noisy image. In
the previous study [17], the noise is randomly added to a clear image to simulate a noisy
image. Regarding OCT images, the noise is mainly composed of the speckle noise, which
multiplies the noise by the structure signal [22]. Therefore, we generate the ground truth
by using real OCT images rather than simulated ones. Figure 3 illustrates the method
of SC-based ground-truth generation. In our FF-OCT imaging system, 11-pixel lines are
activated to acquire cross-sectional view (B-scan) images; accordingly, 11 adjacent virtual
slices are generated for SC. The thickness of the compounding image is around 5 µm, which
is close to histological slices. As the clean image, the composite image with low speckle
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is obtained by averaging 11 adjacent B-scans. In contrast, the average image generated
by compounding N pixel lines outward from the center represents a noisy image (where
N < 11).

Figure 3. Schematic diagram of how to generate low-speckle ground truth images.

The training and implementation structure of the SC-DnCNN model are shown in
Figure 4. According to the successful demonstration of B-scan image denoising in the
previous study [16], we chose a model trained with noisy images compounded by 5-pixel
lines to improve the en face scan (E-scan) image quality in this work. To train the SC-
DnCNN model, 512 paired patches with a size of 50 × 50 were randomly cropped in each
pair of images (noisy image and noise map). We set the number of network layers to
20 and used the stochastic gradient descent method to automatically learn the weights
of the filter kernels. In this deep learning, the parameter settings for model training,
including momentum, learning rate, mini-batch size, and epochs, were 0.9, 0.001, 128,
and 50, respectively. With reference to previous related studies [17,23], for the training
dataset of the denoising model, only about 300–400 images are needed to achieve the
outstanding effect, and increasing the amount of training data has a small improvement in
performance [17]. In our research, the model was trained and verified via 335 B-scan OCT
images collected from 10 patients [16]. The specifications of all B-scan data captured with
the whole FF-OCT scan were 1024 × 715 pixels, about 0.5 µm/pixel image resolution, and
storage in 8-bit pixel depth.

Figure 4. The structure of the spatial compounding-based denoising convolutional neural networks
(SC-DnCNN) trained for optical coherence tomography (OCT) denoising.
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2.3. Melanin Detection

The compartment of melanin taken up by keratinocytes from melanocytes was recently
given the name melanokerasome [7,8,24–27]. Our previous study comparing hematoxylin
and eosin (H&E) stain slice and OCT images revealed melanin appears as hyper-reflective
cells with a relatively strong intensity compared with the surrounding tissues [6]. To
replace the manual marking of melanin, a series of image processing steps based on signal
brightness and shape are proposed as follows.

Here, we take the E-scan OCT image in Figure 5 as an example to describe the
complete melanin segmentation process. First, we generate a clear image in Figure 5b
by performing noise reduction through the SC-DnCNN model. Second, contrast-limited
adaptive histogram equalization (CLAHE) [28] is applied to stretch the contrast in each
local area (approximately 12.5 ×12.5 µm tile) to enhance the feature of melanin whose
intensity is stronger than the surrounding signal, as shown in Figure 5c. Several specified
parameters in CLAHE, including the number of tiles into which the image is divided, the
distribution type for creating the contrast transform function, and the limiting factor that
controls the contrast enhancement effect, are determined through experiments to be 40 × 40,
exponential (λ = 0.1), and 0.001, respectively. Next, a relatively loose brightness level with
a threshold of 0.6 is given to filter out the target whose local signal does not reach a certain
intensity, which means that all pixels in the enhanced image that exceed the 153 gray level
are regarded as candidates for melanin. The result of binarization segmentation is shown
in Figure 5d. Finally, according to the observation results of the melanin size in the electron
microscope in the literature [29] and the limitation of OCT on the resolution of melanin
imaging, all targets with a diameter greater than 0.5 mm are retained in Figure 5e after
the image opening is applied. In addition, considering the differences in the aggregation
forms of melanin, we further performed morphological operations on the binarized image
to explore targets with a certain degree of aggregation. As shown in Figure 5f, all the
objects with an area over 8.42 µm2 (about a circle with a diameter of 3.3 µm) are defined as
confetti melanin.

Figure 5. Illustration of automatic melanin segmentation in CADe system. (a) Clinical image of the
imaged melasma lesions (rectangular) on the cheek. (b) The original en face scan (E-scan) image.
(c) The image after SC-DnCNN. (d) The image after performing contrast-limited adaptive histogram
equalization (CLAHE). (e) The candidate targets segmented by thresholding. (f) The selected grain
melanin after image opening. (g) The selected confetti melanin after morphological operations. The
field of view is 475 × 476 µm.
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2.4. Feature Quantification

According to the electron microscopy study of the distribution pattern, morphology,
and size of melanosomes in keratinocytes [7,8,24–27], melanosome size revealed a progres-
sive variation in size with ethnicity. Melanosomes in dark skin were the largest, followed
by those in Asian skin and Caucasian skin [5,9,29]. In dark skins, melanosomes have larger
pigment cores and are individually distributed throughout the cytoplasm of keratinocytes,
whereas in light skins, they have smaller cores and are aggregated in clusters [7,8,25,26].
Following these quantified findings, all quantitative features collected from OCT images
were employed in our CADe system to analyze the state of melanin.

Based on the analysis of melanin-related objects with different forms, the quantitative
features extracted from the segmented targets can be classified into two groups: grain and
confetti melanin features. The grain melanin features are used to describe all melanin-
related objects with a diameter greater than 0.5 µm, while the confetti melanin features
symbolize the appearance of all melanin-related objects with a certain degree of connection
and an area greater than 8.42 µm2. Among them, all confetti melanin belong to grain
melanin. A total of 18 quantitative features, including area, distribution, brightness, and
shape, are listed in Table 1. The area-based features separately count the total area of all
grain melanin and confetti melanin segmented from an image. The distribution-based
feature of all grain melanin, G_density, is based on the total area of the tissue in the image
to calculate the proportion of its area, where the tissue is defined as the signal whose
grayscale value is greater than 38 in the enhanced image. The distribution-based features of
all confetti melanin are related to their distance in two-dimensional space. C_distance_mean
and C_distance_SD, respectively, use the centroid of each confetti melanin to compute
the average and standard deviation of the distance between each other. In addition, the
features based on shape and brightness, respectively, provide statistical information to
determine the size and intensity of all melanin in the image. To extract the C_roundness
feature, a simple metric indicating the roundness of confetti melanin is defined as

roundness
4π ∗ area
perimeter2 (1)

where perimeter and area are the total number of confetti melanin contour pixels and area
pixels, respectively.

Table 1. Quantitative features of melanin-related objects on E-scan OCT images.

Form Category Feature Definition

grain

Area G_area The area of all grain melanin

Distribution G_density The density of the grain melanin in the tissue

Brightness

G_intensity_min The minimum brightness of the grain melanin
G_intensity_max The maximum brightness of the grain melanin
G_intensity_mean The average brightness of the grain melanin
G_intensity_SD The standard deviation of the grain melanin brightness

confetti

Area C_area The area of all confetti melanin

Distribution
C_distance_mean The average distance between the centroid of confetti melanin
C_distance_SD The standard deviation of the distance of confetti melanin centroid

Shape

C_roundness The average roundness of all confetti melanin
C_size_min The minimum size of all confetti melanin
C_size_max The maximum size of all confetti melanin
C_size_mean The average size of all confetti melanin
C_size_SD The standard deviation of the confetti melanin size

Brightness

C_intensity_min The minimum brightness of the confetti melanin
C_intensity_max The maximum brightness of the confetti melanin
C_intensity_mean The average brightness of the confetti melanin
C_intensity_SD The standard deviation of the confetti melanin brightness
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2.5. Statistical Analysis

To explore the correlation between melasma and melanin, the potential of quantitative
features in distinguishing lesion images from perilesional skin images was evaluated by
several statistical hypothesis tests. For comparison, all data before and after the image
denoising were also tested to observe the effect of the SC-DnCNN model on the CADe
system. Whether there was a normal distribution of the feature was determined by the
Kolmogorov–Smirnov test [30]. Subsequently, the difference of each feature between
the lesion and perilesional skin cases was evaluated with the mean ± SD in a normal
distribution and the median in a non-normal distribution by using Student’s t-test [30] and
the Mann–Whitney U test [30], respectively. With the significance analysis, p-value of less
than 0.05 indicated the difference was significant.

3. Results

These experiments verified the performance of the CADe system and SC-DnCNN
with a total of 144 images. For all images processed by SC-DnCNN, the noticeable speckle
noise was reduced, and the sharpness of the skin tissue structure was also improved. These
effects not only help the observation of image details but also show obvious advantages for
CADe’s melanin recognition ability. Comparing the results of the CADe system with and
without SC-DnCNN, the former showed more precise detection effects, including subtle
local contrast changes in the presence of grain melanin and obvious aggregation of confetti
melanin. Figures 6 and 7 show the test results for representative lesion and perilesional
skin images, respectively. When the influence of noise in the background was reduced, the
observation and detection of melanin became clearer and easier.

Figure 6. The performance comparison of CADe with and without SC-DnCNN on the representative
lesion images. (a,b) are the input image and the denoised image, respectively, while (c,d) are
the output results when superimposing the detected melanin on those images (grain melanin is
represented in red, and confetti melanin is represented in yellow), respectively. The field of view is
475 × 476 µm.



Diagnostics 2021, 11, 1498 8 of 13

Figure 7. The performance comparison of CADe with and without SC-DnCNN on the perilesional
skin images. (a,b) are the input image and the denoised image, respectively, while (c,d) are the output
results when superimposing the detected melanin on those images (grain melanin is represented in
red, and confetti melanin is represented in yellow), respectively. The field of view is 475 × 476 µm.

Tables 2 and 3 list the performance difference of the proposed CADe system when
performed with and without SC-DnCNN. The p-values and mean ± SD of all distinct
features generated before and after image denoising were extracted and analyzed. Table 2
shows that the C_distance_mean, a feature representing the average distance of each centroid
of all confetti melanin, differs markedly between lesions and perilesional skin (p = 0.0402)
with denoising. The average distances of confetti melanin in perilesional skin and lesion
images computed by the CADe were 200 µm and 193.5 µm, respectively, while they were
206.1 µm and 200.3 µm, respectively, for CADe without SC-DnCNN. The value of the
C_distance_mean in the lesion image tended to be smaller than that of the perilesional skin
image. However, the difference was not statistically significant (p = 0.0502) when image
denoising was not performed.

Additionally, we divided the dataset into three subsets according to the skin layer
(stratum spinosum, DEJ, and papillary dermis) and evaluated the difference between
the melanin features that could distinguish lesions in each subset. Figure 8 shows the
appearance of melanin observed in the representative lesion and perilesional skin images
of different skin layers using CADe. The p-values and mean ± SD of different features
generated before and after image denoising for each subset are also summarized in Table 3.
In the stratum spinosum, both significant features symbolize the distribution of the confetti
melanin, where the larger the C_distance_mean is, the more dispersed the melanin will be.
In addition, the smaller the C_distance_SD is, the more evenly distributed the melanin in the
entire image will be. This means that compared with the perilesional skin, the distribution
of confetti melanin in the lesion is more clustered in the local area of the image. The p-values
of C_distance_mean and C_distance_SD were 0.0036 and 0.0202, respectively, before image
denoising, while they were 0.0032 and 0.0312, respectively, after image denoising. Without
executing image denoising, all the quantitative features of the DEJ and papillary dermis
were not significantly different between the lesion and the perilesional skin. Through
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SC-DnCNN, the p-value of G_density in the DEJ was reduced from 0.1393 to 0.0426. For the
lesion images, it indicates that the feature of the grain melanin density tends to be higher
than that in the perilesional skin image.

Table 2. The p-values and mean ± SD of the significant features used to identify lesions in the denoising images.

Feature Image Denoising Perilesional Skin
(Mean ± SD)

Lesion
(Mean ± SD) p-Value

C_distance_mean
Before 206.1 ± 17.4 200.3 ± 14.0 0.0502
After 200.0 ± 18.5 193.5 ± 15.9 0.0402 *

* p-value < 0.05 shows statistically significant difference.

Table 3. The p-values and mean ± SD of the significant features used to identify lesions in the subset without the SC-DnCNN.

Layer Feature Image
Denoising

Perilesional Skin
(Mean ± SD)

Lesion
(Mean ± SD) p-Value

Stratum spinosum
C_distance_mean

Before 206.4 ± 12.9 194.3 ± 11.4 0.0036 *
After 198.1 ± 12.9 185.3 ± 13.3 0.0032 *

C_distance_SD
Before 103.7 ± 6.8 98.8 ± 6.0 0.0202 *
After 101.1 ± 7.4 96.2 ± 6.4 0.0312 *

Dermal–epidermal junction G_density Before 5.343 ± 1.123 5.865 ± 1.124 0.1393
After 4.905 ± 0.851 5.484 ± 0.984 0.0426 *

* p-value < 0.05 shows statistically significant difference.

Figure 8. Comparison of melanin appearance between the representative lesion and perilesional skin images in different
skin layers displayed by the CADe system. (a–f) are the perilesional skin images and the lesion images in the stratum
spinosum, dermal–epidermal junction (DEJ), and papillary dermis, respectively. The field of view is 475 × 476 µm.
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4. Discussion

Imaging modalities aid the diagnosis, monitoring, and treatment response for many
conditions, especially precancer lesions and skin cancers [6,31,32]. These techniques have
further expanded the field of cosmetic dermatology in detecting clinically undetectable cell
changes of the skin, affording new insights into the mechanisms and kinetics of pigmentary
disorders [3,10,33,34]. Although FF-OCT provides dermatologists real-time cellular images,
naked-eye evaluation is subject to weariness and inter- and intra-observer variability. It is
also time-consuming for dermatologists to perform a complete skin screening. Therefore,
many new technologies have this technology integrated into the device, or it is upcoming
as a potential future direction to aid in diagnostic accuracy.

In this research, a CADe system has been proposed to automatically label and quantify
melanin in FF-OCT images. Combined with the SC-DnCNN, the differences in melanin
features between the lesion and the perilesional skin are more distinct. The experiments
with 96 lesion and 48 perilesional cases showed that the proposed CADe system helps
to distinguish lesions using melanin features. For all images, the denoising performance
achieved similar performance so that the overall skin tissue structure was clearer and the
melanin pattern to be observed was more complete. Since FF-OCT has a nearly isotropic
resolution in all three dimensions, even though the denoising model was trained using
235 B-scan images, it works well on E-scan images. Moreover, because the SC-DnCNN
removes the speckle noise correlated with the microstructure of the tissue in the image
while performing the automatic detection of melanin, the subsequent series of signal
intensity processing actions can be more effective. Through our CADe system, it is possible
to quantitatively evaluate and compare some melanin characteristics belonging to the
lesion, including its appearance in different skin layers. Moreover, the experimental results
show that when diagnosing lesions, different skin layers should emphasize different types
of melanin features. When observing the OCT images within a lesion, the confetti melanin
appears dense and concentrated in the stratum spinosum, while the grain melanin has
a higher density in the DEJ. This is consistent with the findings of previous research [9].
Different skin layers produce different forms of melanin, and their appearance on OCT
images is also different. Within keratinocytes, melanokerasomes form a supra-nuclear cap,
shielding the nuclear genetic material from ultraviolet radiation-induced damage. Even in
our CADe system, a set of universal parameters was successfully applied to the detection
algorithm of generalized pigments. Once skin layer information is added, the precision
of melanin interpretation can be improved by updating the parameters or conditions of
the detection algorithm. Furthermore, useful features in the papillary dermis will have the
opportunity to be discovered by excluding other highly reflective skin components such as
collagen and keratin.

Measuring and quantifying melanin non-invasively is beneficial for lesion diagnosis
and follow-up. The stratum corneum of skin could be harvested by tape-stripping, followed
by analysis of melanin content with high-performance liquid chromatography (HPLC) [35].
The accuracy of HPLC is widely accepted; however, sampling only on the stratum corneum
layer may not have sufficient information or be a late indicator for diagnosis. Using NIR
fluorescence spectroscopy could specify melanin by analyzing the corresponding spectrum
and relate the optical signal intensity to melanin concentrations [36]. Lack of structure
information of skin, including the distribution of melanin, the size of melanin, and thickness
of skin layers, could limit the efficacy of diagnosis. The multispectral imaging device
combines the auto-fluorescence signal and narrow-band imaging to extract the spectral
information in the images [37]. However, it still lacks the melanin distribution in the skin
and the size of melanin. In this study, FF-OCT provides high-resolution three-dimensional
images, which could allow us to classify melanin into different sizes and analyze them in
different depths of the skin. The results show it does contribute to distinguishing melasma
and perilesional skin.

There were some limitations of this study. In our experiments, not all melanin dis-
played in OCT images had a clear outline. There were individual cases where it overlapped
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or could not be segmented exactly because aggregation affected the calculation of morphol-
ogy. For this reason, the shape-based features for confetti melanin, including roundness and
size-related symbols, did not play a role in distinguishing the lesion from the perilesional
skin. Clinically, the characteristics of melanin, including area, distribution, intensity, and
shape, are often used to interpret the lesion on FF-OCT images. However, it is a challenge
for CADe to be used on a 2D OCT image. According to the experimental results, the
depth information of the skin can support the CADe system’s more effective processing
of highly heterogeneous images. This means that the development of melanin detection
on three-dimensional images with stereo information will be expected to improve the
performance of CADe. By then, the existing ground truth uncertainty will also be better
resolved through the continuous information from three-dimensional images. Once the
3D reconstruction of these feature structures existing in the two-dimensional images is
completed, the observable melanin three-dimensional morphological features, including
shape and distribution, will be more effectively confirmed. Furthermore, the use of more
complete feature descriptions will also help to deal with more challenging problems such
as lesion classification. Another limitation of this study is that the current research was
conducted only for Asians. Yet, although there are differences in the size and concentration
of melanin between races, the changes in its optical properties are not easily reflected in the
appearance of confetti melanin under limited OCT resolution. Therefore, the applicability
of the automatic melanin detection performance to different races, such as Hispanics and
Caucasians, can be expected. This is also an important research direction to verify the
reliability of CADe in the future.

5. Conclusions

FF-OCT has verified the corresponding characteristics of stained sections and has even
attracted attention for its ability to diagnose lesions in vivo. Through SC-DnCNN, we can
obtain high-quality OCT images and combine them with the proposed CADe system to
improve the performance of melanin detection. The CADe system is used to automatically
mark melanin-related objects, including grain and confetti form. Various quantitative
features can be computed according to the morphology of melanin and used to describe
the appearance of the lesions.

In this study, some subtle differences between the lesions and the perilesional skin
were revealed with the melanin-related features. These include the distance between
confetti melanin regardless of the skin layer, the distribution-based features of confetti
melanin in stratum spinosum, and the distribution-based features of grain melanin at
the DEJ. Assuming that all pigment diseases have abnormal melanin manifestations, our
OCT and algorithm will help capture these differences in patterns and distributions. The
proposed CADe system can assist image interpretation and provide effective information
about the characteristics of melanin by quickly scanning and marking reminders.

Owing to its capability of reaching real-time and stable detection results, together
with its objectivity and precision when describing melanin features, this method could
surely represent an attractive tool to address pigment classification problems with such
requirements.
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