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Abstract
Dynamic imaging of the vocal tract using real-time MRI has been an active and growing

area of research, having demonstrated great potential to become routinely performed in

the clinical evaluation of speech and swallowing disorders. Although many technical

advances have been made in regards to acquisition and reconstruction methodologies,

there is still no consensus in best practice protocols. This study aims to compare Cartesian

and non-Cartesian real-time MRI sequences, regarding image quality and temporal resolu-

tion trade-off, for dynamic speech imaging. Five subjects were imaged at 1.5T, while per-

forming normal phonation, in order to assess velar motion and velopharyngeal closure.

Data was acquired using both Cartesian and non-Cartesian (spiral and radial) real-time

sequences at five different spatial-temporal resolution sets, between 10 fps (1.7×1.7×10

mm3) and 25 fps (1.5×1.5×10 mm3). Only standard scanning resources provided by the

MRI scanner manufacturer were used to ensure easy applicability to clinical evaluation

and reproducibility. Data sets were evaluated by comparing measurements of the velar

structure, dynamic contrast-to-noise ratio and image quality visual scoring. Results

showed that for all proposed sequences, FLASH spiral acquisitions provided higher con-

trast-to-noise ratio, up to a 170.34% increase at 20 fps, than equivalent bSSFP Cartesian

acquisitions for the same spatial-temporal resolution. At higher frame rates (22 and 25 fps),

spiral protocols were optimal and provided higher CNR and visual scoring than equivalent

radial protocols. Comparison of dynamic imaging at 10 and 22 fps for radial and spiral

acquisitions revealed no significant difference in CNR performance, thus indicating that

temporal resolution can be doubled without compromising spatial resolution (1.9×1.9 mm2)

or CNR. In summary, this study suggests that the use of FLASH spiral protocols should be

preferred over bSSFP Cartesian for the dynamic imaging of velopharyngeal closure, as it
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allows for an improvement in CNR and overall image quality without compromising spatial-

temporal resolution.

Introduction
Velopharyngeal insufficiency (VPI) is a speech impairment resulting from the incomplete
closure between the soft palate (velum) and the posterior and lateral pharyngeal walls, i.e. the
velopharyngeal port. As a result, air escapes through the nasal cavity during phonation
and patients most commonly present hypernasal speech [1]. Clinical assessment of VPI pri-
marily depends on the speech therapists’ perceptual evaluation. Imaging is usually performed
using x-ray videofluoroscopy and/or nasendoscopy [2]. X-ray videofluoroscopy provides sat-
isfactory visualization of the hard palate and pharyngeal walls, however, soft tissue contrast
(e.g. velum) is relatively poor. To improve contrast, a suspension of barium is usually applied
to the vocal tract mucosae [3,4]. However, this renders the procedure more unpleasant which
is a major constraint in younger patients [4]. Additionally, repetitive exposure to ionizing
radiation is of concern. Nasendoscopy consists of the passage of a fiber-optic scope trans-
nasally into the nasopharynx, providing an en-face view of the velopharyngeal port. The
introduction of the scope is rather invasive and requires full patient cooperation. Younger
patients or those with a deviated nasal septum usually require local anesthetic to the nostril
[1]. Additionally, wide-angle distortions and enlarged adenoids may hamper closure assess-
ment [2].

The limitations of both techniques have strongly supported the use of dynamic MRI in
speech research, as summarized in a review of the field [5]. MRI provides tomographic images
with improved soft tissue contrast, ideal for vocal tract imaging, in multiple image planes with-
out repositioning the patient. An increased number of studies have used real-time MRI to
image the upper airway during speaking, singing and swallowing, both in healthy [6–15] and
VPI individuals [4,16–19]. Comparison of the performance of real-time MRI with videofluoro-
scopy revealed good correspondence when assessing the velopharyngeal closure pattern [4].

Despite the advantages, clinical implementation still faces many challenges. Velopharyn-
geal closure is characterized by the rapid transition of the velum between rest and elevated
position; reported between 50 and 150 ms per cycle [20] depending on speech sample and
rate. To reliably capture velar motion, previous studies [9,10] have suggested a temporal res-
olution of 20 frames per second (fps). Although experiments with VPI patients seem to sug-
gest that all closure events during normal phonation are detected at around 10 fps, lower
frame rates lead to increased blurring and missed closure events [21]. Additionally, Sagar
et al. [16] reported overestimation of the velopharyngeal gap size and misleading diagnostic
evaluation when comparing MRI to videofluoroscopy, due to the low frame rate used (2 fps).
In summary, temporal resolution is a key issue when assessing velopharyngeal closure and
careful consideration should be given to the acquisition frame rate. However, temporal accel-
eration is limited by the trade-off in signal-to-noise ratio (SNR), spatial resolution and over-
all image quality.

Most research on clinical scanners has been focussed on Cartesian acquisitions. Turbo spin
echo (TSE) “zoom” techniques with partial Fourier acquisition have been used to achieve
between 4–6 fps with spatial resolutions of 1.5×3.1×6 mm3 [4] and 3.9×1.9×6 mm3 [12]. Rapid
gradient-echo sequences, both spoiled (like the fast low angle shot (FLASH) sequence) and
steady state free precession (SSFP) Cartesian sequences, have also been frequently used in
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dynamic vocal tract imaging [6–8,13,16,22]. These have been most commonly implemented
with parallel imaging techniques, both image based (SENSE [23]) and k-space based (GRAPPA
[24]), to further improve temporal resolution. Vocal tract configuration during singing and
swallowing was imaged at 10 fps (1.7×2.7×6 mm3) with a FLASH acquisition and GRAPPA
[7,8,22]. Scott et al. [6] investigated velopharyngeal closure at various spatial-temporal resolu-
tions (10 fps, 1.9×1.9×10 mm3 to 20 fps, 2.7×2.7×10 mm3) at both 1.5T and 3T using SSFP
sequences and SENSE. Also, Martins et al. investigated velar movement in European Portu-
guese vowels with a Cartesian FLASH sequence and GRAPPA reconstruction, imaging the
vocal tract at 14 fps (3.3×1.6×8 mm3) [13]. These studies have successfully covered a wide
range of speech tasks and clinical applications with standard scanning resources, however
image quality and temporal resolution is still limited. Additionally, non-Cartesian acquisitions
and nonstandard reconstruction methods have been suggested to improve spatial-temporal
resolution [9–11,25–29].

Narayanan et al. [10,30] imaged the vocal tract using an interleaved spiral acquisition, this
allowed an acquired frame rate of about 9 fps (2.7×2.7×5 mm3), reconstructed up to 24 fps
with a sliding window method [31]. Since each frame is acquired in multiple segments, frame
rate can be improved by reconstructing each image with the most recent set of spirals’ inter-
leaves. However, no additional information is added to the raw data and temporal fidelity is
reliant on native frame rate. Improved native temporal resolution (21 fps, 1.9×1.9×6.5 mm3)
was later reported by Bae et al. [9] using a multi-shot FLASH spiral protocol with regional satu-
ration, where saturation bands are applied to eliminate the signal outside the chosen field-of-
view (FOV). Niebergall et al. [11] performed imaging of the vocal tract at 30 fps (1.5×1.5×10
mm3) using a radial FLASH acquisition with a nonlinear inversion reconstruction method
[32]. Although this allowed for improved image quality at higher undersampling factors than
SENSE or conventional gridding reconstruction, reconstruction was intrinsically more com-
plex and time consuming. Lingala et al. suggested an optimized system for the dynamic imag-
ing of the vocal tract using a custom-built upper airway coil, multi-shot spiral sampling and
a sparse SENSE constrained reconstruction scheme [28]. Temporal resolutions of 83.3 fps
(12 ms) for a single-slice and 27.7 (36 ms) for a three-slice acquisition were achieved, with
improved temporal fidelity when compared to a fully sampled gridding reconstruction. Higher
frame rates were recently achieved by Fu et al., demonstrating a nominal rate of 100 fps
(2.2×2.2 mm2) based on a Partial Separability model [29]. Although these methodologies have
allowed great improvement in spatial-temporal resolution of speech imaging, they are mostly
reliant on off-line reconstruction methodologies and/or non-standard resources, thus hamper-
ing immediate translation to clinical evaluation.

In summary, dynamic imaging of the vocal tract with real-time MRI is still an open field of
research, and there is much variability in the preferred acquisition methods used by different
research groups [33]. Therefore, there is the need for a comparison of different acquisition pro-
tocols, regarding image quality and temporal resolution trade-off, which could provide with
additional insight to researchers interested in the field and assist with future translation to clin-
ical evaluation. The aim of this study is to compare different real-time sequences, Cartesian
and non-Cartesian sampling, for the dynamic imaging of speech, in particular the assessment
of velopharyngeal closure. It should be underlined that no direct comparison between the k-
space samplings’ (Cartesian vs. non-Cartesian) performance is intended from this study, we
seek instead to provide a comparison of “best practice” protocols for clinical evaluation. To
ensure that any resulting protocol could be easily reproduced and adapted to clinical evalua-
tion, only standard hardware, acquisition and reconstruction algorithms provided by the MRI
scanner manufacturer were used in this study.
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Materials and Methods

Subjects
Five adult individuals (2 males and 3 females, range 34–50 years, median 42 years) were
recruited from the staff of our institution for the main study, with a further 2 for preliminary
development work. All volunteers gave informed written consent according to ethics approval
of NHS research ethics committee (LREC 08/H0701/30). None of the participants had any
known speech, language or hearing disabilities.

Speech task and audio recording
Subjects were imaged in the supine position while performing a speech sample consisting of
counting (1 to 10), non-sense nasal verbalization (/za-na-za/, /zu-nu-zu/, /ze-ne-ze/) and sus-
tained phonation (/a/ as in ‘arm’ and /i/ as in ‘cheese’). Participants were provided with and
asked to repeat the chosen speech sample before entering the MRI examination room. As real-
time MRI sequences were used in this study, the speech sample was only produced once per
dynamic acquisition, unlike triggered protocols where consecutive repetition of the speech task
is necessary [5]. Audio was simultaneously recorded using a fiber-optic MR-compatible micro-
phone (FOMRI II, Optoacoustics, Or Yehuda, Israel), strapped to the coil structure and placed
adjacent and parallel to the lips of each subject. A noise-cancelling algorithm was used to
reduce the background scanner noise, internal to the microphone system and similar to that
described elsewhere [9]. Audio recording was started simultaneously with each MRI acquisi-
tion; however, subjects were instructed through the inter-communication system when to initi-
ate phonation in order to allow for the noise cancellation algorithm to adjust, usually between
6 to 10 seconds. Synchronization of the recorded audio and the dynamic image data was possi-
ble using a timing trigger signal available from the scanner and recorded as a second channel of
the audio signal. Examples of movies generated with synchronized audio can be seen in the
supporting information files.

MRI data acquisition
Images were acquired using a 1.5T Philips Achieva (Philips Healthcare, Best, the Netherlands)
R 3.2 MRI scanner (maximum 180 mT/m/ms gradient slew rate and 33 mT/m amplitude) and
a 16-channel neurovascular coil. Real-time 2D mid-sagittal images of the head and upper neck
were acquired. In order to optimize image quality, the shim volume was centered around the
velum.

Preliminary experiments with a phantom and 2 subjects were performed to identify suitable
sequences and optimize non-Cartesian acquisition. Cartesian protocols were implemented as
described elsewhere [6]. Although Cartesian acquisitions were performed with balanced-SSFP
sequences, preliminary testing with bSSFP non-Cartesian sequences revealed dynamic imaging
with increased velum blurring and signal void artifacts due to off-resonance effects (Fig 1).
Thus, FLASH-like sequences, commonly preferred in speech imaging [5], were used with the
non-Cartesian acquisitions. Data acquisition for the main study was performed as follows:
Cartesian protocols were implemented with a bSFFP sequence (flip angle 30°, partial Fourier
factor of 0.625 and 10 mm slice thickness), while non-Cartesian protocols were implemented
with a FLASH sequence (flip angle 10° and 10 mm slice thickness). Non-Cartesian sequences
(sequence 1 to 3) were optimized in order to match previously implemented Cartesian proto-
cols [6] in spatial-temporal resolution. Two additional spiral and radial sequences (sequence 4
and 5) were optimized to investigate additional spatial-temporal resolution improvement. By
matching protocols in spatial and temporal resolution, a quantitative comparison in image
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quality performance (e.g. signal-to-noise ratio, velum distortion and presence of artifacts)
between protocols could be performed. Acquisition parameters such as SENSE acceleration,
“sliding window” acceleration, number of spiral interleaves, readout time and radial projec-
tions were optimized; a detailed description of used acquisition parameters is given in Table 1.
Spiral protocols were implemented with 36 interleaves and a readout time of 2 ms. In order to
achieve the desired temporal resolution, Cartesian acquisitions were combined with SENSE
and non-Cartesian with a “sliding window” reconstruction method.

Data analysis
Dynamic images were analyzed using measurements of velum thickness and signal homogene-
ity, dynamic contrast-to-noise ratio (CNR) and image quality visual scoring. SPSS (v.22, IBM,
New York) software was used to perform all statistical analyzes. When comparing continuous
variables with multiple measurements, as in the case of CNR comparison between sequences
and sampling schemes, repeated-measures one-way analysis of variance (ANOVA) was used.
This was to test the null hypothesis that the mean of all samples for a certain measurement
across sequences were equal, considering a significance level of 0.05. Multiple Bonferroni
adjusted paired t-tests were used to identify significant pairs. Paired data sets, such as velum
thickness in both velar positions, were compared using a two-tailed paired t-test. Image quality
visual scoring was compared using a Kruskal-Wallis test. Significant pairs were identified with
multiple pairwise comparisons of the MannWhitney test and Bonferroni corrected signifi-
cance level.

Fig 1. Example mid-sagittal images acquired with bSSFP Spiral and FLASH Spiral to demonstrate differences in image quality and velum blurring.

doi:10.1371/journal.pone.0153322.g001
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Velum signal homogeneity and thickness
Measurements of velum thickness and signal homogeneity in the dynamic frames were carried
out using OsiriX 6.0.1 32 bit (Pixmeo Sarl, Bernex, Switzerland). Velar measurements in the
relaxed position were performed in frames prior to the beginning of phonation (nasal breath-
ing) and in the elevated position, in frames corresponding to the sustained phonation of /a/.
Velum thickness was measured as the distance between the velar knee and the velar dimple
[34]. Signal homogeneity of the velum was measured as the ratio between the mean and the
standard deviation of the signal retrieved from a region-of-interest (ROI) drawn to include the
velum structure. This gives an indication of the presence of artifacts or distortion in the selected
ROI, as this would result in a decrease in the calculated ratio. Since speech assessment with
real-time MRI is yet to be translated into clinical practice, direct correlation between these
image quality parameters and clinical relevance still needs to be fully understood. However,
low signal homogeneity of the velum could indicate an image where the velum is masked or
distorted by artifacts, and thus, clinical assessment of closure could be hampered.

Intensity-time CNR
CNR measurements were carried out using MATLAB (release 2014b, The MathWorks, Natick,
MA). Intensity-time plots were obtained by selecting an intensity profile in each dynamic
frame along a reference line (Fig 2b) and stacking profiles from adjacent time frames side-by-
side. This allows for a representation of velar motion throughout acquisition, where the hori-
zontal direction is representative of time. CNR was measured in a section of the intensity-time
plots, considering two ROIs selected over the velum and adjacent oral cavity, as follows:

CNR ¼ Svelum � Soral cavity
soral cavity

ð1Þ

Table 1. Acquisition parameters at 1.5T according to sequence and acquisition sampling scheme.

Sequence Spatial–temporal
resolution

Acquisition TE/TR
(ms)

FOV
(mm2)

Sliding window
factor

SENSE
factor

Radial
undersampling

1 1.9×1.9 mm2/10fps Cartesian 1.5/3.0 300×240 - 2.4 -

1 1.9×1.9 mm2 / 10 fps Radial 2.3/5.1 180×180 5.0 - 1.57

1 1.9×1.9 mm2 / 10 fps Spiral 1.0/5.1 190×190 2.0 - -

2 2.2×2.2 mm2 / 15 fps Cartesian 1.4/2.8 300×240 - 3.0 -

2 2.2×2.2 mm2 / 15 fps Radial 2.1/4.7 180×180 6.0 - 1.65

2 2.2×2.2 mm2 / 15 fps Spiral 1.0/5.0 190×190 3.0 - -

3 2.7×2.7 mm2 / 20 fps Cartesian 1.2/2.4 300×240 - 3.0 -

3 2.7×2.7 mm2 / 20 fps Radial 1.9/4.1 180×180 6.0 - 1.62

3 2.7×2.7 mm2 / 20 fps Spiral 1.0/4.8 190×190 4.0 - -

4 1.9×1.9 mm2 / 22 fps Radial 2.3/5.0 170×170 9.0 - 1.71

4 1.9×1.9 mm2 / 22 fps Spiral 1.0/5.1 190×190 4.0 - -

5 1.5×1.5 mm2 / 25 fps Radial 2.7/5.9 170×170 16.0 - 1.57

5 1.5×1.5 mm2 / 25 fps Spiral 1.0/6.3 190×190 6.0 - -

Sliding window acceleration factor is defined such as per one fully acquired dynamic scan; a number of sub-dynamic scans defined by the acceleration

factor are reconstructed. Therefore, frame rate is increased by the chosen sliding window factor. Radial undersampling was calculated in comparison to a

radial aliasing-free sampling case (number of projections times pi/2).

doi:10.1371/journal.pone.0153322.t001
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Where Svelum is the mean signal in the ROI drawn in the velum, Soral cavity and σoral cavity are the
mean and standard deviation signal in the ROI drawn in the neighboring oral cavity.

Visual scoring
Image quality of the dynamic data was scored visually. Images were rated blindly and randomly
using a five-point scale by two independent observers (imaging physicists) with, 2 and 20 years
of MRI experience. For intra-observer reliability data, observer 1 also scored the images a sec-
ond time, approximately one month after the first scoring. Further details on the chosen scor-
ing scale can be seen in Fig 3.

Fig 2. Example mid-sagittal images to demonstrate the upper vocal tract configuration at the relaxed and elevated velar positions. Image data
acquired in the same subject using Cartesian sequence 1 acquisition protocol. Reference line was selected along the primary direction of motion of the velum
to indicate the selected profile when generating the intensity-time plots.

doi:10.1371/journal.pone.0153322.g002

Fig 3. Five-point scoring scale from non-diagnostic (a) to excellent (e) image used to visually score image quality.

doi:10.1371/journal.pone.0153322.g003
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Results

Velum signal homogeneity and thickness
Example images acquired at both the elevated and relaxed velar positions are shown in Fig 4.

Measurements of velum thickness in millimeters at both velar positions are summarized in
Table 2.

Mean velum thickness was determined as 9.15 ± 1.51 mm at the relaxed position and
11.73 ± 1.77 mm at the elevated position (p<0.0005). No significant difference (Table 2 bottom
row) in velum thickness was found between sequences 1 to 5 for all sampling schemes at both
the relaxed and elevated positions. Additionally, no significant difference (Table 2 right col-
umn) in velum thickness was found between sampling schemes (radial vs. spiral vs. Cartesian)
at both velar positions.

Signal homogeneity of the velummeasured at both velum positions is summarized in Table 3.
It was observed that signal homogeneity of the velum was greater in the relaxed position for

all sequences with Cartesian sampling (p<0.05). No significant difference in signal homogene-
ity was found between the relaxed and elevated positions for all sequences with spiral sampling.
ANOVA analysis underlined significant differences between sequences for both velar positions
for radial (p<0.05, Table 3 bottom row) and spiral (p<0.01 and p<0.05, Table 3 bottom row)
acquisitions. Signal homogeneity in the relaxed position was found to be higher for sequence 1
when compared to sequence 5 (p<0.01) for the spiral acquisition. In the elevated position,
there were significant differences in signal homogeneity between sequences 1 and 3 (p<0.05)
and sequences 3 and 4 (p<0.05) for radial acquisition, and between sequences 2 and 5
(p<0.05) for spiral acquisition. However, no significant difference in signal homogeneity was
found between sequences acquired with Cartesian sampling (Table 3 bottom row).

Significant pairs were found between spiral and Cartesian acquisitions for all sequences at
both velar positions, and between radial and Cartesian for sequence 3 (relaxed position) and
sequences 2 and 3 (elevated position). Comparison of non-Cartesian (spiral vs. radial) acquisi-
tions revealed significant differences in velum signal homogeneity for sequences 1, 2 and 4 in
the elevated position.

Intensity-time CNR
Examples of intensity-time plots for radial and spiral acquisitions are shown in Fig 5. Increased
temporal fidelity is noticeable in data acquired with spiral protocols (Fig 5a, 5c, 5e and 5g)
when compared to the otherwise similar radial protocols (Fig 5b, 5d, 5f and 5h), particularly at
higher frame rates. For example at 25 fps, data acquired with spiral sampling (Fig 5g) presents
good distinction of closure events, as all points of contact between the velum and the pharyn-
geal wall are easily identified. However, intensity-time profiles acquired with the radial proto-
col showed increased temporal blurring and averaging of consecutive closure events (Fig 5h).

Intensity-time CNR measurements are summarized in Table 4.
Comparison between sequences showed a CNR increase between sequence 1 and 3 for radial

sampling (10.21±1.74 vs. 13.27 ± 1.90), however with borderline significance (p = 0.05) and
for spiral sampling (12.46±1.31 vs. 17.68±1.51, p<0.0005). However, no significant change in
CNR was found between sequences 1 to 3 (7.10±1.87 vs. 6.54±2.71, p = 0.93) for Cartesian
sampling.

A decrease in CNR was observed for sequences 4 and 5, however with no significant differ-
ence (p = 1.00) between the two sequences for both radial and spiral acquisitions. In addition,
comparison of sequence 4 with sequence 1 for both sampling methods (radial: 10.21±1.74 vs.
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7.37±1.02, p = 1.02 and spiral: 12.46±1.31 vs. 11.12±0.59, p = 0.83) revealed no significant dif-
ferences in CNR.

For sequences 1 to 3, non-Cartesian acquisitions provided higher CNR than the otherwise
similar Cartesian acquisitions. At higher frame rates (sequences 4 and 5), spiral acquisitions
provided higher CNR than equivalent radial protocols (refer to Table 4).

Visual scoring
Intra-observer agreement was good (Cohen’s k = 0.59, p<0.0005) with differences in 20 out of
65 analyzed cases and a maximum intra-observer difference of 1 score point. Inter-observer
agreement was very good (Cohen’s k = 0.74, p<0.0005) with differences between the observers
in 13 of the 65 cases and a maximum inter-observer difference of 1 score point. In 11 of these
13 cases, observer 2 scored images higher by 1 point than observer 1. In 12 cases out of the 65,

Fig 4. Example mid-sagittal images at elevated and relaxed velum positions acquired with sequence 1
and 3 Cartesian sampling and sequence 5 with radial and spiral acquisitions.

doi:10.1371/journal.pone.0153322.g004

Table 2. Mean velum thickness and standard deviation in millimeters (mm) of all subjects measured in the relaxed (nasal breathing) and elevated
(sustained phonation of /a/) velar positions.

Sequence FLASH Radial FLASH Spiral bSSFP Cartesian p-value

Relaxed Elevated Relaxed Elevated Relaxed Elevated

1 8.7 (2.2) 11.5 (2.0) 8.7 (1.6) 11.7 (1.3) 9.6 (1.4) 12.3 (2.1) 0.65 NS/0.77 NS

2 9.1 (2.1) 12.0 (1.6) 8.7 (1.4) 12.3 (0.8) 9.9 (1.6) 12.1 (2.6) 0.59 NS/0.95 NS

3 9.5 (2.0) 12.2 (2.1) 9.3 (1.9) 12.6 (0.7) 10.0 (0.9) 12.2 (2.5) 0.75 NS/0.92 NS

4 9.0 (1.4) 11.3 (1.3) 8.5 (1.2) 11.4 (1.3) - - 0.56 NS/0.86 NS

5 9.3 (1.3) 10.5 (2.1) 8.6 (1.0) 10.3 (1.8) - - 0.39 NS/0.83 NS

p-value 0.95 NS 0.66 NS 0.93 NS 0.06 NS 0.86 NS 0.99 NS

P-values refer to ANOVA analysis of velum thickness between sequences of the same sampling scheme (bottom row) and between sampling schemes

within the same spatial-temporal compromise (right column, upper value corresponds to relaxed position and bottom value to elevated position). NS-not

significant.

doi:10.1371/journal.pone.0153322.t002
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correspondent to data acquired with sequence 1 and 5 and spiral sampling, there was complete
scoring agreement between the observers.

Histogram representation of visual scoring performed by the two observers is present in Fig 6.
Overall, spiral acquisitions provided superior image quality across sequences 1 to 3 than

Cartesian acquisitions (p<0.01). Although visual scoring of data acquired with spiral sequence

Table 3. Mean and standard deviation velum signal homogeneity measured from selected frames of the dynamic data at both the relaxed (nasal
breathing) and elevated (sustained phonation of /a/) velar positions for all sequences.

Sequence FLASH Radial FLASH Spiral bSSFP Cartesian p-value

Relaxed Elevated Relaxed Elevated Relaxed Elevated

1 4.03(0.40) 2.94(0.27) 4.93(0.95) 4.17(0.84)c 3.71(0.51)a 2.46(0.64)a <0.005/<0.0005

2 4.50(0.77) 3.27(0.27) 4.63(1.07) 4.29(0.71)c 3.71(0.77)d 2.20(0.42)a c <0.05/<0.0005

3 4.54(0.41) 3.76(0.55) 4.59(0.77) 3.55(0.77) 3.36(0.43)a c 2.29(0.41)a b <0.0005 <0.0005

4 3.66(0.62) 2.84(0.38) 4.17(0.40) 3.66(0.51) - - 0.07 NS/<0.01

5 3.59(0.50) 2.98(0.47) 3.75(0.52) 3.44(0.41) - - 0.59 NS/0.06 NS

p-value <0.05 <0.05 <0.01 <0.05 0.14 NS 0.30 NS

P-values refer to ANOVA analysis of signal homogeneity between sequences of the same sampling scheme (bottom row) and between sampling

schemes within the same spatial-temporal compromise (right column, upper value corresponds to relaxed position and bottom value to elevated position).

Post hoc Bonferroni paired t-test was used to identify statically significant pairs, where
a p<0.0005 pairwise comparison to spiral acquisition.
b p<0.0005 comparison to radial acquisition.
c p<0.005 comparison to radial acquisition.
d p<0.05 comparison to spiral.

NS—not significant.

doi:10.1371/journal.pone.0153322.t003

Fig 5. Intensity-time plots for spiral (a,c,e,g) and radial (b,d,f,h) acquisitions at different spatial-temporal resolution sets. Selected ROIs in the velum
(blue) and in the neighboring oral cavity (red) were used to perform CNRmeasurements. At the highest frame rate of 25 fps (sequence 5), spiral acquisition
shows adequate temporal fidelity (g) while radial acquisition shows temporal blurring and averaging of consecutive closure events (h).

doi:10.1371/journal.pone.0153322.g005
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Table 4. Mean and standard deviation CNRmeasured in a short section of the intensity-time plots.

Sequence FLASH Radial FLASH Spiral bSSFP Cartesian p-value

1 10.21 (1.74) 12.46 (1.31) 7.10 (1.87)a c <0.005

2 12.51 (1.92) 13.81 (1.23) 6.67 (2.70)b d <0.0005

3 13.27 (1.90) 17.68 (1.51)a 6.54 (2.71)b d <0.0005

4 7.37 (1.02) 11.12 (0.59) - <0.0005

5 6.98 (1.09) 9.89 (0.94) - <0.005

p-value <0.0005 <0.0005 0.93 NS

P-values refer to ANOVA analysis of CNR between sequences of the same sampling scheme (bottom row) and between sampling schemes within the

same spatial-temporal compromise (right column). Post hoc Bonferroni paired t-test was used to identify statically significant pairs, where
a p<0.05 pairwise comparison to radial.
b p<0.005 pairwise comparison to radial.
c p<0.005 pairwise comparison to spiral.
d p<0.0005 pairwise comparison to spiral.

NS—not significant.

doi:10.1371/journal.pone.0153322.t004

Fig 6. Histogram representation of the image quality cumulative visual scoring performed by 2 independent observers. Cumulative scoring
represented by the sum of each observer independently (maximum scoring of 10) for all sequences and sampling schemes. Mean and standard deviation of
visual scoring of both observers is presented numerically on top of each bar plot.

doi:10.1371/journal.pone.0153322.g006
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1 presented superior image quality than the equivalent radial acquisition (5.0±0.0 vs. 2.9±0.2,
p<0.01), no significant differences were found between the two sampling schemes for
sequences 2 and 3. At higher frame rates, visual scoring of spiral data was superior to that of
radial acquisitions for both sequence 4 (4.4±0.6 vs. 2.3±0.7, p<0.01) and sequence 5 (4.0±0.0
vs. 1.6±0.7, p<0.01). In total, 12% of the analyzed cases were scored as ‘Excellent’, all acquired
with spiral sampling.

Discussion
In the present study, we compared Cartesian and non-Cartesian real-time sequences at 1.5T,
regarding image quality and temporal resolution trade-off, for dynamic speech imaging.

Previous studies [4,6,12,16] have performed dynamic imaging of velopharyngeal closure
with clinically available hardware and Cartesian sequences in both healthy and VPI subjects.
However, achieving sufficient temporal resolution to reliably assess VPI, while maintaining sat-
isfactory image quality, is a difficult balance point to achieve and many studies have been lim-
ited to low frame rates. Although higher frame rates, 20 fps and upwards, with adequate image
quality have been obtained with non-Cartesian acquisitions [9,11,25,28], these protocols are
mostly reliant on off-line reconstruction methodologies and/or non-standard equipment, ham-
pering immediate translation to clinical evaluation.

In this study, a non-Cartesian protocol optimized for fast dynamic imaging of the velum
and velopharyngeal closure has been proposed. We were able to demonstrate differences in
image quality and temporal resolution trade-off between FLASH non-Cartesian (spiral and
radial) and bSSFP Cartesian imaging at 1.5T. The optimized non-Cartesian spiral protocol pro-
vided improved spatial-temporal resolution (22fps, 1.9×1.9×10 mm3 and 25 fps, 1.5×1.5×10
mm3) in comparison to Cartesian protocols, while still being easily implemented and repro-
ducible with standard resources provided by the MRI scanner manufacturer.

Measured velum thickness was higher in the elevated velum position across all sequences.
In agreement with previous literature [6,34], this was an expected result as the posterior-supe-
rior elevation of the velum leads to an increase in thickness in the sagittal plane.

Both Cartesian and radial acquisitions showed lower signal homogeneity of the velum in the
elevated position across all sequences. As this measurement refers to the homogeneity of the
signal intensity within the selected ROI, artifacts present in the velopharyngeal region, which
distort and/or mask the velum, strongly reduce the measured parameter. The presence of arti-
facts in the velopharyngeal region in the elevated position can be seen in Fig 4e. Although both
Cartesian and radial data present strong distortion of the velum in the elevated position, and
consequently a decrease in the measured homogeneity, artifacts appear to be of different
nature. Artifacts present in bSSFP Cartesian data appear to be due to off-resonance effects.
This could be explained by that fact that when at rest, all velopharyngeal structures sit in close
contact; however, during phonation, the elevation of the velum and separation of the velophar-
yngeal structures creates a larger area of tissue-air interface and bSFFP sequences are particu-
larly sensitive to susceptibility differences. On the other hand, artifacts in radial data present a
spokes-like pattern and are most likely due to radial under-sampling. However, by implement-
ing a FLASH sequence with a spiral sampling, we were able to reduce artifacts or distortion in
the region and improve overall signal homogeneity of the velum (Table 3) compared to the
other two sampling methods.

Intensity-time CNR performance with non-Cartesian acquisitions was found to be superior
to Cartesian acquisitions (Table 4). At higher frame rates, spiral protocols were optimal and
provided higher CNR than equivalent radial protocols. Although no significant differences
were found between Cartesian sequences 1 to 3, a gradual increase in CNR was found for radial
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and spiral acquisitions. As expected with the decrease in pixel size, a decrease in CNR follows
for sequences 4 and 5 for both non-Cartesian. However, comparison between sequences 4 and
5 for both spiral and radial acquisitions revealed no significant difference, therefore indicating
that improvements in spatial-temporal resolution (from 22 fps, 1.9×1.9×10 mm3 to 25 fps,
1.5×1.5×10 mm3) can be achieved with no significant loss in CNR. In addition, no significant
difference in CNR was found between sequences 1 and 4 for both non-Cartesian acquisitions.
This suggests that both non-Cartesian acquisitions allow doubling the temporal resolution,
from 10 fps to 22 fps, while maintaining spatial resolution (1.9×1.9 mm2) and CNR. Although
SSFP sequences commonly allow for superior image SNR than spoiled sequences like FLASH
[5], this particular measurement of CNR reflects both the intrinsic signal-to-noise ratio and the
presence of artifacts in the selected ROIs, i.e. the oral cavity. Thus, although spiral protocols
were implemented with a FLASH-like acquisition, due to the reduced presence of artifacts in
the velopharyngeal region, the measured CNR was in fact higher than that of bSSFP Cartesian
acquisitions. This seems to suggest that the use of the FLASH spiral protocol should be pre-
ferred over the bSSFP Cartesian in this particular application, as an improvement in CNR and
accurate distinction of the velum boundaries is possible without compromising spatial-tempo-
ral resolution.

Qualitative visual scoring provided additional insight on the overall image quality achieved
by the different protocols. Overall, FLASH spiral data was scored higher than bSSFP Cartesian
across all sequences. Although no significant difference was found between radial and spiral
acquisitions at lower temporal resolutions, at higher frame rates of 22 and 25 fps, spiral acquisi-
tion was optimal in providing good visual image quality. Radial images, on the other hand,
showed increased blurring and spokes-like artifacts, reducing the overall image quality scoring.

Differences between the chosen reconstruction algorithms must also be considered; while
SENSE provides a true temporal acceleration of the Cartesian data, the “sliding window”
method (non-Cartesian acquisitions) produces an interpolation of the data in time. In this
case, since no additional information is being added to the raw data, temporal reliability is still
dependent on the acquired frame rate and temporal smoothing is introduced. However, the
study intended to compare different “best practice” protocols, i.e. that could be easily repro-
duced with resources routinely available and still provide adequate imaging. Since spiral acqui-
sitions are intrinsically fast [35] and presented a superior native frame rate (about 6 fps) than
radial, lower sliding window acceleration factors were required to achieve the desired frame
rates than the equivalent radial acquisitions (Table 1). Radial acquisitions were less optimal
with the current clinical setup, as these presented below optimal native frame rate (less than 2
fps) and therefore, blurring of the velum due to motion and averaging of consecutive closure
events was present.

Limitations of the present work include the small sample size, as well as increased acoustic
noise when using spiral protocols that may require additional care with more sensitive and/or
younger subjects. However, noise cancellation and quality of audio was still optimal (supple-
mentary data). Although peripheral nerve stimulation (PNS) clinical warning was displayed
for some acquisitions, none of the scanned subjects reported PNS sensation.

Conclusion
In conclusion, our results suggest that non-Cartesian real-time sequences are a promising tool
to improve overall image quality and temporal resolution of dynamic speech imaging. We
found that for all proposed sequences, FLASH non-Cartesian (spiral and radial) acquisitions
provided higher CNR than bSSFP Cartesian acquisitions, within the same spatial-temporal res-
olution. With this clinical setup, FLASH spiral sequences were optimal and provided dynamic

Comparison of Real-TimeMRI Sequences at 1.5T to Assess Velopharyngeal Closure during Speech

PLOS ONE | DOI:10.1371/journal.pone.0153322 April 13, 2016 13 / 16



imaging with superior CNR, velum signal homogeneity and visual image quality. At temporal
resolutions of 22 and 25 fps, spirals showed good temporal reliability of data while radial acqui-
sitions showed increased temporal blurring and were less adequate. It should be underlined
that it is possible to further improve image quality and temporal resolution of non-Cartesian
acquisitions using alternative reconstruction methods and/or custom equipment and software
[9,11,25,28,29]. However, the purpose of this study was to compare and present an easily
reproducible protocol to researchers equipped with standard MRI resources and translatable to
clinical practice.
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ral 22 fps sequence 4.
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