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A B S T R A C T   

The human skin is a complex organ that forms the first line of defense against pathogens and external injury. It is 
composed of a wide variety of cells that work together to maintain homeostasis and prevent disease, such as skin 
cancer. The exponentially rising incidence of skin malignancies poses a growing public health challenge, 
particularly when the disease course is complicated by metastasis and therapeutic resistance. Recent advances in 
single-cell transcriptomics have provided a high-resolution view of gene expression heterogeneity that can be 
applied to skin cancers to define cell types and states, understand disease evolution, and develop new therapeutic 
concepts. This approach has been particularly valuable in characterizing the contribution of immune cells in skin 
cancer, an area of great clinical importance given the increasing use of immunotherapy in this setting. In this 
review, we highlight recent skin cancer studies utilizing bulk RNA sequencing, introduce various single-cell 
transcriptomics approaches, and summarize key findings obtained by applying single-cell transcriptomics to 
skin cancer.   

Introduction 

Cellular diversity and heterogeneity underlie the skin’s many func-
tions, which include sensation, stabilization of body temperature, 
maintaining fluid and electrolyte balance, vitamin and hormone syn-
thesis, protection from external insults, and immunologic defense [1–4]. 
The skin is divided into three broad compartments- the epidermis, the 
dermis, and hypodermis/subcutaneous layer. Each compartment con-
tains specific anatomical structures and diverse cell populations that 
contribute to skin physiology and homeostasis [1–6]. The epidermis is 
arranged in stratified epithelial layers that establish the skin perme-
ability barrier. While keratinocytes comprise >90% of the epidermal cell 
population, the epidermis also contains melanocytes, Langerhans cells, 
and Merkel cells [1–6]. By comparison, the dermis is normally pauci-
cellular and characterized by an extracellular matrix of collagen and 
elastin fibers that provides structural support as well as a niche for 
sparsely distributed fibroblasts and a variety of immune cells [1-4,7]. 
Skin adnexa, blood and lymphatic vessels, and nerve bundles are also 
housed in the dermis [1–4]. The hypodermis is primarily composed of 
adipocytes organized into fat lobules and loose connective tissue; 

however, it also contains fibroblasts and macrophages (Fig. 1). Crosstalk 
between different cell populations, such as structural epithelial cells and 
immune cells, is increasingly appreciated to play an important role in 
both epidermal homeostasis as well as disease states [1,3,4]. 

Our aging population, rising global temperatures, and challenges to 
changing sun-related attitudes and behaviors all contribute to the rising 
incidence of skin cancer. Keratinocyte carcinomas, namely, basal cell 
carcinomas (BCC) and cutaneous squamous cell carcinomas (cSCC) [8], 
account for the majority of these cases and are the most common cancers 
in the United States [9,10]. While less common, melanoma and Merkel 
cell carcinoma (MCC) also demonstrate growing incidence rates. His-
topathologically, these tumors are characterized by nests or sheets of 
neoplastic cells within the epidermis and/or involving the dermis as well 
immune cell infiltrates that reflect the host immune response. Local 
treatment of small and/or early skin cancers by surgical excision or ra-
diation therapy is often curative; however, effective treatments for 
advanced or metastatic tumors have met with more measured success. 
The heterogeneity of tumor cells and cells comprising the tumor 
microenvironment (TME) often underlies therapeutic resistance, sug-
gesting that a deeper understanding of these cell populations and their 
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interactions might facilitate the development of more effective targeted 
treatments. Single-cell RNA-sequencing (scRNA-seq) now provides an 
unprecedented opportunity to study malignant cell heterogeneity and 
TME complexity at single-cell resolution. A number of recent review 
articles details how scRNA-seq has recently been applied to study skin 
homeostasis as well as cutaneous inflammatory diseases and cancers [8, 
11,12]. Here we discuss how our understanding of skin cancer biology 
has advanced using bulk transcriptomics as well as single-cell ap-
proaches and highlight different methods of scRNA-seq analysis. 

Recent applications of RNA-seq in skin cancer 

When compared to hybridization-based microarrays, next- 
generation RNA sequencing (RNA-seq) possesses several strengths, 
including greater dynamic range and the capacity for de novo tran-
scriptome assembly. In the skin cancer setting, whole transcriptome 
profiling by RNA-seq has been used to identify novel genes, such as non- 
coding RNAs and lowly expressed mRNA isoforms/transcripts. More 
recently, RNA-seq-based approaches have also been used to predict 
treatment response, nominate new therapeutic targets, and advance our 
understanding of disease progression as well as pathogenesis. For 
example, a recent analysis of melanocytic nevi and primary melanomas 
by Kunz et al. using RNA-seq revealed separate transcriptome signa-
tures, with enrichment of genes driving BRAF/MEK inhibitor resistance 
in NRAS-mutant nevi and primary melanomas, while genes associated 
with resistance to PD-1 inhibition were expressed in lesions with wild 
type NRAS [13]. This work defined two different trajectories for mela-
noma development, suggesting that treatment resistance is determined 
early in melanomagenesis [13]. Additional work by Svedman et al. using 
targeted RNA sequencing (Ion AmpliSeq) to characterize melanomas 
following immune checkpoint inhibition similarly demonstrated 
enrichment of key pathways such as DNA replication, chromatin 
remodeling, and cell cycle, which may predict long-term response to 
therapy [14]. RNA-seq has also been used to highlight novel targets and 
signaling pathways in BCC. Wan et al. analyzed the transcriptomes of 
BCC with high tumor purity compared to patient-matched normal skin 
and identified enrichment of C2H2-type Zinc Finger genes, including Gli 
transcription factors as well as many others not functionally character-
ized in this malignancy [15]. This study, along with a larger pooled 
analysis of publicly available RNA-seq data by Litvinov et al. confirmed 
known dysregulated pathways in BCC and also suggested new thera-
peutic targets in the Wnt/β-catenin as well as IL-17 signaling pathways 
[15,16]. Other groups have used RNA-seq to elucidate the molecular 
underpinnings of skin malignancies. Using human specimens that 
represent increasingly dysplastic states on the cSCC spectrum as well as 
the equivalent tissues in SKH-1E cSCC-prone mice, Chitsazzadeh et al. 
distilled four TFs – ETS2, SP1, FOXF2 and AP1 – that appear to regulate 

the continuum of cSCC development [17]. Similar results were obtained 
by Das Mahapatra et al., who compared cSCC to unmatched normal skin 
controls and also reported enrichment of genes regulating immunolog-
ical pathways, highlighting the importance of immunotherapy in this 
malignancy [18]. In MCC, which is divided into virus-positive and 
virus-negative categories based on the presence or absence of Merkel 
cell polyomavirus (McPyV) transcripts, Starrett et al. used RNA-seq to 
compare virus-positive to virus-negative MCC transcriptomes and 
demonstrated that genes regulating the cell cycle were increased in the 
former while DNA repair genes were downregulated in the latter [19]. 
These findings demonstrated a role for McPyV in controlling the MCC 
transcriptome and provide an explanation for the high mutation burden 
observed in virus-negative tumors [19]. 

As demonstrated by the aforementioned studies, bulk RNA-seq-based 
analyses are a valuable mainstay of investigative skin cancer biology. 
There are many advantages to using this approach, such as detection of 
mRNA isoforms and RNA species, high read capture capacity which 
enables detection of low abundance genes, low signal-to-noise ratio, and 
cost effectiveness. However, when applied to cancer, a few important 
limitations should be considered. First, details regarding the cellular 
context of the observed mRNA changes are not readily provided by bulk 
RNA-seq, although methods now exist to deconvolute this data into 
known cell populations using reference signatures. Second, bulk 
sequencing measures the average expression of a pooled population of 
cells, raising the possibility that transcriptomic changes of rare pop-
ulations may be masked. This is true of many tissues including skin, 
where heterogeneity is present not only at the level of diverse cell types 
and states (Fig. 1), but also evolves from disease progression and 
treatment. The emergence of therapeutic resistance following cancer 
chemotherapy, for example, is a setting in which bulk sequencing can 
fall short due to its inability to distinguish between drug-sensitive and 
resistant clones. Additionally, the ability to explore RNA trajectory, cell- 
specific multi-omics or cell-cell communication is limited with bulk 
RNA-seq. Thus, these and similar questions are increasingly being 
addressed by single-cell approaches that provide a more granular view 
of cell types and states, potentially revealing new targetable tran-
scriptomic changes. 

The two widely used methods for single cell sequencing are 10X 
genomics and Smart-seq2. Smart-seq2 has been shown to detect low 
abundance transcripts and isoforms, while 10X genomics is better at 
detecting rare cell types [20]. Using these methods and scRNA-seq data 
analysis approaches, researchers have highlighted cellular/spatial 
context of skin cancer transcriptome and deciphered novel cell-to-cell 
communications. 

Fig 1. Skin anatomy and pool of heterogeneous effector cells. Created with BioRender.com.  
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Approaches to decrypt single cell transcriptomics 

Cellular context 

A key goal of scRNA-seq is to characterize the cell types present 
within a sample, as this allows researchers to understand cell-type spe-
cific gene expression. An important first step when analyzing scRNA-seq 
data is to consider batch effects, or gene expression patterns caused by 
non-biological factors that can cause erroneous interpretation of cell 
types. Removing this technical noise for proper biological interpretation 
is referred to as integration. Methods like Seurat CCA, Harmony, scVI, 
scanorama, and scMC have been developed to integrate cells from 
multiple technical conditions [21–25]. Although integration methods 
help remove technical noise, when applied incorrectly they can over-
correct and remove biological variations. 

Many approaches have been developed to identify cell types. Manual 
annotation is a popular technique combining dimensionality reduction 
and unsupervised clustering followed by manual inspection of marker 
genes. This approach works best for smaller studies or when most of the 
cells being analyzed are expected to have few known marker genes. For 
larger studies of samples with previously profiled cell types, automated 
classification methods can greatly speed up annotation. Some of these 
approaches, such as SingleR, CellAssign, and Garnett rely on tran-
scriptomic reference profiles or gene signatures to label cell types 
[26–30]. By contrast other methods, including Azimuth, ProjecTILs, and 
scArches projects new cells to a reference atlas of previously annotated 
cell types [27,31,32]. Large consortium efforts such as Human Cell Atlas 
are currently cataloging major cell types and generating reference 
atlases that can be used to map and classify data from new studies [33]. 

After identifying broad cell types, further clustering is often per-
formed on cells within a specific lineage (e.g., tumor cells, fibroblasts, T- 
cells) to identify subpopulations of cells with transcriptionally distinct 
states. This analysis is usually exploratory in nature and thus performed 
manually unless prior studies have already determined marker genes for 
distinct cell states. In the cancer setting, identification of cell types and 
subclusters is often used to characterize intra- and intertumoral het-
erogeneity and can also be applied to immune and stromal cells to study 
the transcriptional heterogeneity of the TME. 

For example, in the first scRNA-seq study of skin cancer, Tirosh et al. 
analyzed 4645 cells isolated from 19 patients with melanoma and 
showed that across all tumors, malignant cells from the same melanoma 
contained two distinct transcriptional states not distinguishable by bulk 
RNA-seq that were characterized by either high expression of MITF or 
AXL. Cells with high AXL expression exhibited drug resistance to RAF/ 

MEK inhibition, suggesting they drive tumor recurrence [34]. This work 
also highlighted differential T-cell activation, expansion, and clonal 
exhaustion programs across different patients [34]. By sequencing 
single-cells from short-term culture of three melanomas with differing 
BRAF/NRAS genotypes, Gerber et al. derived gene expression modules 
from different cell subpopulations that included those with high MITF or 
AXL and also revealed targetable upregulation of the CDK4 and CDK2 
cell cycle-dependent kinases responsive to palbociclib [35]. Yao and 
colleagues, identified similar patterns of intratumoral heterogeneity in 
BCC by utilizing scRNA-seq to characterize tumor cells based on 
expression of nuclear myocardin-related transcription factor (nMRTF), 
which correlates with Smoothened (SMO) inhibitor resistance and is 
targetable using AP-1 inhibitors [36]. In cSCC, Ji et al. also identified 
four different keratinocyte subpopulations, including tumor-specific 
keratinocytes (TSKs). TSKs are observed at the leading edge of the 
tumor and are thus positioned to act as a hub in cSCC tumor-stromal 
interactions [37]. Tumor subpopulation clustering was also used by 
Paulson et al. to elucidate mechanisms of treatment relapse in McPyV+
MCC by demonstrating tumor cells adapt to the immunological pressure 
created by autologous McPyV-specific CD8+ T cells and immune 
checkpoint inhibitors by suppressing the HLA specific to the targeted 
McPyV epitope [38]. 

When applied to cancer-associated immune and stromal cells, the 
identification of cell types and subclusters has broadened our under-
standing of the transcriptional heterogeneity of the TME. Several studies 
have examined the landscape of T-cells in skin cancers, finding a diverse 
range of cells including cytotoxic, effector, exhausted, regulatory, and 
helper T- cells. Yost et al. coupled scRNA and T-cell receptor sequencing 
(scTCR-seq) to study advanced BCC following PD-1 blockade and 
showed that novel T-cell clones infiltrate the TME of advanced BCC upon 
treatment, replacing their pre-existing exhausted counterparts rather 
than reinvigorating them [39]. Deng et al. performed a meta-analysis of 
59 melanomas and catalogued the transcriptional states of CD8+ T-cells. 
They defined seven cytotoxic, exhausted, and naive/memory sub-
populations, including a subset of exhausted T-cells associated with poor 
prognosis and characterized by high expression of PMEL, TYRP1, and 
EDNRB [40]. Frazzette et al. recently used scTCR-seq and gene expres-
sion data to compare the T-cell landscape in cSCC from skin 
cancer-prone immunocompromised organ transplant recipients (OTR) 
to that of immunocompetent individuals [41]. This effort highlighted 
several differences between the tumor-infiltrating lymphocytes (TILs) of 
these two groups, with a reduction in cytotoxic T-cell number, TCR 
clonotypes, and clonal expansion observed in OTR [41]. Other studies, 
such as that by Davidson and colleagues, have focused on characterizing 

Fig 2. Crosstalk between different cells by ligand receptor or cell-cell interactions. Created with BioRender.com.  
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cancer-associated fibroblasts (CAFs) [42]. Using the murine B16 mela-
noma model, these authors defined three functionally distinct CAF 
subpopulations that are positioned to play roles in immune crosstalk, 
extracellular matrix remodeling, and cytoskeletal reorganization [42]. 

Cell-cell communication 

The availability of expression profiles from multiple cell types within 
a single sample allows detection of intercellular signaling via ligand- 
receptor expression analysis [43,44]. Several computational methods 
have been developed, including CellPhoneDB and CellChat [45,46]. 
These tools utilize databases with prior knowledge of ligand-receptor 
pairs or complexes to infer cell-cell communication based on expres-
sion of ligands and receptors from annotated cell groups (Fig. 2). This 
approach has proved to be especially useful for investigating in-
teractions between tumor cells and their microenvironment as well as 
immune-stromal crosstalk in skin cancers (Fig. 2). 

Within the TME, CAFs are well known to modulate tumor growth and 
progression. In their work identifying the TSK keratinocyte subcluster in 
cSCC, Ji and colleagues used NicheNet [37] to highlight TSK signaling to 
CAFs through ligand-receptor pairing of MMP9-LRP1 and TNC-SDC137. 
Similarly, work by Davidson et al. used CellPhoneDB to identify a subset 
of CAFs in the murine melanoma TME that express the immunomodu-
latory C3 protein and are in close contact with C3aR-positive myeloid 
cells; disrupting this interaction reduced tumor growth and resulted in 
fewer myeloid cells that suppress CD8+ T-cells [42]. Deng et al. also 
applied CellPhoneDB to their re-analysis of publicly available single-cell 
melanoma transcriptomes to show that ligand-receptor interactions 
involving exhausted T-cells, such as CCL5-CCR5 and CD74-MIF, are 
central to communication between different CD8+ subpopulations [40]. 
Guerrero-Juarez et al. used CellChat to investigate tumor-stromal in-
teractions in BCC and identified that the nearby fibroblasts act as an 
inflammatory hub regulating BCC growth through induction of heat 
shock proteins [47]. Knowledge of ligand-receptor pairing was also 
essential to work performed by Miao and colleagues, who performed 
adoptive cytotoxic T-cell transfer (ACT)-based immunotherapy in a 
mouse model of cSCC to investigate mechanisms of immune evasion 
[48]. Using scRNA-seq and lineage tracing, these authors identified a 
population of CD80+ tumor-initiating stem cells that are refractory to 
ACT and engage with CTLA4-expressing cytotoxic T-cells, reducing their 
activity and promoting tumor relapse [48]. 

Copy number alterations 

Genetic variation is traditionally assayed using exome or genome 
sequencing, which provides data on mutations, structural variants, and 
genomic copy number. When applied to cancer, these methodologies 
allow researchers to query the clonal structure of tumors, estimate 

tumor purity and ploidy, and distinguish neoplastic from healthy sam-
ples. Single cell DNA-sequencing (scDNA-seq) enables elucidation of 
genetic heterogeneity at higher resolution than bulk exome/genome 
approaches; however, it is not used as widely as scRNA-seq due to its 
high cost, lack of commercial kits, and data quality issues [49]. Method 
developers have attempted to circumnavigate these issues by estimating 
single-cell copy number profiles from scRNA-seq data with tools such as 
inferCNV, honeyBadger, copyKat, and CaSpER [50–52]. These ap-
proaches have been used to distinguish neoplastic from normal cells and 
understand clonal lineages within tumors. For example, in their 
scRNA-seq analysis of melanoma, Tirosh et al. classified melanocyte-like 
cells as malignant, non-malignant, or intermediate based on a copy 
number alteration score [34]. Only malignant cells were included in 
subsequent analyses of tumor gene expression programs, thus avoiding 
contamination from normal melanocytes that can occur when analyzing 
bulk RNA-seq data [34]. Yost and colleagues demonstrated concordance 
between copy number variants inferred from single-cell transcriptomes 
and those called using whole exome sequencing data in BCC [39]. 

Gene trajectory 

Many biological processes such as differentiation create cells that 
exist along a continuum rather than distinct transcriptional states. Tra-
jectory inference methods have been developed to infer the relationship 
between cells across a continuous process [53,54]. RNA velocity anal-
ysis is a related technique that uses the proportion of unspliced and 
spliced mRNA molecules within a cell to provide temporal ordering 
along the trajectory [55] (Fig. 3). When applied to skin cancer, trajec-
tory analysis has also been used to study tumor evolution. Wouters et al. 
employed Monocle-2 to characterize phenotype switching in melanoma 
[56]. Their findings demonstrate that melanoma cells transition from a 
melanocytic transcriptional state to a mesenchymal-like one through a 
stable intermediate state characterized by unique chromatin features 
and transcriptionally regulated by SOX6, NFATC2, EGR3, ELF1 and 
ETV456. Another trajectory study by Su and colleagues found that BRAF 
V600E melanomas exhibit a bifurcated developmental trajectory in 
response to BRAF inhibition that is dependent on MITF expression [57]. 
Trajectory analyses have also provided new insight into the TME 
response to treatment. Using scRNA and T-cell receptor sequencing, Yost 
et al. showed that novel T-cell clones infiltrate the TME of advanced BCC 
following PD-1 blockade, replacing their pre-existing exhausted coun-
terparts. The authors used trajectory analysis to analyze the evolution of 
T-cells in response to anti-PD-1 therapy and discovered they follow a 
bifurcated trajectory, becoming either terminally activated or exhaus-
ted, with the latter state marked by increased expression of PDCD1 and 
HAVCR239. Deng and colleagues observed similar findings in melanoma, 
with their trajectory analysis suggesting that CD8+ T-cells convert to 
either exhausted or cytotoxic terminal states [40]. 

Fig 3. RNA velocity analysis to delineate transcriptionally differential cell states in skin cancer. Created with BioRender.com.  
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Bulk deconvolution 

While scRNA-seq offers new opportunities to study skin cancer, bulk 
RNA-seq remains more common due to its lower cost and ease of use. 
Transferring findings from single-cell experiments to bulk datasets to 
take full advantage of available data resources is thus an important part 
of single-cell analysis. The existence of several publicly available skin 
cancer datasets with bulk microarray or RNA-seq data allows re-
searchers to validate findings from single-cell experiments in larger 
cohorts of bulk data such as The Cancer Genome Atlas (TCGA) [58]. One 
common approach is to derive cell-type or tumor subpopulation-specific 
gene signatures from single-cell data and then score bulk data using 
these signatures, allowing signature activity to be correlated with clin-
ical outcomes such as overall survival or metastasis [34]. More advanced 
deconvolution algorithms such as CIBERSORTx, MuSiC, and others use 
single-cell or bulk reference profiles to estimate cell-type abundance and 
gene expression from bulk tumor samples [59–61]. In the skin cancer 
setting, deconvolution has successfully been applied to study 
tumor-stromal interactions. Tirosh and colleagues used gene signatures 
derived from single-cell melanoma transcriptomes to deconvolute 471 
TCGA melanoma samples and showed that CAF abundance correlates 
with AXL expression [34]. They also identified a set of CAF-expressed 
genes that correlates with T-cell infiltration [34]. Similarly, after 
deriving signatures for T-cell exhaustion and cytotoxicity from 
single-cell data and scoring TCGA melanoma samples with these 

signatures, Deng et al. identified cytotoxic and exhausted sub-
populations that predict prognosis [40]. Other studies have used 
deconvolution algorithms to link levels of infiltrating immune cells with 
survival and nominate genes that may be involved in this process 
[62–64]. Deconvolution was also been applied to cSCC by Ji et al., who 
linked TSK-like expression with CAF activity in several TCGA cancer 
types [37]. 

Spatial context 

Single-cell approaches are increasingly being combined with spatial 
transcriptomics (ST) to gain further insight into the complex nuances of 
different cell types and states. By providing tissue context, ST enables 
researchers to understand gene expression as it relates to cell position 
within a tissue. The two widely used methods for ST are imaging‑based 
spatially resolved transcriptomics and in situ barcoding‑based spatially 
resolved transcriptomics. Imaging‑based spatially resolved tran-
scriptomics methods such as MERFISH, seqFISH and ABER-FISH relies 
on multiplexed fluorescence in situ hybridization (FISH) and expansion 
microscopy to detect several RNA molecules [65–68]. In situ barco-
ding‑based spatially resolved transcriptomics methods such as 10X 
Visium, Slide-seq and high-definition spatial transcriptomics (HDST) 
utilizes DNA barcoding to map out gene expression [68–71]. Although 
these methods can interrogate the entire transcriptome, they are limited 
by their tissue resolution, which varies from 55 μm to 2 μm. 

Fig 4. Integrating single cell RNA sequencing with spatial transcriptomics / RNAscope to map cellular spatial context. Created with BioRender.com.  
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ST methods have been applied to skin cancer to localize tumor 
subpopulations and may shed light on their role in cancer progression 
(Fig. 4). Using a highly multiplexed and sensitive platform called CEL- 
Seq2 Baron and colleagues used scRNA-seq to characterize zebrafish 
melanomas and identified a tumor subpopulation that expresses a stress- 
like transcriptional program [72]. ST was used to demonstrate that these 
cells are enriched in tumor regions, but not in the normal surrounding 
tissue [72]. After confirming the presence of stress-like cells in human 
melanomas and other cancer types, the authors showed that the stressed 
state efficiently seeds new tumors in zebrafish and is associated with 
resistance to MEK and BRAF inhibitors. In another study, Thrane et al. 
used the 10X Visium ST platform to characterize melanoma lymph node 
metastases, highlighting differential gene expression profiles as well as 
multiple melanoma signatures across the same region in a single tumor 
biopsy [73]. Poor patient survival was associated with greater expres-
sion heterogeneity in the area of transition between melanoma and 
lymphoid tissue [73]. Ji et al. similarly used the 10X Visium ST platform 
to demonstrate that cSCC TSKs and basal cells localize to the tumor 
leading edge and confirm the presence of vascular and CAF-enriched 
transcripts in the surrounding fibrovascular niche [37]. By incorpo-
rating a novel multi-parameter tissue imaging workflow named 
Pick-Seq, Nirmal et al. showed that invasive cutaneous melanoma pos-
sesses a unique cellular microenvironment at the tumor-stromal 
boundary that harbors different cell types supported by cytokine gra-
dients [74]. 

Some of the limitations of ST are that it lacks single-cell resolution 
and the read quality as well as the number of transcriptomes captured is 
often tissue-dependent. HDST notably enables users to reach a resolu-
tion of 2µM [68,70], providing the possibility of subcellular resolution. 
This method currently requires specialized analytics as well as bio-
informatic expertise, and is limited by low sensitivity of mRNA capture 
[75]. Moreover, both scRNA-seq and ST do not consistently detect genes 
with lower expression. To overcome these barriers, approaches such as 
RNA in situ hybridization, which offers a targeted but more sensitive 
alternative, can be used to generate spatial information at single-cell 
resolution. A recent study by Tran et al. developed a multimodal strat-
egy, Spatial Transcriptomic and RNA in situ Hybridization (STRISH), to 
study cancer-immune cell crosstalk at the genome-wide level in kerati-
nocyte cancers [76]. This approach starts by inferring ligand-receptor 
interactions in the cancer-immune cell context using scRNA-seq and 
ST. Cell-cell interactions are then visualized by RNA in situ hybridiza-
tion and quantitated using digital droplet PCR [76]. Using this analysis 
pipeline, the authors demonstrated co-expression of the IL34-CSF1R and 
THY1-ITGAM ligand-receptor pairs in cancer cell nests and areas of 
immune cell infiltrate [76]. We predict that similar strategies combining 
different technologies to overcome the limitations of each approach in 
isolation will be increasingly adopted to discover and confirm critical 

cell-cell interactions in the cancer setting. 

Conclusions 

Bulk RNA-seq remains a valuable method for defining the coding and 
non-coding transcriptome; however, when applied to the skin and its 
attendant malignancies, scRNA-seq has revealed robust expression dif-
ferences between cell types and states, providing new insight into the 
cellular diversity and heterogeneity that occurs in these settings 
(Table 1). While this approach is accompanied by its own limitations, 
most notably dropout events and the scalability of existing data analysis 
methodologies, the aforementioned studies demonstrate how scRNA-seq 
has enabled an improved understanding of molecular events regulating 
skin cancer progression. We predict that future studies will utilize single- 
cell transcriptomics to interrogate larger cohorts of treatment-resistant 
and relapsing skin cancers, with an eye towards predicting therapy 
response. As sequencing costs fall, scRNA-seq may also increasingly be 
used in the clinical setting to devise targeted personalized treatment 
strategies for advanced skin cancers that cannot be managed surgically. 
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